ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2016,Vol.32>> Issue(5)>> 1062-1071     doi: 10.3866/PKU.WHXB201603231         中文摘要
Next-Generation Energy Storage Technologies and Their Key Electrode Materials
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Full text: PDF (2187KB) HTML Export: BibTeX | EndNote (RIS)

In response to energy shortages and environmental concerns, global energy consumption is transitioning from a reliance on fossil fuels to multiple, clean and efficient power sources. Energy storage is central to the development of electric vehicles and smart grids, and hence to the emerging nationally strategic industries. Today, lithium-ion batteries (LIBs) are among the most widely used energy storage devices in daily life, but they face a severe challenge to meet the rigorous requirements of energy/power density, cycle life and cost for electric vehicles and smart grids. The search for next-generation energy storage technologies with large energy density, long cycle life, high safety and low cost is vital in the post-LIB era. Consequently, lithium-sulfur and lithium-air batteries with high energy density, and safe, low-cost room-temperature sodium-ion batteries, have attracted increasing interest. In this article, we briefly summarize recent progress in next-generation rechargeable batteries and their key electrode materials, with a particular focus on Li-S, Li-air, and Na-ion batteries. The prospects for the future development of these new energy storage technologies are also discussed.

Keywords: Energy storage   Lithium-sulfur battery   Lithium-air battery   Sodium-ion battery  
Received: 2016-02-15 Accepted: 2016-03-21 Publication Date (Web): 2016-03-23
Corresponding Authors: HUANG Yun-Hui Email:

Fund: The project was supported by the National Natural Science Foundation of China (21273087, 20803042).

Cite this article: YANG Ze, ZHANG Wang, SHEN Yue, YUAN Li-Xia, HUANG Yun-Hui. Next-Generation Energy Storage Technologies and Their Key Electrode Materials[J]. Acta Phys. -Chim. Sin., 2016,32 (5): 1062-1071.    doi: 10.3866/PKU.WHXB201603231

(1) Yu, H.; Zhou, H. J. Phys. Chem. Lett. 2013, 4, 1268. doi: 10.1021/jz400032v
(2) Manthiram, A.; Chemelewski, K.; Lee, E. S. Energ Environ. Sci. 2014, 7, 1339. doi: 10.1039/c3ee42981d
(3) Sun, Y. K.; Chen, Z. H.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S. T.; Amine, K. Nat. Mater. 2012, 11, 942. doi: 10.1038/nmat3435
(4) McDowell, M. T.; Lee, S.W.; Nix, W. D.; Cui, Y. Adv. Mater. 2013, 25, 4966. doi: 10.1002/adma.201301795
(5) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19.
(6) Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114, 11751. doi: 10.1021/cr500062v
(7) Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S.W.; Kang, K. Chem. Rev. 2014, 114, 11788. doi: 10.1021/cr500232y
(8) Yao, Z. D.; Wei, W.; Wang, J. L.; Yang, J.; Nuli, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 1005. [姚真东, 魏巍, 王久林, 杨军, 努丽燕娜. 物理化学学报, 2011, 27, 1005.] doi: 10.3866/PKU.WHXB20110345
(9) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/nmat2460
(10) Li, Z.; Huang, Y.; Yuan, L.; Hao, Z.; Huang, Y. Carbon 2015, 92, 41. doi: 10.1016/j.carbon.2015.03.008
(11) Li, W. Y.; Zheng, G. Y.; Yang, Y.; Seh, Z.W.; Liu, N.; Cui, Y. Proc. Natl. Acad. Sci. USA 2013, 110, 7148. doi: 10.1073/pnas.1220992110
(12) Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. Nat. Commun. 2013, 4, 2985. doi: 10.1038/ncomms3985
(13) Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. Nat. Commun. 2015, 6, 5682. doi: 10.1038/ncomms6682
(14) Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Nat. Commun. 2014, 5, 4759. doi: 10.1038/ncomms5759
(15) Tao, X.; Wang, J.; Ying, Z.; Cai, Q.; Zheng, G.; Gan, Y.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W.; Cui, Y. Nano Lett. 2014, 14, 5288. doi: 10.1021/nl502331f
(16) Zhou, J.; Li, R.; Fan, X.; Chen, Y.; Han, R.; Li, W.; Zheng, J.; Wang, B.; Li, X. Energ. Environ. Sci. 2014, 7, 2715. doi: 10.1039/C4EE01382D
(17) Liang, X.; Garsuch, A.; Nazar, L. F. Angew. Chem. Int. Edit. 2015, 54, 3907. doi: 10.1002/anie.201410174
(18) Gao, J.; Lowe, M. A.; Kiya, Y.; Abruña, H. D. J. Phys. Chem. C 2011, 115, 25132. doi: 10.1021/jp207714c
(19) Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2012, 134, 18510. doi: 10.1021/ja308170k
(20) Li, Z.; Yuan, L.; Yi, Z.; Sun, Y.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z.; Huang, Y. Adv. Energy Mater. 2013, 4, 1301473. doi: 10.1002/aenm.201301473
(21) Wang, J.; He, Y. S.; Yang, J. Adv. Mater. 2015, 27, 569. doi: 10.1002/adma.v27.3
(22) Gao, J.; Abruña, H. D. J. Phys. Chem. Lett. 2014, 5, 882. doi: 10.1021/jz5001819
(23) Gallagher, K. G.; Goebel, S.; Greszler, T.; Mathias, M.; Oelerich, W.; Eroglu, D.; Srinivasan, V. Energ Environ. Sci. 2014, 7, 1555. doi: 10.1039/c3ee43870h
(24) Imanishi, N.; Luntz, A. C.; Bruce, P. The Lithium Air Battery-Fundamentals; Springer: New York, 2014; pp 94-101.
(25) Luntz, A. C.; McCloskey, B. D. Chem. Rev. 2014, 114, 11721. doi: 10.1021/cr500054y
(26) Johnson, L.; Li, C.; Liu, Z.; Chen, Y.; Freunberger, S. A.; Tarascon, J. M.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Bruce, P. G. Nat. Chem. 2014, 6, 1091. doi: 10.1038/nchem.2101
(27) Aetukuri, N. B.; McCloskey, B. D.; Garcia, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Nat. Chem. 2015, 7, 50. doi: 10.1038/NCHEM.2132
(28) Khetan, A.; Luntz, A.; Viswanathan, V. J. Phys. Chem. Lett. 2015, 6, 1254. doi: 10.1021/acs.jpclett.5b00324
(29) Viswanathan, V.; Nørskov, J. K.; Speidel, A.; Scheffler, R.; Gowda, S.; Luntz, A. C. J. Phys. Chem. Lett. 2013, 4, 556. doi: 10.1021/jz400019y
(30) McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. J. Am. Chem. Soc. 2011, 133, 18038. doi: 10.1021/ja207229n
(31) Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489. doi: 10.1038/nchem.1646
(32) Feng, N.; He, P.; Zhou, H. ChemSusChem 2015, 8, 600. doi: 10.1002/cssc.v8.4
(33) Noked, M.; Schroeder, M. A.; Pearse, A. J.; Rubloff, G.W.; Lee, S. B. J. Phys. Chem. Lett. 2016, 7, 211. doi: 10.1021/acs.jpclett.5b02613
(34) Zhu, J.; Yang, D.; Yin, Z.; Yan, Q.; Zhang, H. Small 2014, 10, 3480. doi: 10.1002/smll.v10.17
(35) Xia, C.; Bender, C. L.; Bergner, B.; Peppler, K.; Janek, J. Electrochem. Commun. 2013, 26, 93. doi: 10.1016/j.elecom.2012.10.020
(36) Li, X.; Faghri, A. J. Electrochem. Soc. 2012, 159, A1747.
(37) Shui, J. L.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.; Almer, J. D.; Liu, D. J. Nat. Commun. 2013, 4, 2255.
(38) Salkus, T.; Dindune, A.; Kanepe, Z.; Ronis, J.; Urcinskas, A.; Kezionis, A.; Orliukas, A. Solid State Ionics 2007, 178, 1282. doi: 10.1016/j.ssi.2007.07.002
(39) Bhargav, A.; Fu, Y. J. Electrochem. Soc. 2015, 162, A1327.
(40) Hassoun, J.; Jung, H. G.; Lee, D. J.; Park, J. B.; Amine, K.; Sun, Y. K.; Scrosati, B. Nano Lett. 2012, 12, 5775. doi: 10.1021/nl303087j
(41) Wang, D.; Xiao, J.; Xu, W.; Zhang, J. G. J. Electrochem. Soc. 2010, 157, A760.
(42) Li, X.; Huang, J.; Faghri, A. Energy 2015, 81, 489. doi: 10.1016/
(43) Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, I.W. A.; Kim, H.; Kang, K. J. Am. Chem. Soc. 2013, 135, 9733. doi: 10.1021/ja4016765
(44) Matsui, M.; Wada, A.; Matsuda, Y.; Yamamoto, O.; Takeda, Y.; Imanishi, N. Chem. Commun. 2015, 51, 3189. doi: 10.1039/C4CC09535A
(45) Whittingham, M. S. Prog. Solid State Chem. 1978, 12, 41. doi: 10.1016/0079-6786(78)90003-1
(46) Nagelberg, A. S.; Worrell, W. L. J. Solid State Chem. 1979, 29, 345.
(47) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Energ. Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j
(48) Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19.
(49) Jian, Z. L.; Yuan, C. C.; Han, W. Z.; Lu, X.; Gu, L.; Xi, X. K.; Hu, Y. S.; Li, H.; Chen, W.; Chen, D. T.; Ikuhara, Y. C.; Chen, L. Q. Adv. Funct. Mater. 2014, 24, 4265. doi: 10.1002/adfm.v24.27
(50) Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. Nat. Mater. 2012, 11, 512. doi: 10.1038/nmat3309
(51) Mu, L. Q.; Xu, S. Y.; Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Adv. Mater. 2015, 27, 6928. doi: 10.1002/adma.201502449
(52) Yuan, D. D.; Liang, X. M.; Wu, L.; Cao, Y. L.; Ai, X. P.; Feng, J.W.; Yang, H. X. Adv. Mater. 2014, 26, 6301. doi: 10.1002/adma.201401946
(53) Yu, C. Y.; Park, J. S.; Jung, H. G.; Chung, K. Y.; Aurbach, D.; Sun, Y. K.; Myung, S. T. Energ. Environ. Sci. 2015, 8, 2019. doi: 10.1039/C5EE00695C
(54) Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. Energ. Environ. Sci. 2015, 8, 81. doi: 10.1039/C4EE03192J
(55) Barpanda, P.; Oyama, G.; Nishimura, S.; Chung, S. C.; Yamada, A. Nat. Commun. 2014, 5, 4358. doi: 10.1038/ncomms5358
(56) Nazri, G. A.; Pistoia, G. Lithium Batteries: Science, Technology; Kluwer Academic: Boston, 2004; pp 453-455.
(57) Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. J. Am. Chem. Soc. 2013, 135, 13870. doi: 10.1021/ja406016j
(58) Fang, Y. J.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Adv. Mater. 2015, 27, 5895. doi: 10.1002/adma.201502018
(59) Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Adv. Energ. Mater. 2012, 2, 410. doi: 10.1002/aenm.v2.4
(60) Lee, H.W.; Wang, R. Y.; Pasta, M.; Lee, S.W.; Liu, N.; Cui, Y. Nat. Commun. 2014, 5, 5280. doi: 10.1038/ncomms6280
(61) Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859. doi: 10.1002/adfm.v21.20
(62) Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Nat. Commun. 2014, 5, 4033.
(63) Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783. doi: 10.1021/nl3016957
(64) Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Adv. Mater. 2013, 25, 3045. doi: 10.1002/adma.v25.22
(65) Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Angew. Chem. Int. Edit. 2013, 52, 4633. doi: 10.1002/anie.201209689
(66) Zhu, Y.; Wen, Y.; Fan, X.; Gao, T.; Han, F.; Luo, C.; Liou, S. C.; Wang, C. ACS Nano 2015, 9, 3254. doi: 10.1021/acsnano.5b00376
(67) Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. Chem. Commun. 2012, 48, 3321. doi: 10.1039/c2cc17129e
(68) Wu, L.; Hu, X.; Qian, J.; Pei, F.; Wu, F.; Mao, R.; Ai, X.; Yang, H.; Cao, Y. Energ. Environ. Sci. 2014, 7, 323. doi: 10.1039/C3EE42944J
(69) Sun, J.; Lee, H.W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y. Nat. Nanotechnol. 2015, 10, 980. doi: 10.1038/nnano.2015.194
(70) Wang, S.W.; Wang, L. J.; Zhu, Z. Q.; Hu, Z.; Zhao, Q.; Chen, J. Angew. Chem. Int. Edit. 2014, 53, 5892. doi: 10.1002/anie.201400032
(71) Wang, C.; Xu, Y.; Fang, Y.; Zhou, M.; Liang, L.; Singh, S.; Zhao, H.; Schober, A.; Lei, Y. J. Am. Chem. Soc. 2015, 137, 3124. doi: 10.1021/jacs.5b00336
(72) Luo, W.; Allen, M.; Raju, V.; Ji, X. Adv. Energ. Mater. 2014, 4, 1400554. doi: 10.1002/aenm.201400554
(73) Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C.; Lu, X. H.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577. doi: 10.1021/cr100290v
(74) Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741

Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top