Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (6): 1519-1526    DOI: 10.3866/PKU.WHXB201603242
ARTICLE     
Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method
Kai-Jian ZHU1,Wen-Qing YAO2,Yong-Fa ZHU2,1,*()
1 Institute of Advanced Materials, Nanjing Tech University, Nanjing 210009, P. R. China
2 Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
Download: HTML     PDF(6636KB) Export: BibTeX | EndNote (RIS)      

Abstract  

BiPO4 photocatalysts were synthesized by refluxing in ethylene glycol, and the effects of reaction temperature and reaction time on the BiPO4 crystal structure, morphology, and properties were investigated. The crystal form of BiPO4 changed from hexagonal to monoclinic on refluxing in the solvent. The produced BiPO4 photocatalysts showed good activities in photodegradation of methylene blue, and the activity could be adjusted by changing the refluxing temperature and time. BiPO4 showed the best catalytic properties when the refluxing time was 2 h at 130 ℃; the kinetic constant was 0.161 min-1. The BiPO4 dispersibility was still high after standing for 2 d, because of the introduction of surface hydroxy groups by refluxing in ethylene glycol.



Key wordsRefluxing      Bismuth phosphate      Photocatalysis      Dispersibility     
Received: 05 January 2016      Published: 24 March 2016
MSC2000:  O643  
Fund:  The project was supported by the National Key Basic Research Program of China(9732013CB632403);National Natural Science Foundation of China(21437003)
Corresponding Authors: Yong-Fa ZHU     E-mail: zhuyf@tsinghua.edu.cn
Cite this article:

Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method. Acta Physico-Chimica Sinca, 2016, 32(6): 1519-1526.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201603242     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I6/1519

Fig 1 X-ray diffraction(XRD)patterns of BiPO4 photocatalysts with different synthesis conditions (A)4 h with different refluxing temperatures;(B)130 ℃ with different time
Fig 2 Transmission electron microscopy(TEM)and scanning electron microscope(SEM)images ofvarious BiPO4 photocatalysts (A,D)4 h,120 ℃;(B,E)4 h,130 ℃;(C,F)4 h,158 ℃
Fig 3 High resolution transmission electron microscopy(HRTEM)image of BiPO4(130 ℃,2 h)
Reaction temperature/℃ Crystal form Morphology Pore width/nm SBET/(m2?g-1)
120 monoclinic nanorods 2.9 10.51
130 monoclinic nanorods 2.7 9.89
140 monoclinic nanorods 270.00% 7.69
150 monoclinic nanorods 2.7 7.7
158 monoclinic nanorods 2.7 5.12
Table 1 Crystal form and Brunauer-Emmett-Teller(BET)surface area of BiPO4 obtained at thevarious refluxing
Fig 4 Ultraviolet-visible diffuse-reflection spectra(UV-Vis DRS)of different BiPO4 photocatalysts (A)4 h with different refluxing temperatures;(B)130 ℃ with different time.color online
Reaction temperature/℃ Crystal form Morphology Pore width/nm SBET/(m2?g-1)
1 monoclinic nanorods 2.5 6.65
2 monoclinic nanorods 2.7 13.11
4 monoclinic nanorods 2.7 9.89
8 monoclinic nanorods 240.00% 4.86
12 monoclinic nanorods 2.8 11.28
Table 2 Crystal form and BET surface area of BiPO4 obtained at various refluxing time
Fig 5 Photocatalytic degradation of methylene blue(MB)and degradation rate constant(k)of BiPO4 photocatalysts (A,C)4 h with different refluxing temperatures;(B,D)130 ℃ with different time
Fig 6 Photocurrent density of BiPO4 under UV light(λ=254 nm)(A);degradation activities of precursor,BiPO4,andP25(MB solution)(B);photocatalytic degradation of MB by BiPO4(130 ℃,2 h)cycled for five times(C) color online
Fig 7 Dispersibility(A)and the zeta potential(B)of BiPO4 aqueous solution before(1)and after(2)optimizationc
Fig 8 Fourier transform infrared(FTIR)spectroscopy of BiPO4 obtained for 2 h via different refluxing temperatures(A,B)and X-ray photoelectron spectroscopy(XPS)of the BiPO4 synthesized at 130 ℃ for 2 h(C,D)color online
1 Fu H. B. ; Pan C. S. ; Yao W. Q. ; Zhu Y. F. J. Phys. Chem. B2005, 109 (47) 2005, 109 (47), 22432.
2 Tokunaga S. ; Kato H. ; Kudo A. Chem. Mater 2001, 13 (12), 4624.
3 Yu J. ; Kudo A. Adv. Funct. Mater 2006, 16 (16), 2163d.
4 Zhang K. L. ; Liu C. M. ; Huang F. Q. ; Zheng C. ; Wang W. D. Appl. Catal. B: Environ 2006, 68 (3), 125.
5 Pan C. S. ; Zhu Y. F. Catal. Sci. Technol 2015, 5 (6), 3071d.
6 Pan C. S. ; Zhu Y. F. Environ. Sci. Technol 2010, 44 (14), 5570d.
7 Zhu Y. Y. ; Liu Y. F. ; Lü Y. H. ; Wang H. ; Ling Q. ; Zhu Y. F. Acta Phys. -Chim. Sin 2013, 29 (3), 576.
7 朱艳艳; 刘艳芳; 吕艳辉; 王华; 凌强; 朱永法. 物理化学学报, 2013, 29 (3), 576.
8 Liu Y. F. ; Ma X. G. ; Yi X. ; Zhu Y. F. Acta Phys. -Chim. Sin 2012, 28 (3), 654.
8 刘艳芳; 马新国; 易欣; 朱永法. 物理化学学报, 2012, 28 (3), 654.
9 Li G. ; Ding Y. ; Zhang Y. ; Lu Z. ; Sun H. ; Chen R. J. ColloidInterface Sci 2011, 363 (2), 497.
10 He Y. Y. ; Wang J. ; Guo L. L. ; An X. Y. ; Lü Y. ; Liu Y. Y. ; Fa W. J. J. Synth. Cryst 2012, 41 (5), 1410.
10 贺迎迎; 王杰; 郭丽丽; 安晓馀; 吕源; 刘圆圆; 法文君. 人工晶体学报, 2012, 41 (5), 1410.
11 Cheng L.W. ; Tsai J. C. ; Huang T. Y. ; Huang C.W. ; Unnikrishnan B. ; Lin Y. W. Material Research Express 2014,1 (2) 0250, 23, 025023.
12 Becerro A. I. ; Criado J. ; Gontard L. C. ; Obregón S. ; Fernández A. ; Colón G. ; Oca?a M. Cryst. Growth Des 2014, 14 (7), 3319.
13 Lv Y. H. ; Liu Y. F. ; Zhu Y. Y. ; Zhu Y. F. J. Mater. Chem. A2014, 2 (4) 2014, 2 (4), 1174.
14 Mooney-Slater R. C. L. Z. Kristallorg 1962, 117 (5-6), 371.
15 Pan C. ; Li D. ; Ma X. ; Chen Y. ; Zhu Y. Catal. Sci. Technol 2011, 1 (8), 1399.
16 Romero B. ; Bruque S. ; Aranda M. A. G. ; Iglesias J. E. Inorg.Chem 1994, 33 (9), 1869.
17 Wei Z. ; Liu Y. F. ; Wang J. ; Zong R. L. ; Yao W. Q. ; Wang J. ; Zhu Y. F. Nanoscale 2015, 7 (33) 1394, 3, 13943.
18 Xu J. ; Li L. ; Guo C. ; Zhang Y. ; Meng W. Appl. Catal. B:Environ 2013, 130, 285.
19 Pan C. S. ; Xu J. ; Chen Y. ; Zhu Y. F. Appl. Catal. B: Environ 2012, 115, 314.
20 Li Z. ; Yang S. ; Zhou J. ; Li D. ; Zhou X. ; Ge C. ; Fang Y. Chem. Eng. J 2014, 241, 344.
21 Chen X. B. ; Liu L. ; Yu P. Y. ; Mao S. S. Science 2011, 331 (6018), 746.
22 Sheng J. Y. ; Li X. J. ; Xu Y. M. Acta Phys. -Chim. Sin 2014, 30 (3), 508.
22 盛珈怡; 李晓金; 许宜铭. 物理化学学报, 2014, 30 (3), 508.
23 Cao D. ; Luo W. ; Feng J. ; Zhao X. ; Li Z. ; Zou Z. Energ.Environ. Sci 2014, 7 (2), 752.
24 Li Y. ; Wang Y. ; Huan G. Y. ; Cao J. ; Ho W. ; Le E. S. ; Fan C. RSC Adv 2015, 5 (121), 99712.
[1] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[2] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 590-601.
[3] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 399-406.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[5] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2082-2091.
[6] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 80-102.
[7] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2185-2196.
[8] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2069-2076.
[9] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2077-2083.
[10] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1758-1764.
[11] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 728-736.
[12] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 737-744.
[13] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 551-557.
[14] Rong-An HE,Shao-Wen CAO,Jia-Guo YU. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(12): 2841-2870.
[15] Li ZHOU,Huan-Huan LIU,Yu-Lin YANG,Liang-Sheng QIANG. Preparation and Performance of a SILAR TiO2/CdS/Co-Pi Water Oxidation Photoanode[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2731-2736.