Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (7): 1758-1764    DOI: 10.3866/PKU.WHXB2016032805
ARTICLE     
Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism
Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU*()
Download: HTML     PDF(3408KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Rutile is much less active than anatase and brookite for the photocatalytic degradation of organic pollutants in aqueous solution. In this work, we found that addition of a trace amount of CuWO4 greatly accelerated phenol degradation in an aerated aqueous suspension of rutile. The increased rate was not only much higher than those of anatase and brookite, prepared at the same temperature (600 ℃), but also increased continuously with the sintering temperature of rutile from 150 to 800 ℃. These observations indicate that the high intrinsic photocatalytic activity of rutile produced at a high sintering temperature can be exploited by using co-catalyst CuWO4. Furthermore, as the amount of CuWO4 added to the suspension increased, the amount of H2O2 produced in the presence of excess phenol increased and then decreased; the trend was similar to that observed for phenol degradation. The observed positive effect of CuWO4 is mainly caused by solid CuWO4 rather than Cu2+ ions in aqueous solution. A (photo)electrochemical measurement showed that interfacial electron transfer occurred from the irradiated rutile to CuWO4. This would improve the charge-separation efficiency, and consequently increase the rates of O2 reduction and phenol degradation.



Key wordsRutile      CuWO4      H2O2      Organic degradation      Photocatalysis      Charge transfer     
Received: 01 February 2016      Published: 28 March 2016
MSC2000:  O649  
Fund:  National Natural Science Foundation of China(21377110)
Corresponding Authors: Yi-Ming XU     E-mail: xuym@zju.edu.cn
Cite this article:

Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB2016032805     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I7/1758

 
 
 
 
 
 
 
1 Hoffmann M. R. ; Martin S. T. ; Choi W. ; Bahnemann D.W. Chem. Rev. 1995, 95, 69.
2 Chang X. X. ; Gong J. L. Acta Phys. -Chim. Sin. 2016, 32, 2.
2 常晓侠; 巩金龙. 物理化学学报, 2016, 32, 2.
3 Sheng J. Y. ; Li X. J. ; Xu Y. M. Acta Phys. -Chim. Sin. 2014, 30, 508.
3 盛珈怡; 李晓金; 许宜铭. 物理化学学报, 2014, 30, 508.
4 Carp O. ; Huisman C. L. ; Reller A. Prog. Solid State Chem. 2004, 32, 33.
5 Pelaez M. ; Nolan N. T. ; Pillai S. C. ; Seery M. K. ; Falaras P.; Kontos A. G. ; Dunlop P. S. M. ; Hamilton J.W. J. ; Byrne J. A. ; O′Shea K. ; Entezari M. H. ; Dionysiou D. D. Appl. Catal. B 2012, 125, 331.
6 Guo Q. ; Zhou C. Y. ; Ma Z. B. ; Ren Z. F. ; Fan H. J. ; Yang X. M. Acta Phys. -Chim. Sin. 2016, 32, 28.
6 郭庆; 周传耀; 马志博; 任泽峰; 樊红军; 杨学明. 物理化学学报, 2016, 32, 28.
7 Sclafani A. ; Herrmann J. M. J. Phys. Chem. 1996, 100, 13655.
8 Augugliaro V. ; Palmisano L. ; Sclafani A. ; Minero C. ; Pelizzetti E. Toxicol. Environ. Chem. 1998, 16, 89.
9 Li Z. ; Cong S. ; Xu Y. M. ASC Catal. 2014, 4, 3273.
10 Luo B. D. ; Li Z. ; Xu Y. M. RSC Adv. 2015, 5, 105999.
11 Sun Q. ; Xu Y. M. J.Phys. Chem. C 2010, 114, 18911.
12 Cong S. ; Xu Y. M. J.Phys. Chem. C 2011, 115, 21161.
13 Li Z. ; Liu R. ; Xu Y. M. J.Phys. Chem. C 2013, 117, 24360.
14 Li Z. ; Sheng J. Y. ; Zhang Y. H. ; Li X. J. ; Xu Y. M. Appl. Catal. B 2015, 166- 167,313.
15 Sun B. ; Smirniotis P. G. ; Boolchand P. Langmuir 2005, 21, 11397.
16 Xiong X. Q. ; Chen H. H. ; Xu Y. M. J. Phys. Chem. C 2015, 119, 5946.
17 Anpo M. ; Shima T. ; Kodama S. ; Kubokawa Y. J.Phys. Chem. 1987, 91, 4305.
18 Kolen′ko Y. V. ; Churagulov B. R. ; Kunst M. ; Mazerolles L. ; Colbeau-Justin C. Appl. Catal. B 2004, 54, 51.
19 Kandiel T. A. ; Feldhoff A. ; Robben L. ; Dillert R. ; Bahnemann D.W. Chem. Mater. 2010, 22, 2050.
20 Montini T. ; Gombac V. ; Hameed A. ; Felisari L. ; Adami G. ; Fornasiero P. Chem. Phys. Lett. 2010, 498, 113.
21 Chakrabarti S. ; Ganguli D. ; Chaudhuri S. Physica E 2004, 24, 333.
22 Bader H. ; Sturzenegger V. ; Hoigné J. Water Res. 1988, 22, 1109.
23 Uddin M. N. ; Salam M. A. ; Hossain M. A. Chemosphere 2013, 90, 366.
24 Li X. J. ; Sheng J. Y. ; Chen H. H. ; Xu Y. M. Acta Phys. -Chim. Sin. 2015, 31, 540.
24 李晓金; 盛珈怡; 陈海航; 许宜铭. 物理化学学报, 2015, 31, 540.
25 Iliev M. N. ; Hadjiev V. G. ; Litvinchuk A. P. Vib. Spectrosc. 2013, 64, 148.
26 Mattsson A. ; ?sterlund L. J.Phys. Chem. C 2010, 114, 14121.
27 Goti? M. ; Ivanda M. ; Popovi? S. ; Musi? S. ; Sekuli? A. ; Turkovi? A. ; Furi? K. J. Raman Spectrosc. 1997, 28, 555.
28 Hanaor D. A. H. ; Sorrell C. C. J.Mater. Sci. 2011, 46, 855.
29 Boonstra A. H. ; Mutsaers C. A. H. A. J.Phys. Chem. 1975, 79, 1694.
30 Munuera G. ; Rives-Arnau V. ; Saucedo A. J.Chem. Soc. Faraday Trans. 1 1979, 75, 736.
31 Gonzalez-Elipe A. R. ; Munuera G. ; Soria J. J.Chem. Soc. Faraday Trans. 1 1979, 75, 748.
[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Ulises OROZCO-VALENCIA,L. GÁZQUEZ José,Alberto VELA. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 692-698.
[3] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[4] Yuan-Fei WU,Ming-Xue LI,Jian-Zhang ZHOU,De-Yin WU,Zhong-Qun TIAN. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 530-538.
[5] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[6] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[7] Xin CHEN,Shao-Zheng HU,Ping LI,Wei LI,Hong-Fei MA,Guang LU. Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2532-2541.
[8] Yi WANG,Nan-Fang JIA,Sheng-Li QI,Guo-Feng TIAN,De-Zhen WU. Synthesis, Characterization and Memory Performance of Naphthalimides Containing Various Electron-Withdrawing Moieties[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2227-2236.
[9] Hao ZHANG,Xin-Gang LI,Jin-Meng CAI,Ya-Ting WANG,Mo-Qing WU,Tong DING,Ming MENG,Ye TIAN. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[10] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[11] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[12] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[13] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[14] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[15] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1519-1526.