Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (7): 1699-1707    DOI: 10.3866/PKU.WHXB201604011
ARTICLE     
Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers
Jia-Jun HUANG1,2,Zhi-Jun DONG1,2,*(),Xu ZHANG1,2,Guan-Ming YUAN1,2,Ye CONG1,2,Zheng-Wei CUI1,Xuan-Ke LI1,2,3,*()
1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
2 Hubei Province Key Laboratory of Coal Conversion and New Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
3 The Research Center for Advanced Carbon Materials, Hunan University, Changsha 410082, P. R. China
Download: HTML     PDF(12134KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Ribbon-shaped mesophase pitch-based graphite fibers (MPGFs) were prepared by melt-spinning, preoxidation, carbonization, and graphitization. The effects of the size of the spinneret and spinning rate on the orientation of the carbon layers and crystal structure of the ribbon-shaped graphite fibers transverse section were investigated. The electrochemical performances of the ribbon-shaped MPGFs as anode materials for lithium-ion batteries were tested. The results show that the size of the spinneret and spinning rate significantly affect the orientation of the carbon layers. The carbon layers of graphite fibers that were prepared at a low spinning rate using a spinneret with a low length/width ratio were arranged along the radial direction. These fibers had good rate capability. Their discharge specific capacities at 0.1C and 1C rates were 336 and 300 mAh·g-1, respectively. However, the fibers showed poor cyclic performance. After 100 cycles at 0.1C rate, the capacity retention was only 89.1%. The carbon layers of the graphite fibers that were prepared at a low spinning rate using a spinneret with a high length/width ratio had a wavy, wrinkled texture and were arranged along the direction parallel to the principal plane of the fibers. These fibers had poor rate capability and excellent cyclic performance. After 100 cycles at 0.1C rate, the capacity retention was 98.8%. Meanwhile, an increase in the spinning rate causes an overall decrease in the order degree of the carbon layers of the graphite fibers, and results in a decrease of the carbon layers being arranged along the direction parallel to the principal plane of the fibers. Both these factors decrease the reversible specific capacity.



Key wordsMesophase pitch      Ribbon-shaped graphite fiber      Orientation of carbon layers      Anode materials      Cyclic performance     
Received: 11 January 2016      Published: 01 April 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(91016003);National Natural Science Foundation of China(51372177);National Natural Science Foundation of China(51352001);National Natural Science Foundation of China(51472186)
Corresponding Authors: Zhi-Jun DONG,Xuan-Ke LI     E-mail: dongzj72@sohu.com;xkli8524@sina.com
Cite this article:

Jia-Jun HUANG,Zhi-Jun DONG,Xu ZHANG,Guan-Ming YUAN,Ye CONG,Zheng-Wei CUI,Xuan-Ke LI. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers. Acta Physico-Chimica Sinca, 2016, 32(7): 1699-1707.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201604011     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I7/1699

Raw material Softening point/℃ wAsh/% Content of mesophase/% wTI/% wQI/% Mass ratio of C atoms/H atoms
mesophase pitch 267 0.01 100 70.37 59.82 20.33
Table 1 Basic parameters of mesophase pitch
Label Length/mm Width/mm Length/Width ratio
a10.42.5
b30.215
c80.180
Table 2 Sizes of the rectangular spinnerets used in this work
Fig 1 XRD patterns of ribbon-shaped graphite fibers prepared using spinneret with different sizes
SampleFWHM(002)/(°)d(002)/nmg/%La/nmLc/nm
A type fibers0.23110.336488.039.634.9
B type fibers0.25590.336488.263.631.5
C type fibers0.22550.336290.667.435.8
Table 3 Microcrystalline parameters of ribbon-shaped graphite fibers prepared using spinneret with different sizes
Fig 2 SEM images of transverse section of ribbon-shaped graphite fibers prepared using spinneret with different sizes
Fig 3 (A) Cyclic performance at 0.1C rate and (B) rate capacity of ribbon-shaped fibers using spinneret with different sizes
Fig 4 XRD patterns of B type fibers prepared at various spinning rates
Spinning rate/ (m?min-1)FWHM(002)/(°)d(002)/nmg/%La/nmLc/nm
150.25590.336488.263.631.5
450.29810.336884.255.727.1
750.31840.336981.752.825.3
Table 4 Microcrystalline parameters of B type fibers prepared at various spinning rates
Fig 5 SEM images of the transverse section of B type fibers prepared at various spinning rates
Fig 6 (a) First cycle charge/discharge curves at 0.1C rate, (b) first cyclic voltammogram curves, (c) cyclic performance at 0.1C rate, and (d) rate capacity of B type fibers prepared at various spinning rates
Spinning rate 1st cycle 50th cycle
Charge capacity Discharge capacity Irreversible capacity Coulombic efficiency/% Discharge capacity Capacity retention/%
(m?min-1) (mAh?g-1) (mAh?g-1) (mAh?g-1) (mAh?g-1)
15373.9326.247.787.2316.997.1
45347.9303.444.587.2297.998.2
75320.4292.228.291.2278.595.3
Table 5 Charge/discharge test results at 0.1C rate of B type fibers prepared at various spinning rates
1 Yoshino A. Angew. Chem. Int. Ed. 2012, 51 (24), 5798.
2 Dai Y. N. ; Yang B. ; Yao Y. C. ; Ma W. H. ; Li W. H. Battery Bimonthly 2005, 35 (3), 193.
2 戴永年; 杨斌; 姚耀春; 马文会;李伟宏. 电池, 2005, 35 (3), 193.
3 Meng H.W. ; Ma D. Q. ; Yu X. H. ; Yang H. Y. ; Sun Y. L. ; Xu X. H. Prog. Chem. 2015, 113 (8), 23.
3 孟浩文; 马大千; 瑜晓辉; 杨红艳; 孙艳丽;许鑫华. 化学进展, 2015, 113 (8), 23.
4 Yuan Z. Z. ; Zhou Z. T. ; Li W. S. Battery Bimonthly 2002, 32 (6), 354.
4 袁中直; 周震涛;李伟善. 电池, 2002, 32 (6), 354.
5 Winter M. ; Besenhard J. O. ; Spahr M. E. ; Novák P. Adv. Mater. 1998, 10 (10), 725.
6 Gallego N. C. ; Contescu C. I. ; Meyer Ⅲ H. M. ; Howe J.Y. ; Meisner R. A. ; Payzant E. A. ; Lance M. J. ; Yoon S. Y. ; Denlinger M. ; Wood Ⅲ D.L. Carbon 2014, 72, 393.
7 Yang L. ; Zhang X. Y. ; Li Y. ; Hao F. ; Chen H. S. ; Yang M. ; Fang D. N. Electrochim. Acta 2015, 155, 272.
8 Liu C. L. ; Wen Y. H. ; Cheng J. ; Guo Q. G. ; Cao G. P. ; Liu L. ; Yang Y. S. Acta Phys. -Chim. Sin. 2005, 21 (7), 786.
8 刘春玲; 文越华; 程杰; 郭全贵; 曹高萍; 刘朗;杨裕生. 物理化学学报, 2005, 21 (7), 786.
9 Lu J. J. ; Ying Z. R. ; Liu X. D. ; Zhao S. S. Acta Phys. -Chim. Sin. 2015, 31 (11), 2099.
9 卢建建; 应宗荣; 刘信东;赵双生. 物理化学学报, 2015, 31 (11), 2099.
10 Nan D. ; Huang Z. H. ; Kang F. Y. ; Shen W.C. New Carbon Materials 2005, 30 (1), 1.
10 楠顶; 黄正宏; 康飞宇;沈万慈. 新型炭材料, 2015, 30 (1), 1.
11 Masaki, Y.; Ralph, J. B.; Akiya, K. Lithium-Ion Batteries Science and Technologies; Chemical Industry Press: Beijing, 2015; pp 38-49; translated by Su, J. R., Wang, J. Q.
12 Ohsaki T. ; Kanda M. ; Aoki Y. ; Shiroki H. ; Suzuki S. J. Power Sources 1997, 68 (1), 102.
13 Imanishi N. ; Kashiwagi H. ; Ichikawa T. ; Takeda Y. ; Yamamoto O. J. Power Sources 1993, 140 (2), 135.
14 Suzuki K. ; Iijima T. ; Wakihara M. Electrochim. Acta 1999, 44 (13), 2185.
15 Yuan, G. M. Research on Preparation of Carbon Materials with High Thermal Conductivity. Ph. D. Dissertation, Wuhan University of Science and Technology, Wuhan, 2012.
15 袁观明.高导热炭材料的制备研究[D].武汉:武汉科技大学, 2012.
16 Qian C. L. ; Zhou G. Z. ; Huang Q. Z. J. Cent. South Univ. Technol. 2001, 32 (3), 285.
16 钱崇梁; 周桂芝;黄启忠. 中南工业大学学报, 2001, 32 (3), 285.
17 Li C. J. ; Ma B. X. ; Huo X. X. New Carbon Materials 1999, 14 (1), 19.
17 李崇俊; 马伯信;霍肖旭. 新型炭材料, 1999, 14 (1), 19.
18 Lu S. ; Blanco C. ; Rand B. Carbon 2002, 40, 2109.
19 Zhao, S.; Shi, J. L.; Guo, Q. G.; Zhai, G. T.; Liu, L. Study on the Radial Structure and Split Behavior of Carbon Fiber Prepared from Naphthalene Mesophase Pitch. In 8th New Carbon Materials Symposium, Guilin, China, Oct 17-22, 2007.
19 赵松,史景利,郭全贵,翟更太,刘朗.萘系中间相沥青基炭纤维辐射型结构及劈裂行为研究.第八届全国新型炭材料学术研讨会论文集,桂林, 2007.10.17-22.
20 Ma Z. K. ; Liu L. ; Liu J. J. Inorg. Mater. 2010, 25 (9), 989.
20 马兆昆; 刘朗;刘杰. 无机材料学报, 2010, 25 (9), 989.
21 Endo M. ; Kim C. ; Karaki T. ; Kasai T. ; Matthews M. J. ; Brown S. D. M. ; Dresselhaus M. S. ; Tamaki T. ; Nishimura Y. Carbon 1998, 36, 1633.
22 Park, J. K. Principles and Applications of Lithium Secondary Batteries; China Machine Press: Beijing, 2014; p 94; translated by Zhang, Z. A., Du, K., Ren, X.
22 朴正基(韩).锂二次电池材料.张治安,杜柯,任秀,译.北京:机械工业出版社, 2014: 94.
23 Endo M. ; Kim C. ; Karaki T. ; Nishimura Y. ; Matthews M. J. ; Brown S. D. M. ; Dresselhaus M. S. Carbon 1999, 37, 561.
24 Wang, Q. Synthesis and Electrochemical Performance of Carbon Anode Materials for Lithium-Ion Batteries. M. S. Dissertation, Wuhan University of Science and Technology, Wuhan, 2014.
24 王茜.锂离子电池炭负极材料的制备及性能研究[D].武汉:武汉科技大学, 2014.
25 Ouchi Y. ; Takenaka A. ; Kinumoto T. ; Tsumura T. ; Toyoda M. Carbon 2013, 55, 372.
[1] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2127-2132.
[2] ZHANG Hui-Juan, SONG Huai-He, ZHOU Ji-Sheng, ZHANG Hong-Kun, CHEN Xiao-Hong. Preparation and Electrochemical Properties of SnO2/Onion-Like Hollow Carbon Nanoparticle Composites as Anode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2010, 26(05): 1259-1263.
[3] ZHANG Hui; ZHU Li-Qun; LI Wei-Ping; LIU Hui-Cong. Sonochemical Fabrication and Electrochemical Performance of Electrode Materials Containing Rare Earth Yttrium[J]. Acta Physico-Chimica Sinca, 2008, 24(08): 1425-1431.
[4] QIN Hai-Ying;XIE Jian;MI Jian-Li;TU Jian;ZHAO Xin-Bing. Solvothermal Synthesis and Electrochemical Lithiation/Delithiation Performance of FeSb2 Nanorods[J]. Acta Physico-Chimica Sinca, 2006, 22(12): 1555-1559.
[5] XIE Jian;ZHAO Xin-Bing;YU Hong-Ming;QI Hao;CAO Gao-Shao;TU Jiang-Ping . Preparation, Characterization and Electrochemical Li-absorption/extraction Behaviors of Nanosized Co-Sn Intermetallic Compounds[J]. Acta Physico-Chimica Sinca, 2006, 22(11): 1409-1412.