Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (7): 1839-1843    DOI: 10.3866/PKU.WHXB201604063
ARTICLE     
Electrochemical Deposition and Field Emission Properties of Graphene/Diamond-Like Carbon Nanocomposite Films
Jin-Long JIANG*(),Xia ZHANG,Jin-Fang DU,Qiong WANG,Jian-Feng DAI,Zhi-Qiang WEI
Download: HTML     PDF(6241KB) `s\vl VE`s\vl V Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene-doped diamond-like carbon(G/a-C:H) nanocomposite films were fabricated using a liquidphase electrochemical method. A nanocomposite film growth mechanism is proposed and discussed. The deposited films were characterized using scanning electron microscopy (SEM), Raman spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The results showed that graphene sheets were homogeneously dispersed in a hydrogenated amorphous carbon (a-C:H) matrix. The deposited G/a-C:H film surface was uniform and smooth. Field emission experiments showed that graphene doping slightly increased the turn-on field, from 4.7 to 5.8 V·μm-1, and significantly improved the current density, from 384 to 876 μA·cm-2.



Key wordsDiamond-like carbon film      Graphene      Electrodeposition      Field emission     
Received: 29 January 2016      Published: 06 April 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51105186)
Corresponding Authors: Jin-Long JIANG     E-mail: golden_dragon@126.com
Cite this article:

Jin-Long JIANG,Xia ZHANG,Jin-Fang DU,Qiong WANG,Jian-Feng DAI,Zhi-Qiang WEI. Electrochemical Deposition and Field Emission Properties of Graphene/Diamond-Like Carbon Nanocomposite Films. Acta Phys. -Chim. Sin., 2016, 32(7): 1839-1843.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201604063     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I7/1839

Fig 1 SEM images of the deposited samples (a) a-C:H; (b) G/a-C:H.
Insets correspond high magnification SEM images.
Fig 2 Raman spectra of the graphene (G) and deposited film samples
Fig 3 TEM and selected area electron diffraction (SAED) images (insets) of the deposited film samples (a) a-C:H; (b) G/a-C:H
Fig 4 FTIR spectra of the deposited film samples
Fig 5 Variation of current density with deposition time
Fig 6 Field emission properties of the deposited film samples (a) field emission current density as a function of the applied electric field; (b) F-N plots
1 Robertson J. Mater. Sci. Eng. R 2002, 379, 129.
2 Kao W. H. ; Su Y. L. ; Yao S. H. ; Huang H. C. Surf. Coat. Tech. 2010, 204, 1277.
3 Silva S. R. P. ; Carey J. D. ; Guo X. ; Tsang W. M. ; Poa C. H. P. Thin Solid Films 2005, 482, 79.
4 Wu Y. H. ; Hsu C. M. ; Chia C. T. ; Lin L. N. ; Cheng C. L. Diamond Relat. Mater. 2002, 11, 804.
5 Li R. S. ; Xie E. Q. ; Zhou M. ; Zhang Z. X. ; Wang T. ; Lu B. A. Appl. Surf. Sci. 2008, 255, 2787.
6 Kundoo S. ; Saha P. ; Chattopadhyay K. K. Mater. Lett. 2004, 58, 3920.
7 Wan S. H. ; Wang L. P. ; Zhang J. Y. ; Xue Q. J. Appl. Surf. Sci. 2009, 255, 3817.
8 Yan X. ; Xu T. ; Chen G. ; Xu S. ; Yang S. Appl. Phys. A-Mater. 2005, 81, 41.
9 Li J. ; Chen J. T. ; Shen B. S. ; Yan X. B. ; Xue Q. J. Appl. Phys. Lett. 2011, 99, 163103.
10 Wu Z. S. ; Pei S. F. ; Ren W. C. ; Tang D. M. ; Gao L. B. ; Liu B. L. ; Li F. ; Liu C. ; Cheng H. M. Adv. Mater. 2009, 21, 1756.
11 Stankovich S. ; Dikin D. A. ; Dommett G. H. B. ; Kohlhaas K. M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Nguyen S. T. ; Ruoff R. S. Nature 2006, 442, 282.
12 Yamada T. ; Masuzawa T. ; Ebisudani T. ; Okano K. ; Taniguchi T. Appl. Phys. Lett. 2014, 104, 1.
13 Chattopadhyay K. K. ; Banerjee D. ; Das N. S. ; Sarkar D. Carbon 2014, 72, 4.
14 Zhang J. Y. ; Yu Y. L. ; Huang D. M. Solid State Sci. 2010, 12, 1183.
15 Casiraghi C. ; Ferrari A. C. ; Robertson J. Phys. Rev. B 2005, 72, 085401- 1.
16 Ferrari A. C. ; Meyer J. C. ; Scardaci V. ; Casiraghi C. ; Lazzeri M. ; Mauri F. ; Piscanec S. ; Jiang D. ; Novoselov K. S. ; Roth S. ; Geim A. K. Phys. Rev. Lett. 2006, 97, 187401- 1.
17 Jiang J. L. ; Wang Q. ; Huang H. ; Zhang X. ; Wang Y. B. ; Geng Q. F. J.Inorg. Mater. 2014, 29, 941.
17 姜金龙; 王琼; 黄浩; 张霞; 王玉宝; 耿庆芬. 无机材料学报, 2014, 29, 941.
18 Wang H. ; Kiyota H. ; Miyo T. ; Kitaguchi K. ; Shiga T. ; Kurosu T. ; Zhu H. S. ; Iida M. Diamond Relat. Mater. 2000, 9, 1307.
19 Guo D. ; Cai K. ; Li L. T. ; Huang Y. ; Gui Z. L. Appl. Phys. A-Mater. 2002, 74, 69.
20 Namba Y. J.Vac. Sci. Technol. A 1992, 10, 3368.
21 Fowler R. H. ; Nordheim L. Proc. R. Soc. A 1928, 119, 173.
22 Podder J. ; Rusop M. ; Soga T. ; Jimbo T. Diamond Relat. Mater. 2005, 14, 1799.
23 Liu J. ; Xue Y. H. ; Gao Y. X. ; Yu D. S. ; Durstock M. ; Dai L. M. Adv. Mater. 2012, 24, 2228.
[1] Qi HU,Chuanhong JIN. In Situ TEM Observation of Radiolysis and Condensation of Water via Graphene Liquid Cell[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 101-107.
[2] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[3] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[4] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[5] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[6] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[7] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[8] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[9] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[10] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[11] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[12] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[13] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[14] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[15] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.