Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (7): 1658-1665    DOI: 10.3866/PKU.WHXB201604111
ARTICLE     
Effect of Y on the Properties of Graphene for Hydrogen Storage
Yuan-Yuan LI1,Xin-Xin ZHAO2,Yi-Ming MI1,2,*(),Gai-Li SUN1,Jian-Bao WU2,Li-Li WANG2
1 School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China;
2 School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
Download: HTML     PDF(5678KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The first-principles plane-wave pseudopotential method within density functional theory formalism is used to investigate the effect of Y atom decoration of graphene on the properties for hydrogen storage. The clustering problem for the Y atoms decorated on graphene is considered, and substitutional boron doping is shown to effectively prevent the clustering of Y atoms on graphene. The geometrical configuration of the modified system is stable and the adsorption properties of H2 are excellent, which can adsorb up to 6 H2 molecules with an average adsorption energy range of -0.539 to -0.655 eV (per H2), as determined by theoretical analyses. This satisfies the theoretical ideal range for hydrogen storage. Moreover, based on the calculation and analysis of the Bader charge, the electronic density of states and the charge density difference of the H2/Y/B/graphene (G) system, it is proved that the Y atom exhibits bonding with graphene by charge transfer and interacts with hydrogen molecules through typical Kubas interactions. The existence of the Y atomalters the charge distribution of the H2 molecules and graphene sheet. Hence, the Y atom becomes a bridge linking the H2 molecules and graphene sheet. Thereby, the adsorption energies of the H2 molecule are adjusted to the reasonable region. The modified system exhibits excellent potential as one of the most suitable candidates for a hydrogen storage medium in the molecular state at near ambient conditions.



Key wordsGraphene      Y decoration      H2 molecule adsorption      First-principles      B doping     
Received: 14 January 2016      Published: 11 April 2016
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(11504228);Academic Degree Construction Program of Shanghai Municipal Education Commission, China(14XKCZ13);Innovation Program of Shanghai Municipal Education Commission, China(10YZ172);Shanghai University of Engineering Science Innovation Fund for Graduate Students, China(E1-0903-14-01107-14KY0411)
Corresponding Authors: Yi-Ming MI     E-mail: yimingmi@sues.edu.cn
Cite this article:

Yuan-Yuan LI,Xin-Xin ZHAO,Yi-Ming MI,Gai-Li SUN,Jian-Bao WU,Li-Li WANG. Effect of Y on the Properties of Graphene for Hydrogen Storage. Acta Physico-Chimica Sinca, 2016, 32(7): 1658-1665.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201604111     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I7/1658

Fig 1 Different structures of 4 × 4 graphene (G) with Y adsorption color online
Fig 2 Top view of structures of B doped (a) and B doped Y adsorbed (b) graphene color online
Fig 3 Top view of optimized structures of H2 molecules adsorbed on Y/B/G system Y/B/G denotes Y decorated B doped graphene; (a-f) depict structures with 1-6 H2 molecules adsorption; color online1661
Fig 4 Side view of optimized structures of H2 molecules adsorbed on Y/B/G system
Structure Ead-H2/eV lH―H/nm dY⊥C/nm
LDA LDA + vdW
Y/B/G/1H2 -0.565 -0.565 0.0825 0.2098
Y/B/G/2H2 -0.655 -0.574 0.0836 0.2145
Y/B/G/3H2 -0.601 -0.547 0.082 0.2162
Y/B/G/4H2 -0.644 -0.635 0.084 0.2158
Y/B/G/5H2 -0.615 -0.611 0.0831 0.217
Y/B/G/6H2 -0.539 -0.531 0.0821 0.2167
Table 1 Average adsorption energy of H2 molecules, the average bond length of H―H, and the distance between Y atom and graphene sheet
Structure Y H C19 C21 C22
Y/B/G 0.398 0.63 0.195 0.689
Y/B/G/1H2 0.598 0.053 0.455 0.128 0.561
Y/B/G/2H2 0.45 0.073 0.776 0.217 0.739
Y/B/G/3H2 0.43 0.059 0.7 0.602 0.661
Y/B/G/4H2 0.484 0.067 0.598 0.043 0.455
Y/B/G/5H2 0.466 0.057 0.596 0.151 0.681
Y/B/G/6H2 0.462 0.048 0.68 0.227 0.517
Table 2 Average charge (e) of Y, H, and C atoms around active site in the adsorbed system
Fig 5 Partial density of states (PDOS) (a) and the electronic charge density difference (b) in Y/B/G/1H2 system Orange and green contours stand for high and low electron density regions, respectively in (b). color online
Fig 6 PDOS of Y and C atoms for 2-6 H2 molecules adsorption in Y/B/G system
1 Schlapbach L. ; Züttel A. Nature 2001, 414, 353.
2 Jena P. J. Phys. Chem. Lett. 2011, 2, 206.
3 Yoon M. ; Yang S. ; Hicke C. ; Wang E. ; Geohegan D. ; Zhang Z. Phys. Rev. Lett. 2008, 100, 206806.
4 Luo Y. C. ; Mao S. K. ; Yan R. X. ; Kong L. B. ; Kang L. Acta Phys. -Chim. Sin. 2009, 25, 237.
4 罗永春; 毛松科; 阎汝煦; 孔令斌; 康龙. 物理化学学报, 2009, 25, 237.
5 Schuth F. ; Bogdanovic B. ; Felderhoff M. Chem. Commun. 2004, 20, 2249.
6 Fukuzumi S. ; Suenobu T. Dalton Trans. 2013, 42, 18.
7 Yildirim T. ; Ciraci S. Phys. Rev. Lett. 2005, 94, 175501.
8 Shalabi A. S. ; Taha H. O. ; Soliman K. A. ; Abeld A. S. J. Power Sources 2014, 271, 32.
9 Huang X. Q. ; Lin C. F. ; Yin X. L. ; Zhao R. G. ; Wang E. G. ; Hu Z. H. Acta Phys. Sin. 2014, 63, 197301.
10 Shen C. ; Hu Y. T. ; Zhou S. ; Ma X. L. ; Li H. Acta Phys. Sin. 2013, 62, 038801.
11 Stankovich S. ; Dikin D. A. ; Dommett G H. B. ; Kohlhaas K. M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Nguyen S. T. ; Ruoff R. S. Nature 2006, 442, 282.
12 Lu R. ; Rao D. ; Lu Z. ; Qian J. ; Li F. ; Wu H. ; Wang Y. ; Xiao C. ; Deng K. ; Kan E. ; Deng W. J. Phys. Chem. C 2012, 116, 21291.
13 Lee H. ; Ihm J. ; Cohen M. L. ; Louie S. G. Nano Lett 2010, 10, 793.
14 Patchkovskii S. ; Tse J. S. ; Yurchenko S. N. ; Zhechkov L. ; Heine T. ; Seifert G. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10439.
15 Panella B. ; Hirscher M. ; Roth S. Carbon 2005, 43, 2209.
16 Lee H. ; Ihm J. ; Cohen M. L. ; Louie S. G. Phys. Rev. B 2009, 80, 115412.
17 Hussain T. ; Pathak B. ; Ramzan M. ; Maark T. A. ; Ahuja R. Appl. Phys. Lett. 2012, 100, 183902.
18 Song N. ; Wang Y. ; Zheng Y. ; Zhang J. ; Xu B. ; Sun Q. ; Jia Y. Comp. Mater. Sci. 2015, 99, 150.
19 Wang Y. ; Meng Z. ; Liu Y. ; You D. ; Wu K. ; Lv J. ; Wang X. ; Deng K. ; Rao D. ; Lu R. Appl. Phys. Lett. 2015, 106, 063901.
20 Kim D. ; Lee S. ; Hwang Y. ; Yun K. H. ; Chung Y. C. Int. J. Hydrog. Energy 2014, 39, 13189.
21 Ao Z. ; Dou S. ; Xu Z. ; Jiang Q. ; Wang G. Int. J. Hydrog. Energy 2014, 39, 16244.
22 Chu S. ; Hu L. ; Hu X. ; Yang M. ; Deng J. Int. J. Hydrog. Energy 2011, 36, 12324.
23 Gaboardi M. ; Bliersbach A. ; Bertoni G. ; Aramini M. ; Vlahopoulou G. ; Pontiroli D. ; Mauron P. ; Magnani G. ; Salviati G. ; Züttel A. J. Mater. Chem. A 2014, 2, 1039.
24 Lebon A. ; Carrete J. ; Gallego L. J. ; Vega A. Int. J. Hydrog. Energy 2015, 40, 4960.
25 Durgun E. ; Ciraci S. ; Zhou W. ; Yildirim T. Phys. Rev. Lett. 2006, 97, 226102.
26 Sun Q. ; Wang Q. ; Jena P. ; Kawazoe Y. J. Am. Chem. Soc. 2005, 127, 14582.
27 Lu R. ; Rao D. ; Meng Z. ; Zhang X. ; Xu G. ; Liu Y. ; Kan E. ; Xiao C. ; Deng K. Phys. Chem. Chem. Phys 2013, 15, 16120.
28 Kim G. ; Jhi S. H. ; Park N. ; Louie S. G. ; Cohen M. L. Phys. Rev. B 2008, 78, 085408.
29 Park H. L. ; Yi S. C. ; Chung Y. C. Int. J. Hydrog. Energy 2010, 35, 3583.
30 Wang H. ; Zhou Y. ; Wu D. Small 2013, 9, 1316.
31 Beheshti E. ; Nojeh A. ; Servati P. Carbon 2011, 49, 1561.
32 Chakraborty B. ; Modak P. ; Banerjee S. J. Phys. Chem. C 2012, 116, 22502.
33 Kresse G. ; Furthmuller J. Comp. Mater. Sci. 1996, 6, 15.
34 Kresse G. ; Furthmuller J. Phys. Rev. B 1996, 54, 11169.
35 Bl?hl P. E. Phys. Rev. B 1994, 50, 17953.
36 Perdew J. P. ; Zunger A. Phys. Rev. B 1981, 23, 5048.
37 Lee K. ; Murray é. D. ; Kong L. ; Lundqvist B. I. ; Langreth D. C. Phys. Rev. B 2010, 82, 081101.
38 Cabria I. ; López M. ; Alonso J. J. Chem. Phys. 2008, 128, 144704.
39 Okamoto Y. ; Miyamoto Y. J. Phys. Chem. B 2001, 105, 3470.
40 Monkhorst H. J. ; Pack J. D. Phys. Rev. B 1976, 13, 5188.
41 Sun Q. ; Wang Q. ; Jena P. Appl. Phys. Lett. 2009, 94, 013111.
42 Liu X. ; Wang C. Z. ; Yao Y. X. ; Lu W. C. ; Hupalo M. ; Tringides M. C. ; Ho K. M. Phys. Rev. B 2011, 83, 235411.
43 Fair K. M. ; Cui X. Y. ; Li L. ; Shieh C. C. ; Zheng R. K. ; Liu Z.W. ; Delley B. ; Ford M. J. ; Ringer S. P. ; Stampfl C. Phys. Rev. B 2013, 87, 014102.
44 Lü K. ; Zhou J. ; Zhou L. ; Wang Q. ; Sun Q. ; Jena P. Appl. Phys. Lett. 2011, 99, 163104.
45 Liu W. ; Liu Y. ; Wang R. Appl. Surf. Sci. 2014, 296, 204.
46 Henwood D. ; Carey J. D. Phys. Rev. B 2007, 75, 245413.
47 Arnaldsen A., Tang W., Henkelman G. Bader Charge Analysis, http://theory.cm.utexas.edu/bader/.
48 Kubas G. J. Chem. Rev. 2007, 107, 4152.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Lei FANG,Mingjun SUN,Xinrui CAO,Zexing CAO. Mechanical and Optical Properties of a Novel Diamond-Like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor: a First-Principles Study[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 296-302.
[3] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[4] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[5] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[6] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[7] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[8] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[9] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[10] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.
[11] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.
[12] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[13] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.
[14] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2404-2423.
[15] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2284-2292.