Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (7): 1775-1784    DOI: 10.3866/PKU.WHXB201604141
ARTICLE     
Catalytic Properties of Different Crystal Sizes for ZSM-5 Zeolites on the Alkylation of Benzene with Methanol and Optimization of the Reaction Conditions
Ping YUAN1,2,Hao WANG1,*(),Yan-Feng XUE1,2,Yan-Chun LI1,2,Kai WANG1,2,Mei DONG1,Wei-Bin FAN1,Zhang-Feng QIN1,Jian-Guo WANG1
1 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(5923KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The hydrothermal synthesis method is used to prepare various crystal sizes of ZSM-5, and the effect of the crystal size on the alkylation of benzene with methanol is systematically investigated. The research results show that the conversion of benzene, selectivity of xylene, and the stability of the catalyst all decrease significantly with increasing crystal size. The ZSM-5 zeolite with a crystal size of 0.25 μm possesses the best catalytic performance and stability compared with other larger-sized zeolites. In addition, the deposition species and deactivation mechanism were also studied by Raman spectroscopy and thermogravimetric analysis. The results indicate that the catalyst deactivation may be attributed to the formation of polycyclic aromatic molecules, which can block the channel of the zeolite and cover the active sites. Finally, the effects of the reaction temperature, ratio of benzene to methanol, and space velocity on the alkylation of benzene with methanol are also investigated, and the optimum reaction conditions are determined.



Key wordsBenzene alkylation      ZSM-5molecular sieve      Variation of crystal size      Deactivationmechanism     
Received: 02 February 2016      Published: 14 April 2016
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21273263);National Natural Science Foundation of China(21273264);Scholarship Council of Shanxi Province, China(2014-102)
Corresponding Authors: Hao WANG     E-mail: wanghao@sxicc.ac.cn
Cite this article:

Ping YUAN,Hao WANG,Yan-Feng XUE,Yan-Chun LI,Kai WANG,Mei DONG,Wei-Bin FAN,Zhang-Feng QIN,Jian-Guo WANG. Catalytic Properties of Different Crystal Sizes for ZSM-5 Zeolites on the Alkylation of Benzene with Methanol and Optimization of the Reaction Conditions. Acta Phys. -Chim. Sin., 2016, 32(7): 1775-1784.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201604141     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I7/1775

Fig 1 X-ray diffraction (XRD) patterns of ZSM-5 zeolites with different crystal sizes
Fig 2 SEM images of ZSM-5 zeolites with different crystal sizes
Crystal size/μma n(Si)/n(Al)b mB/(mmol?g-1c
weak and medium strong total
0.251710.0300.0830.113
0.701710.0280.0830.111
1.001700.0270.0790.106
2.001700.0250.0770.102
Table 1 Acidic properties of ZSM-5 zeolites with different crystal sizes
Fig 3 Influence of crystal size on the performance of ZSM-5 catalysts
Crystalsize/μm x/%a Sp-xylene/%b
C5+ toluene xylene C9+ aromatic
0.252.2851.6734.1011.948.18(24.0)
0.704.8252.4728.8013.907.03 (24.4)
1.004.6753.4127.9313.997.07 (25.3)
2.004.2554.5527.0214.187.62 (28.2)
Table 2 Product distributions for ZSM-5 with different crystal sizes
Fig 4 XRD patterns of ZSM-5 zeolites with different crystal sizes after reaction
Crystal size/μma Fresh catalyst Used catalyst area/(m2?g-1) Decrease of the area/(m2?g-1) w/%e
S/(m2?g-1) Vpore/(cm3?g-1)d
SBETb Sinc SBET Sin SBET Sin
0.25392.55321.930.28267.47210.56125.08111.373.70
0.70387.17329.980.21248.11194.88139.06135.105.52
1.00386.34331.650.21238.31184.45148.03147.208.08
2.00383.62332.750.16229.43156.77154.19175.9811.57
Table 3 Physicochemical properties of ZSM-5 zeolites with different crystal sizes
Fig 5 TG curves of the used catalysts
Fig 6 Fourier transform infrarad (FTIR) spectra of the used ZSM-5 catalysts in the 1300-1700 cm-1 (a) and 2800-3100 cm-1 (b) ranges
Fig 7 Raman spectra of the coke deposited on the different crystal sizes of ZSM-5 in the alkylation of benzene with methanol
Crystal size/μm νC-H ID1 ID2 ID3 IG ID1/IG
0.254.7852.835.8811.8524.662.14
0.703.9834.3912.3724.2525.001.37
1.009.8330.0013.3323.3323.511.28
2.003.5118.4226.0922.6329.350.63
Table 4 Raman spectral properties of the used ZSM-5 catalysts
Fig 8 Influence of temperature on the performance of catalyst ZSM-5
Fig 9 Influence of space velocity on the performance of catalyst ZSM-5
WHSV/h-1 x/%
C5+ toluene xylene C9+ aromatic ethylbenzene
3.12.2447.8936.0110.753.12
5.22.2851.6734.109.302.64
7.82.9551.5432.579.793.15
10.92.7253.0533.308.762.18
Table 5 Influence of space velocity on the product distributions of benzene alkylation
Fig 10 Influence of methanol/benzene molar ratio on the performance of catalyst ZSM-5
1 Zhang J. ; Qian W. ; Kong C. ; Wei F. ACS Catalysis 2015, 5 (5), 2982.
2 Hu H. ; Zhang Q. ; Cen J. ; Li X. Catalysis Letters 2014, 145 (2), 715.
3 Hu H. L. ; Lyu J. H. ; Wang Q. T. ; Zhang Q. F. ; Cen J. ; Li X. N. RSC Advance 2015, 5 (41), 32679.
4 Gao K. ; Li S. ; Wang L. ; Wang W. RSC Advance 2015, 5 (56), 45098.
5 Liu J. Chemical Production and Technology 2011, 18 (2), 19.
5 刘健. 化工生产与技术, 2011, 18 (2), 19.
6 Barthos R. ; Bansagi T. ; Zakar T. S. ; Solymosi F. Journal of Catalysis 2007, 247 (2), 368.
7 Zhao B. ; Liu M. ; Tan W. ; Wu Y. H. ; Guo X. Acta Petrolei Sinica 2013, 29 (4), 605.
7 赵博; 刘民; 谭伟; 吴宏宇;郭新闻. 石油学报, 2013, 29 (4), 605.
8 Deng W. ; He X. ; Zhang C. ; Gao Y. Y. ; Zhu X. D. ; Zhu K. K. ; Huo Q. S. ; Zhou Z. J. Chinese Journal of Chemical Engineering 2014, 22 (8), 921.
9 Zhang Y. Y. ; Li Y. F. ; Chen L. ; Au C. T. ; Y in ; S. F. Catalysis Communications 2014, 54, 6.
10 Hu H. ; Lyu J. ; Cen J. ; Zhang Q. ; Wang Q. ; Han W. ; Rui J. ; Li X. RSC Advance 2015, 5, 77.
11 Wang X. M. ; Xu J. ; Qi G. D. ; Li B. J. ; Wang C. ; Deng F. Journal of Physical Chemistry C 2013, 117 (8), 4018.
12 Aslam W. ; Siddiqui M. A. B. ; Jermy B. R. ; Aitani A. ; Cejka J. ; Al-Khattaf S. Catalysis Today 2014, 227, 187.
13 Kim J. C. ; Cho K. ; Ryoo R. Applied Catalysis A: General 2014, 470, 420.
14 Shiralkar V. P. ; Joshi P. N. ; Eapen M. J. ; Rao B. S. Zeolites 1999, 11, 511.
15 Kim J. H. ; Kunieda T. ; Niwa M. Journal of Catalysis 1997, 173, 433.
16 Melson S. ; Schuth F. Journal of Catalysis 1997, 170 (1), 46.
17 Khare R. ; Millar D. ; Bhan A. Journal of Catalysis 2015, 321, 23.
18 Barbera K. ; S?rensen S. ; Bordiga S. ; Skibsted J. ; Fordsmand H. ; Beato P. ; Janssens T. V.W. Catalysis Science & Technology 2012, 2 (6), 1196.
19 Casta?o P. ; Elordi G. ; Olazar M. ; Aguayo A. T. ; Pawelec B. ; Bilbao J. Applied Catalysis B: Environmental 2011, 104 (1-2), 91.
20 Epelde E. ; Ibá?ez M. ; Aguayo A. T. ; Gayubo A. G. ; Bilbao J. ; Casta?o P. Microporous and Mesoporous Materials 2014, 195, 284.
21 Wang P. ; Huang L. ; Li J. ; Dong M. ; Wang J. ; Tatsumi T. ; Fan W. RSC Advance 2015, 5 (36), 28794.
22 Aguayo A. S. T. ; Casta?o P. ; Mier D. ; Gayubo A. G. ; Olazar M. ; Bilbao J. Industrial & Engineering Chemistry Research 2011, 50 (17), 9980.
23 Song C. ; Liu K. ; Zhang D. ; Liu S. ; Li X. ; Xie S. ; Xu L. Applied Catalysis A: General 2014, 470, 15.
24 Ibá?ez M. ; Valle B. ; Bilbao J. ; Gayubo A. G. ; Casta?o P. Catalysis Today 2012, 195 (1), 106.
25 Meunier F. C. ; Verboekend D. ; Gilson J. P. ; Groen J. C. ; Pérez-Ramírez J. Microporous and Mesoporous Materials 2012, 148 (1), 115.
26 Javaid R. ; Urata K. ; Furukawa S. ; Komatsu T. Applied Catalysis A: General 2015, 491, 100.
27 Lu L. ; Zhang H. Z. ; Zhu X. D. Acta Petrolei Sinica 2012, 28, 111.
27 陆璐; 张会贞;朱学栋. 石油学报, 2012, 28, 111.
[1] FU Bina, CHEN Jun, LIU Tianhui, SHAO Kejie, ZHANG Dong H.. Highly Accurately Fitted Potential Energy Surfaces for Polyatomic Reactive Systems[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[2] HOU Quan, GUAN Chengzhi, XIAO Guoping, WANG Jian-Qiang, ZHU Zhiyuan. Effect of Oxygen Partial Pressure on Solid Oxide Electrolysis Cells[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[3] LYU Kangjie, PENG Yanqiu, XIAO Li, LU Juntao, ZHUANG Lin. Atomistic Understanding of the Peculiar Dissolution Behavior of Alkaline Polymer Electrolytes in Alcohol/Water Mixed Solvents[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[4] ZHANG Fan, REN Zhe, ZHONG Shenghui, YAO Mingfa, PENG Zhijun. Role of Low-Temperature Fuel Chemistry on Turbulent Flame Propagation[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[5] Hengwei WANG,Junling LU. Atomic Layer Deposition: A Gas Phase Route to Bottom-up Precise Synthesis of Heterogeneous Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1334-1357.
[6] Xinfei ZHAO,Hao CHEN,Hao WU,Rui WANG,Yi CUI,Qiang FU,Fan YANG,Xinhe BAO. Growth of Ordered ZnO Structures on Au(111) and Cu(111)[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1373-1380.
[7] Yan WANG,Xiong LI,Shanwei HU,Qian XU,Huanxin JU,Junfa ZHU. Morphologies and Electronic Structures of Calcium-Doped Ceria Model Catalysts and Their Interaction with CO2[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1381-1389.
[8] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[9] Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162.
[10] Di YIN,Zongyang QIU,Pai LI,Zhenyu LI. A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1116-1123.
[11] Tian LIU,Jun LI,Weijia LIU,Yudan ZHU,Xiaohua LU. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1097-1105.
[12] Lina YANG,Li HUANG,Xueyang SONG,Wenxue HE,Yong JIANG,Zhihu SUN,Shiqiang WEI. In situ Study of Formation Kinetics of Au Nanoclusters during HCl and Dodecanethiol Etching[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 762-769.
[13] Xueting LIN,Mingli FU,Hui HE,Junliang WU,Limin CHEN,Daiqi YE,Yun HU,Yifan WANG,William WEN. Synthesis of MnOx-CeO2 Using Metal-Organic Framework as Sacrificial Template and Its Performance in the Toluene Catalytic Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 719-730.
[14] Pengfei LU,Yudan GOU,Jiuning HE,Ping LI,Changhua ZHANG,Xiangyuan LI. Shock Tube Study of Methyl Pentanoate Ignition at High Temperatures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 618-624.
[15] HE Chenghuan, GUO Yanglong, GUO Yun, WANG Yunsong, WANG Li, ZHAN Wangcheng. Catalytic Activity of Au Nanoparticles Supported on LaMnO3 Perovskite with Different Composition and Structure[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.