Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (7): 1844-1850    DOI: 10.3866/PKU.WHXB201604142
ARTICLE     
Synthesis and Adsorption Properties of Squamous BiOBr/Bi2WO6
Xiao-Ling LIU,Ji-Mei SONG*(),Na DONG,Gang HU,Jie YANG,Wei SI,Wen-Hui LI
Download: HTML     PDF(3784KB) Export: BibTeX | EndNote (RIS)      

Abstract  

BiOBr/Bi2WO6 with squamous morphology is successfully prepared by a one-step hydrothermal method. BiOBr/Bi2WO6 is shown to be an ideal material for adsorption. The structure of BiOBr/Bi2WO6 is characterized by powder X-ray diffraction (XRD), X-ray photoelectron (XPS) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy, and the morphology is observed with scanning electron microscopy (SEM). The specific surface of BiOBr/Bi2WO6 is tested by a nitrogen adsorption/desorption surface area pore size distribution analyzer. According to the experiments with different concentrations of KBr and the SEM photos of BiOBr and Bi2WO6, the possible morphology formation mechanism of squamous BiOBr/Bi2WO6 is proposed. We design a series of adsorption experiments and test the adsorption properties of the compounds with organic dyes as adsorbent and BiOBr/Bi2WO6 as adsorbent. The results show that BiOBr/Bi2WO6 exhibits a higher adsorption capacity for cationic dyes, especially the adsorption rate of MB, and BiOBr/Bi2WO6 shows a higher adsorption capacity compared with that of activated carbon. Adsorption behavior of BiOBr/Bi2WO6 is consistent with the Freundlich isotherm model and the adsorption process of MB follows a pseudo-second-order kinetic model.



Key wordsSquamous      BiOBr/Bi2WO6      Adsorption      Morphology      Organic dye     
Received: 02 February 2016      Published: 14 April 2016
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(21171002);Natural Science Foundation of Anhui Province, China(11040606M55);Natural Science Foundation of Education Department of Anhui Province, China(KJ2010A015)
Corresponding Authors: Ji-Mei SONG     E-mail: jmsongsss@163.com
Cite this article:

Xiao-Ling LIU,Ji-Mei SONG,Na DONG,Gang HU,Jie YANG,Wei SI,Wen-Hui LI. Synthesis and Adsorption Properties of Squamous BiOBr/Bi2WO6. Acta Physico-Chimica Sinca, 2016, 32(7): 1844-1850.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201604142     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I7/1844

Fig 1 XRD patterns of as-prepared samples
Fig 2 XPS of sample BiOBr/Bi2WO6
Fig 3 SEM images of the as-prepared samples (A, B) Bi2WO6; (C, D) Bi2WO6/BiOBr; (E, F) BiOBr
Fig 4 SEM images of the as-prepared samples under different concentrations of KBr (A, B) b-0.5; (C, D) b-1.0; (E, F) b-1.5; (G, H) b-2.0
SampleSolventc/(mol·L-1)Morphology
b-0.5KBr0.5flower like and irregular flower like
b-1.0KBr1.0flower like and irregular flower like
b-1.5KBr1.5irregular flower like
b-2.0KBr≥ 2.0squamous
Table 1 Detailed reaction parameters and corresponding results with different KBr concentrations
Fig 5 N2 adsorption and desorption isotherms of and pore-size distribution (inset) of BiOBr/Bi2WO6 sample
Fig 6 Adsorption rate of BiOBr/Bi2WO6 for different dyes and adsorption rate in the presence of activated carbon for MB
Fig 7 FT-IR adsorption spectra of samples BiOBr/Bi2WO6 under different conditions (a) unadsorb; (b) desorption MB and heating at 60 ℃;(c) desorption MB and heating at 120 ℃
Fig 8 Adsorption curves of BiOBr/Bi2WO6 under different concentrations of MB qs: saturated adsorption capacity
Fig 9 Simulation diagram of the pseudo-second order kinetic adsorption qt: the adsorption of t time
c0/(mg·L-1)qs/(mg·L-1)K2/(mg-1·min-1)R2
109.9397.4980.9999
1515.2880.0670.9980
2019.0200.0120.9990
2519.6800.00250.9892
3020.0400.002490.9981
K2: the pseudo-second order rate constant; R: correlation coefficient
Table 2 Fitting parameters of pseudo second order rate equations
NKFR
5.68622.599760.9689
N: adsorption index; KF: adsorption constant
Table 3 Fitting parameters of Freundlich equation
1 Mohan D. ; Sarswat A. ; Ok Y. S. ; Pittman C. U. Bioresour. Technol. 2014, 160, 191.
2 Yusuf M. ; Elfghi F. M. ; Zaidi S. A. ; Abdullah E. C. ; Khan M. A. RSC Adv. 2015, 5, 50392.
3 Zhang X. X. ; Li R. P. ; Jia M. K. ; Wang S. L. ; Huang Y. P. ; Chen C. C. Chem. Eng. J. 2015, 274, 290.
4 Kalme S. D. ; Parshetti G. K. ; Jadhav S. U. ; Govindwar S. P. Bioresour. Technol. J. 2007, 98, 1405.
5 Aboua K. N. ; Yobouet Y. A. ; Yao B. K. ; Gone D. L. ; Trokourey A. J.Environ. Manage. 2015, 156, 10.
6 Nie L. H. ; Tan Q. ; Zhu W. ; Wei Q. ; Lin Z. K. Acta Phys. -Chim. Sin. 2015, 31 (9), 1815.
6 聂龙辉; 谭侨; 朱玮; 魏琪; 林志奎. 物理化学学报, 2015, 31 (9), 1815.
7 Vecino X. ; Devesa-Rey R. ; Cruz J. M. ; Moldes A. B. Water Air Soil Pollut. 2013, 224, 1448.
8 Ideriah T. J. K. ; David O. D. ; Ogbonna D. N. J.Environ. Chem. Ecotoxicol. 2012, 4 (4), 82.
9 Yang Y. ; Murthy-Bandaru N. ; Shapter-Joseph G. ; Constantopoulos-Kristina T. ; Voelcker-Nicolas H. ; Ellis-Amanda V. J.Hazard. Mater. 2013, 260, 330.
10 Izquierdo M. ; Querol X. Int. J. Coal Geol. 2015, 94, 54.
11 Zhu R. L. ; Chen Q. Z. ; Liu H. Y. ; Ge F. ; Zhu L. F. ; Zhu J. X. ; He H. P. Appl. Clay Sci. 2014, 88-89, 33.
12 Ni Z. M. ; Xia S. J. ; Wang L. G. ; Xing F. F. ; Pan G. X. J.Colloid Interface Sci. 2007, 316, 284.
13 Xu J. ; Meng W. ; Zhang Y. ; Li L. ; Guo C. S. Appl. Catal. B 2011, 107, 355.
14 Shang M. ; Wang W. Z. ; Zhang L. J.Hazard. Mater. 2009, 167, 803.
15 Chen M. J. ; Chu W. Appl. Catal. B 2015, 168-169, 175.
16 Qamar M. ; Khan A. RSC Adv. 2014, 4, 9542.
17 Li Y. L. ; Liu Y. M. ; Wang J. S. ; Uchaker E. ; Zhang Q. F. ; Sun S. B. ; Huang Y. X. ; Li J. Y. ; Cao G. Z. J.Mater. Chem. A 2013, 1, 7949.
18 Meng X. C. ; Zhang Z. S. Int. J. Photoenergy 2015, 630476, 1.
19 Xia J. X. ; Di J. ; Yin S. ; Xu H. ; Zhang J. ; Xu Y. G. ; Xu L. ; Li H. M. ; Ji M. X. RSC Adv. 2014, 4, 82.
20 Li H. Q. ; Cui Y. M. ; Hong W. S. Appl. Surf. Sci. 2013, 264, 581.
21 Li X. N. ; Huang R. K. ; Hu Y. H. ; Chen Y. ; Liu W. ; Yuan R. ; Li Z. Inorg. Chem. 2012, 51, 6245.
22 Cheng H. F. ; Huang B. B. ; Wang P. ; Wang Z. Y. ; Lou Z. Z. ; Wang J. P. ; Qin X. Y. ; Zhang X. Y. ; Dai Y. Chem. Commun. 2011, 47, 7054.
23 Cheng J. ; Shi S. X. ; Tang T. T. ; Tian S. Q. ; Yang W. J. ; Zeng D.W. J.Alloy. Compd. 2015, 643, 159.
24 Jiang G. H. ; Wang R. J. ; Wang X. H. ; Xi X. G. ; Hu R. B. ; Zhou Y. ; Wang S. ; Wang T. ; Chen W. X. ACS Appl. Mater. Interfaces 2012, 4, 4440.
25 Nafisi S. ; Saboury A. A. ; Keramat N. ; Neault J. F. ; Tajmir- Riahi H. A. J.Mol. Struct. 2007, 827, 35.
26 Vimonsesa V. ; Lei S. ; Ji B. ; Chowd C.W. K. ; Saint C. Chem. Eng. J. 2009, 148, 354.
[1] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 537-542.
[2] Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 424-436.
[3] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 391-406.
[4] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 286-295.
[5] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1846-1854.
[6] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1898-1904.
[7] . Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1140-1148.
[8] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1236-1241.
[9] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 960-967.
[10] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 709-728.
[11] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 426-434.
[12] Li YANG,Guo-Yng ZHANG,Ying LIU,Tong-Lai ZHANG. Theoretical and Experimental Studies on the Crystal Morphology of Transition-Metal Carbohydrazide Perchlorate Complexes[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2463-2471.
[13] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2013-2021.
[14] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2029-2034.
[15] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2022-2028.