Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (7): 1785-1794    DOI: 10.3866/PKU.WHXB201604152
ARTICLE     
Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction
Si HU1,Qing ZHANG2,Yan-Jun GONG2,Ying ZHANG1,Zhi-Jie WU2,Tao DOU2,*()
1 Department of Materials Science and Engineering, College of Science, China University of Petroleum-Beijing, Beijing 102249, P. R. China
2 The Key Laboratory of Catalysis, China National Petroleum Corporation, China University of Petroleum-Beijing, Beijing 102249, P. R. China
Download: HTML     PDF(3694KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The cause of the deactivation of a methanol-to-propylene (MTP) catalyst after multiple reaction cycles was studied. On this basis, a facile and effective approach, i.e., secondary crystallization, was proposed and applied to the regeneration of the catalyst. The HZSM-5 zeolite catalysts before and after regeneration were characterized by a series of techniques, including powder X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), N2 adsorption, 27Al magic-angle spinning nuclear magnetic resonance (27Al MAS NMR), temperature-programmed desorption of ammonia (NH3-TPD), and infrared spectroscopy of adsorbed pyridine (Py-IR). The physicochemical properties, such as framework, silica/alumina ratio, texture, and acidity, of the deactivated catalysts and the regenerated ones were investigated in detail. The catalytic performance of the zeolites in MTP conversion was tested under operating conditions of T=470 ℃, p=0.1 MPa (pMeOH=30 kPa) and weight hourly space velocity (WHSV)=1 h-1. The collapse of the zeolite structure and loss of active sites were found to be the essential reasons for the decline in catalyst activity after multiple reaction cycles. By regeneration via secondary crystallization, the relative crystallization, specific surface area, pore volume and acidity of the HZSM-5 catalyst were increased prominently. Meanwhile, the destroyed crystal structure and acid sites of the deactivated catalyst were restored effectively. Thus, the regenerated catalyst again exhibited excellent methanol conversion capacity and propylene selectivity in the MTP reaction.



Key wordsMethanol      Propylene      ZSM-5 zeolite      Deactivation      Regeneration      Secondary crystallization     
Received: 20 January 2016      Published: 15 April 2016
MSC2000:  O643.3  
Fund:  The project was supported by the National Key Basic Research Program of China(973);The project was supported by the National Key Basic Research Program of China(2012CB215002);National Natural Science Foundation of China(21206192);National Natural Science Foundation of China(21276278)
Corresponding Authors: Tao DOU     E-mail: doutao@cup.edu.cn
Cite this article:

Si HU,Qing ZHANG,Yan-Jun GONG,Ying ZHANG,Zhi-Jie WU,Tao DOU. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction. Acta Phys. -Chim. Sin., 2016, 32(7): 1785-1794.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201604152     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I7/1785

Fig 1 XRD patterns of HZSM-5 (HZ) zeolite catalysts after different reaction-regeneration cycles (1, 3, 6, 8) (a) HZ; (b) HZ-1; (c) HZ-3; (d) HZ-6; (e) HZ-8
Sample Relative crystallinity/% SBETa/(m2?g-1) Smicrob/(m2?g-1) Sextc/(m2?g-1) Vtotald/(cm3?g-1) Vmicroe/(cm3?g-1) Vmesof/(cm3?g-1)
HZ 100 358.9 263.4 95.5 0.27 0.13 0.14
HZ-1 95.4 332.8 236.6 96.2 0.27 0.12 0.15
HZ-3 83.2 317.5 215.7 101.8 0.28 0.11 0.17
HZ-6 69.2 267.9 185.5 82.4 0.21 0.09 0.12
HZ-8 63.4 231.9 150.2 81.7 0.18 0.07 0.11
Table 1 Relative crystallinity and textural properties of HZSM-5 zeolite catalysts after different reaction-regeneration cycles
Sample n(SiO2)/n(Al2O3) w(Na2O)a/% Integrated area of desorption peakc/(a.u.)
bulka surfaceb weak acid strong acid total acid
HZ 276 270 0.03 1012 1637 2649
HZ-1 280 286 0.03 923 1280 2203
HZ-3 287 292 0.04 655 1072 1726
HZ-6 291 298 0.05 506 685 1191
HZ-8 293 305 0.06 387 506 893
Table 2 Silica/alumina molar ratio and acidic characteristics from NH3-TPD analysis of HZSM-5 zeolite catalysts after different reaction-regeneration cycles
Fig 2 NH3-TPD curves of HZSM-5 zeolite catalysts after different reaction-regeneration cycles (a) HZ; (b) HZ-1; (c) HZ-3; (d) HZ-6; (e) HZ-8
Fig 3 Methanol conversion as a function of time on stream over HZSM-5 zeolite catalysts in different reaction-regeneration cycles reaction conditions: T = 470 ℃, p = 0.1 MPa, weight hourly space velocity (WHSV) = 1.0 h-1
Sample Selectivity P/E ratiod
C1-C4b C2H4 C3H6 C4H8 C5+c
HZ-1 10.1 10.6 43.2 21.2 14.9 4.1
HZ-3 8.8 8.3 44.9 21.5 16.5 5.4
HZ-6 7.3 6.4 45.4 22.0 18.9 7.1
HZ-8 7.6 6.0 43.5 22.5 20.4 7.3
Table 3 Product distribution of HZSM-5 zeolite catalysts in different cycles of MTP reaction
Fig 4 XRD patterns of HZSM-5 zeolite catalysts before and after regeneration (a) HZ; (b) HZ-8; (c) HZ-8I (HZ-8 treated by ion exchange); (d) HZ-8R (HZ-8 regenerated by secondary crystallization)
Sample Relative crystallinity/% w(Na2O)a/% n(SiO2)/n(Al2O3) SBETc/(m2?g-1) Smicrod/(m2?g-1) Vtotale/(cm3?g-1) Vmicrof/(cm3?g-1)
bulka surfaceb
HZ 100 0.03 276 270 358.9 263.4 0.27 0.13
HZ-8 63.4 0.06 293 305 231.9 150.2 0.18 0.07
HZ-8I 66.3 0.03 302 317 245.6 161.2 0.19 0.08
HZ-8R 98.6 0.04 271 265 354.1 267.5 0.26 0.14
Table 4 Physicochemical properties of HZSM-5 zeolite catalysts before and after regeneration
Fig 5 27Al MAS NMR spectra of HZSM-5 zeolite catalysts before and after regeneration (a) HZ; (b) HZ-8; (c) HZ-8I; (d) HZ-8R
Fig 6 N2 adsorption-desorption isotherms of HZSM-5 zeolite catalysts before and after regeneration
Fig 7 NH3-TPD profiles of HZSM-5 zeolite catalysts before and after regeneration (a) HZ; (b) HZ-8; (c) HZ-8I; (d) HZ-8R
Sample Integrated area of desorption peaka/(a.u.)
weak acid strong acid total acid
HZ 1012 1637 2649
HZ-8 387 506 893
HZ-8I 417 595 1012
HZ-8R 1042 1429 2470
Table 5 Acidic characteristics from NH3-TPD analysis for HZSM-5 zeolite catalysts before and after regeneration
Fig 8 Py-IR spectra of HZSM-5 zeolite catalysts before and after regeneration (a) HZ; (b) HZ-8; (c) HZ-8I; (d) HZ-8R; T = 200 ℃
SampleAmount of acid sitesa/(mmol?g-1)B/L ratio
LBL+B
HZ 0.020 0.084 0.104 4.20
HZ-8 0.016 0.022 0.038 1.38
HZ-8I 0.014 0.023 0.037 1.64
HZ-8R 0.022 0.081 0.103 3.68
Table 6 Acidic characteristics from Py-IR analysis for HZSM-5 zeolite catalysts before and after regeneration
Fig 9 Methanol conversion as a function of time on stream over HZSM-5 zeolite catalysts before and after regeneration reaction conditions: T = 470 ℃, p = 0.1 MPa, WHSV = 1.0 h-1
Sample Selectivitya/% P/E ratio
C1-C4b C2H4 C3H6 C4H8 C5+c
HZ 10.1 10.6 43.2 21.2 14.9 4.1
HZ-8 7.6 6.0 43.5 22.5 20.4 7.3
HZ-8I 7.4 6.5 43.9 22.4 19.8 6.8
HZ-8R 9.1 9.4 44.3 21.8 15.4 4.7
Table 7 Product distribution of HZSM-5 zeolite catalyst before and after regeneration in MTP reaction
1 Koempel, H.; Liebner, W. Lurgi′s Methanol to Propylene (MTP) Report on a Successful Commercialisation. In Studies in Surface Science and Catalysis; Noronha, F. B., Schmal, M., Sousa-Aguiar, E. F. Eds.; Elsevier: Frankfurt, 2007; Vol. 167, pp 261-267.
2 Zhang Q. ; Hu S. ; Zhang L. L. ; Wu Z. J. ; Gong Y. J. ; Dou T. Green Chem. 2014, 16, 77.
3 St?cker M. Microporous Mesoporous Mat. 1999, 29, 3.
4 Mei C. S. ; Wen P. Y. ; Liu Z. C. ; Liu H. X. ; Wang Y. D. ; Yang W. M. ; Xie Z. K. ; Hua W. M. ; Gao Z. J. Catal. 2008, 258, 243.
5 Wu W. Z. ; Guo W. Y. ; Xiao W. D. ; Luo M. Chem. Eng. Sci. 2011, 66, 4722.
6 Olsbye U. ; Svelle S. ; Bjorgen M. ; Beato P. ; Janssens T. V. W. ; Joensen F. ; Bordiga S. ; Lillerud K. P. Angew. Chem. Int. Edit. 2012, 51, 5810.
7 Hu S. ; Gong Y. J. ; Xu Q. H. ; Liu X. L. ; Zhang Q. ; Zhang L. L. ; Dou T. Catal. Commun. 2012, 28, 95.
8 Wang S. ; Chen Y. Y. ; Wei Z. H. ; Qin Z. F. ; Li J. F. ; Dong M. ; Fan W. B. ; Wang J. G. J. Fuel Chem. Technol. 2015, 43, 1202.
8 王森; 陈艳艳; 卫智虹; 秦张峰; 李俊汾; 董梅; 樊卫斌; 王建国. 燃料化学学报, 2015, 43, 1202.
9 Furimsky E. Catal. Today 1996, 30, 223.
10 Schulz H. Catal. Today 2010, 154, 183.
11 Wen P. Y. ; Mei C. S. ; Liu H. X. ; Yang W. M. ; Chen Q. L. Acta Petrol. Sin. (Petrol. Process. Sec.) 2008, 24, 446.
11 温鹏宇; 梅长松; 刘红星; 杨为民; 陈庆龄. 石油学报(石油加工), 2008, 24, 446.
12 Wang F. ; Yan S. J. ; Yong X. J. ; Luo C. T. ; Zhang Q. ; Wen P. Y. ; Gong Y. J. ; Dou T. Acta Phys. -Chim. Sin. 2013, 29, 358.
12 王峰; 顔蜀雋; 雍晓静; 罗春桃; 张卿; 温鹏宇; 巩雁军; 窦涛. 物理化学学报, 2013, 29, 358.
13 Guisnet M. ; Magnoux P. Catal. Today 1997, 36, 477.
14 Schulz H. ; Wei M. Microporous Mesoporous Mat. 1999, 29, 205.
15 姚敏,焦洪桥,罗春桃,张伟,张堃,王峰,雍晓静,王军,袁玉龙,窦涛,巩雁军,温鹏宇.煤基甲醇制丙烯工艺中失活催化剂的再生方法:中国, CN102302947 A[P]. 2012-01-04.
15 Yao, M.; Jiao, H. Q.; Luo, C. T.; Zhang, W.; Zhang, K.; Wang, F.; Yong, X. J.; Wang, J.; Yuan, Y. L.; Dou, T.; Gong, Y. J.; Wen, P. Y. Method for the Regeneration of Deactivated Catalyst from Methanol to Propylene Process. CN Patent 102302947 A, 2012-01-04.
16 Almutairi S. M. T. ; Mezari B. ; Pidko E. A. ; Magusin P. C. M. M. ; Hensen E. J. M. J. Catal. 2013, 307, 194.
17 Mao D. S. ; Guo Q. S. ; Meng T. ; Lu G. Z. Acta Phys. -Chim. Sin. 2010, 26, 338.
17 毛东森; 郭强胜; 孟涛; 卢冠忠.. 物理化学学报, 2010, 26, 338.
18 Triantafyllidis K. S. ; Vlessidis A. G. ; Nalbandian L. ; Evmiridis N. P. Microporous Mesoporous Mat. 2001, 47, 369.
19 Bj?rgen M. ; Svelle S. ; Joensen F. ; Nerlov J. ; Kolboe S. ; Bonino F. ; Palumbo L. ; Bordiga S. ; Olsbye U. J. Catal. 2007, 249, 195.
20 Hu S. ; Shan J. ; Zhang Q. ; Wang Y. ; Liu Y. S. ; Gong Y. J. ; Wu Z. J. ; Dou T. Appl. Catal. A 2012, 445-446, 215.
21 Omegna A. ; Haouas M. ; Kogelbauer A. ; Prins R. Microporous Mesoporous Mat. 2001, 46, 177.
22 Sun C. ; Du J. M. ; Liu J. ; Yang Y. S. ; Ren N. ; Shen W. ; Xu H. L. ; Tang Y. Chem. Commun. 2010, 46, 2671.
23 Groen J. C. ; Peffer L. A. A. ; Pérez-Ramíírez J. Microporous Mesoporous Mat. 2003, 60, 1.
24 Chang C. D. ; Chu C. T.W. ; Miale J. N. ; Bridger R. F. ; Calvert R. B. J. Am. Chem. Soc. 1984, 106, 8143.
25 Wang S. J. ; Liang J. ; Guo W. G. ; Zhao S. Q. ; Li H. Y. Chin. J. Catal. 1993, 14, 44.
26 Xie Z. K. ; Bao J. Q. ; Yang Y. Q. ; Chen Q. L. ; Zhang C. F. J. Catal. 2002, 205, 58.
26 汪树军; 梁娟; 郭文珪; 赵素琴; 李宏愿.催化学报. 催化学报, 1993, 14, 44.
27 Hu S. ; Zhang Q. ; Yin Q. ; Zhang Y. F. ; Gong Y. J. ; Zhang Y. ; Wu Z. J. ; Dou T. Acta Phys. -Chim. Sin. 2015, 31, 1374.
27 胡思; 张卿; 尹琪; 张亚飞; 巩雁军; 张瑛; 吴志杰; 窦涛. 物理化学学报, 2015, 31, 1374.
[1] Lulu XU,Zhenchao ZHAO,Rongrong ZHAO,Rui YU,Weiping ZHANG. Effects of Magnesium Modification on the Catalytic Performances of HZSM-5 Zeolite for the Conversion of Ethene to Propene[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 92-100.
[2] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[3] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[4] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[5] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[6] Lin-Jun ZHAN,Xiao-Yan SUN,Ying ZHOU,Qiu-Lian ZHU,Yin-Fei CHEN,Han-Feng Lu. Deactivation Mechanism of CeO2-Based Mixed Oxide Catalysts Supported on SiO2[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1474-1482.
[7] Yi-Hao HU,Tong-Yang SONG,Yue-Juan WANG,Geng-Sheng HU,Guan-Qun XIE,Meng-Fei LUO. Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1017-1026.
[8] Ling-Ling LI,Ren CHEN,Jian DAI,Ye SUN,Zuo-Liang ZHANG,Xiao-Liang LI,Xiao-Wa NIE,Chun-Shan SONG,Xin-Wen GUO. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 769-779.
[9] Ping YUAN,Hao WANG,Yan-Feng XUE,Yan-Chun LI,Kai WANG,Mei DONG,Wei-Bin FAN,Zhang-Feng QIN,Jian-Guo WANG. Catalytic Properties of Different Crystal Sizes for ZSM-5 Zeolites on the Alkylation of Benzene with Methanol and Optimization of the Reaction Conditions[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1775-1784.
[10] Zhao-Xin LIU,Wei-Bin LI. Catalytic Activity and Deactivation of Toluene Combustion on Rod-Like Copper-Manganese Mixed Oxides[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1795-1800.
[11] Chun-Xia TIAN,Jun-Shuai YANG,Xiao-Hua ZHANG,Jin-Hua CHEN. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1473-1481.
[12] Jun-Feng ZHAO,Xiao-Li SUN,Xu-Ri HUANG,Ji-Lai LI. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1175-1182.
[13] Jian-Hong LIU,Cun-Qin Lü,Chun JIN,Gui-Chang WANG. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 950-960.
[14] Xiao-Meng CHENG,Yu LI,Zong CHEN,Hong-Ping LI,Xiao-Fang ZHENG. A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2 and Methanol[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2671-2677.
[15] Lei WANG,Han-Mei YIN,Jian-Hao WANG,Li-Zhi WU,Yue-Ming LIU. Synthesis and Catalytic Oxidation Performance of B-TS-1[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2574-2580.