Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (8): 1933-1940    DOI: 10.3866/PKU.WHXB201604212
ARTICLE     
Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)
Peng-Fei JING,Hui-Jun LIU*(),Qin ZHANG,Sheng-Yong HU,Lan-Lin LEI,Zhi-Yuan FENG
Download: HTML     PDF(5838KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Sulfated β-cyclodextrin (β-CD) was prepared by the reaction of β-CD with p-toluenesulfonyl chloride at low temperature in aqueous sodium hydroxide. The product was analyzed by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR). The novel benzil-bridged β-CD (BB β-CD) was acquired by the reaction of benzil with sulfated β-CD at a molar ratio of 1: 2. UV spectrophotometry was used to study the synthetic mechanism of BB β-CD and benzil and their adsorption onto U(VI). Scanning electron microscopy (SEM) was used to analyze the surface properties of the materials. The adsorption of BB β-CD onto U(VI) was investigated as a function of pH, contact time, temperature, and interfering ions using the batch adsorption technique. It was found that the adsorption equilibrium of BB β-CD was reached faster than that of benzil. The optimum experimental conditions were pH=4.5 and shaking for 60 min, achieving the maximum adsorption capacity of 12.16 mg·g-1 and a U(VI) removal ratio of 91.2%. Kinetic studies revealed that the adsorption reached equilibrium within 60 min for U(VI) and followed a pseudo-second-order rate equation. The isothermal data correlated with the Langmuir model better than with the Freundlich model. The thermodynamic data indicated the spontaneous and endothermic nature of the process.



Key wordsBB β-CD      Uranium(VI) adsorption      Kinetics      Equilibrium      Thermodynamics 1933     
Received: 04 January 2016      Published: 21 April 2016
MSC2000:  O642  
  O643  
Fund:  The project was supported by the National Natural Science Foundation of China(11375084);Hunan Provincial Innovation Foundation for Postgraduate, China(CX2015B399)
Corresponding Authors: Hui-Jun LIU     E-mail: liuhuijun@usc.edu.cn
Cite this article:

Peng-Fei JING,Hui-Jun LIU,Qin ZHANG,Sheng-Yong HU,Lan-Lin LEI,Zhi-Yuan FENG. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI). Acta Phys. -Chim. Sin., 2016, 32(8): 1933-1940.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201604212     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I8/1933

 
 
 
Δsulfated-β-CD ΔBB β-CD ΔΔ
H1 4.850 4.841 0.009
H3 3.669 3.648 0.021
H5 3.389 3.351 0.038
H6 3.497 3.495 0.002
H7 7.768 7.763 0.005
H8 7.460 7.454 0.006
H9 2.435 2.430 0.005
 
 
Molar ratio 1: 0.25 1: 0.5 1: 1 1: 1.5 1: 2 1: 2.5 1: 3
Inclusion constant/% 70.69 76.87 80.16 84.31 95.49 89.43 84.78
 
 
 
 
 
Pseudo-first-order kinetic model Pseudo-second-order kinetic model Qe(exp)/(mg?g-1)
K1/min-1 Qe/(mg?g-1) R2 K1/min-1 Qe/(mg?g-1) R2
0.028 7.43 0.9571 0.016 12.165 0.99449 12.16
 
 
 
Langmuir model Freundlich model
Ka/(L?mol-1) Qm/(mg?g-1) R2 KF/(mg?g-1)/(mg?L-1)1/n n R2
0.0818 12.30 0.9908 1.01 1.35 0.9810
 
 
 
ΔH0 ΔS0 ΔG0(kJ?mol-1)
(kJ?mol-1) (kJ?mol-1?K-1) 298K 308K 318K 328K 338K
18.58 0.14 -23.14 -24.54 -25.94 -27.34 -28.74
 
 
 
 
1 Olszewski G. ; Boryvo A. ; Skwarzec B J. Environ. Radioactiv. 2015, 146, 56.
2 Liu P. H. ; Wei C. S. ; Zhang S. M. ; Zhu C. M. ; Xie S. R Asian J. Chem. 2015, 27, 1049.
3 Cesare M. D. ; Cesare N. D. ; D'Onofrio A Appl. Radiat. Isotopes. 2015, 103, 166.
4 Bourgeois D. ; Burt-Pichat B. ; Goff X. L Anal. Bioanal. Chem. 2015, 407 (22), 6619.
5 Bonato M. ; Ragnarsdottir K. V Wat. Air Soil. Pollut. 2012, 223 (7), 3845.
6 Gu Z. X. ; Tu C. N. ; Wang Y. ; Yang J. J. ; Liu N. ; Liao J. L. ; Yang Y. Y. ; Tang J Acta Phys.-Chim. Sin. 2015, 31 (Suppl), 95.
6 顾泽兴; 涂昌能; 王云; 杨吉军; 刘宁; 廖家莉; 杨远友唐军. 物理化学学报, 2015, 31 (Suppl), 95.
7 Yousif A. M. ; El-Afandy A. H. ; AbdelWahab G. M. ; Mubark A. E. ; Ibrahim I. A J. Radioanal. Nucl. Chem. 2015, 303 (3), 1821.
8 Sun T. X. ; Shen X. H. ; Chen Q. D Acta Phys.-Chim. Sin. 2015, 31 (Suppl), 32.
8 孙涛祥; 沈兴海陈庆德. 物理化学学报, 2015, 31 (Suppl), 32.
9 Mellah A. ; Chegrouche S. ; Barkat M. Hydrometallurgy 2007, 85, 163.
10 Duff M. C. ; Morris D. E. ; Hunter D. B. ; Bertsch P. M Geochim. Cosmochim. Ac. 2000, 64 (9), 1535.
11 Zou W. H. ; Zhao L. ; Han R. P Chin. J. Chem. Eng. 2009, 17, 586.
12 John A. M. S. ; Cattrall R.W. ; Kolev S. D J. Memb. Sci. 2012, 409 (4), 242.
13 Gok C. ; Aytas S J. Hazard. Mater. 2009, 168 (1), 369.
14 Joseph C. ; Schmeide K. ; Sachs S. ; Brendler V. ; Geipel G. ; Bernhard G Chem. Geol. 2011, 284 (3), 240.
15 Oshita K. ; Sabarudin A. ; Takayanagi T. ; Oshima M. ; Motomizu S Talanta 2009, 79 (2), 1031.
16 Qian L. ; Ma M. ; Cheng D J. Radioanal. Nucl. Chem. 2015, 303, 161.
17 Branislava M. M. ; Milijan J. ; Mirjana L. M Radiat. Environ. Bioph. 2015, 54 (2), 217.
18 Ahmed S. H. ; Sharaby C. M. ; Gammal E. M. E Hydrometallurgy 2013, 134, 150.
19 Tan L. ; Liu Q. ; Jing X Chem. Eng. J. 2015, 273, 307.
20 Basu H. ; Singhal R. K. ; Pimple M. V Int. J. Environ. Sci. Technol. 2015, 12, 1899.
21 Sun Y. ; Yang S. ; Wang Q Radiochim. Acta 2014, 102, 797.
22 Chao X. ; Wang J. ; Yang T Carbohyd. Polym. 2015, 121, 79.
23 Sun Y. B. ; Yang S. B. ; Chen Y. ; Ding C. C. ; Cheng W. C. ; Wang X. K Environ. Sci. Technol. 2015, 49 (7), 4255.
24 Liu X. ; Li J. ; Wang X. J. Nucl. Mater. 2015, 466 (45), 56.
25 Li L. ; Hu N. ; Ding D. X. ; Xin X. ; Wang Y. D. ; Xue J. H. ; Zhang H. ; Tan Y RSC Adv. 2015, 5, 65827.
26 Hosseini M. S. ; Abedi F J. Radioanal. Nucl. Chem. 2015, 303, 2173.
27 Mirzajani R. ; Pourreza N. ; Najjar S. S. A Res. Chem. Intermediat. 2014, 40 (8), 2667.
28 Ogoshi T. ; Harada A Sensors 2008, 8, 4961.
29 Wang Y. L. ; Feng R. S. ; Guo Y. J Chin. J. Appl. Chem. 2011, 28, 1269.
30 Xiao Y. Q. ; Xia L. S. ; Li R. R. ; Li G. ; Huang X Atom Energy Science and Technology 2015, 49, 2130.
31 Wang J. S. ; Zou X. L. ; Jia L Atom Energy Science and Technology 2015, 49, 255.
32 Huang. Y. Fan X. D ; Fan X. D Journal of Northwest University (Natural Science Edition) 2003, 33, 41.
33 Ding H. ; Chao J. ; Zhang G Spectrochim. Acta A 2003, 59, 3421.
34 Ji X. Z. ; Liu H. J. ; Wang L. L J. Radioanal. Nucl. Chem 2013, 295, 265.
35 Chen S. P. ; Hong J. X. ; Yang H. X J. Environ. Radioactiv. 2013, 126, 253.
36 Huang G. L. ; Zou L. X. ; Su Y. ; Lv T. T. ; Wang L. L J. Radioanal. Nucl. Chem. 2016, 307 (2), 1135.
37 Hosseini S. H. ; Rahmanisani A. ; Jalalabadi Y Int. J. Environ. Anal. Chem. 2015, 95 (4), 277.
38 Chen F. ; Tan N. ; Long W. ; Yan X. M. ; Chen F Mar. Pollut. Bull 2013, 74, 213.
39 Long D. J. ; Liu J. H. ; Wang X. M Nuclear Power Engineering 2012, 33, 1.
40 Tong K. S. ; Kassim M. J. ; Azraa A Chem. Eng. J. 2011, 170, 145.
41 Starvin A. M. ; Rao T. P Talanta 2004, 63 (2), 225.
42 Li Z. ; Chen F. ; Yuan L. ; Liu Y. ; Zhao Y. ; Chai Z. ; Shi W Chem. Eng. J. 2012, 210, 539.
43 Zhou L. M. ; Shang C. ; Liu Z. R. ; Huang G. A. ; Adesina A. A J. Colloid Interface Sci. 2012, 366 (1), 165.
44 Mellah A. ; Chegrouche S. ; Barkat M J. Colloid Interface Sci. 2006, 296 (2), 434.
45 Oguz E J. Colloid Interface Sci. 2005, 281 (1), 62.
46 Aksoyoglu S J. Radioanal. Nucl. Chem. 1989, 134 (2), 393.
[1] Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176.
[2] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[3] Hui-Chang NIU,Dan JI,Nai-An LIU. Method for Optimizing the Kinetic Parameters for the Thermal Degradation of Forest Fuels Based on a Hybrid Genetic Algorithm[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2223-2231.
[4] Fang XIE,Xing-Tang ZHANG,Zhi-Qiang FAN,Xiao-Jiao ZHANG,Ji-Hai YU,Hua XU,Yu-Fang CHU. Effect of Rotation on the Electronic Transport Properties of a Molecular Device[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1453-1459.
[5] Tian HE,Ke-Fen YUE,San-Ping CHEN,Chun-Sheng ZHOU,Ni YAN. Synthesis, Structure and Thermodynamics/Kinetics Analysis of Three Different Interpenetrating Zinc(Ⅱ) Coordination Architectures[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1397-1403.
[6] Zhao-Lei ZHENG,Zhu-Mei LÜ. Generation and Analysis for a Skeletal Chemical Kinetic Model of IC8H18 with Nitric Oxide in HCCI Combustion[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1151-1160.
[7] Qi-Liang HONG,Yi-Hui DONG,Wei ZHUANG,Chao RAO,Chang LIU. Kinetics and Thermodynamics of Lysozyme Adsorption on Mesoporous Titanium Dioxide[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 638-646.
[8] Bo YAN,Huan ZHOU,Wen-Xuan LI. Studies on the Characteristics and Behaviors of the Ion Association Structures of SO42- in Na+, Mg2+//SO42-, Cl-, H2O System by Raman Spectroscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 405-414.
[9] Pei-Zhi ZHANG,Mei-Jun YE,Wei-Lian HU,Jun WU. Kinetics of Acid-Catalyzed Smiles Rearrangement of 2, 6-Dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine Derivatives[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 422-428.
[10] Huan-Feng TANG,Zai-Yin HUANG,Ming XIAO,Min LIANG,Li-Ying CHEN. An Investigation into the Reaction Kinetics of Cubic Nano-Cu2O in Theory and Experiment[J]. Acta Phys. -Chim. Sin., 2016, 32(12): 2891-2897.
[11] Xiang CHEN,Jian-Ming PAN,Yong-Sheng YAN. Adsorption of λ-Cyhalothrin onto Macroporous Polymer Foams Derived from Pickering High Internal Phase Emulsions Stabilized by Halloysite Nanotube Nanoparticles[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2794-2802.
[12] Long-Hui. NIE,Qiao. TAN,Wei. ZHU,Qi. WEI,Zhi-Kui. LIN. Fast Adsorption Removal of Congo Red on Hierarchically Porous γ-Al2O3 Hollow Microspheres Prepared by Microwave-Assisted Hydrothermal Method[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1815-1822.
[13] Mei-Lin. BAI,Ming-Lang. WANG,Shi-Min. HOU. Theoretical Investigation of the Transition Voltages of Cu-Vacuum-Cu Tunneling Junctions[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1474-1482.
[14] Fei-Wu. CHEN,Tian. LU,Zhao. WU. Surface Absorption of a Solution at Equilibrium[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1499-1503.
[15] XU Zhen, CHEN Yu, ZHANG Zhao, ZHANG Jian-Qing. Progress of Research on Underpotential Deposition—— I. Theory of Underpotential Deposition[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1219-1230.