Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (8): 1933-1940    DOI: 10.3866/PKU.WHXB201604212
Article     
Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)
JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan
College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan Province, P. R. China
Download:   PDF(5838KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Sulfated β-cyclodextrin (β-CD) was prepared by the reaction of β-CD with p-toluenesulfonyl chloride at low temperature in aqueous sodium hydroxide. The product was analyzed by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR). The novel benzil-bridged β-CD (BB β-CD) was acquired by the reaction of benzil with sulfated β-CD at a molar ratio of 1 : 2. UV spectrophotometry was used to study the synthetic mechanism of BB β-CD and benzil and their adsorption onto U(VI). Scanning electron microscopy (SEM) was used to analyze the surface properties of the materials. The adsorption of BB β-CD onto U(VI) was investigated as a function of pH, contact time, temperature, and interfering ions using the batch adsorption technique. It was found that the adsorption equilibrium of BB β-CD was reached faster than that of benzil. The optimum experimental conditions were pH = 4.5 and shaking for 60 min, achieving the maximum adsorption capacity of 12.16 mg·g-1 and a U(VI) removal ratio of 91.2%. Kinetic studies revealed that the adsorption reached equilibrium within 60 min for U(VI) and followed a pseudo-second-order rate equation. The isothermal data correlated with the Langmuir model better than with the Freundlich model. The thermodynamic data indicated the spontaneous and endothermic nature of the process.



Key wordsBB β-CD      Uranium(VI) adsorption      Kinetics      Equilibrium      Thermodynamics 1933     
Received: 04 January 2016      Published: 21 April 2016
MSC2000:  O642  
  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (11375084) and Hunan Provincial Innovation Foundation for Postgraduate, China (CX2015B399).

Corresponding Authors: LIU Hui-Jun     E-mail: liuhuijun@usc.edu.cn
Cite this article:

JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI). Acta Phys. -Chim. Sin., 2016, 32(8): 1933-1940.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201604212     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2016/V32/I8/1933

(1) Olszewski, G.; Boryvo, A.; Skwarzec, B. J. Environ. Radioactiv. 2015, 146, 56. doi: 10.1016/j.jenvrad.2015.04.001
(2) Liu, P. H.; Wei, C. S.; Zhang, S. M.; Zhu, C. M.; Xie, S. R.Asian J. Chem. 2015, 27, 1049. doi: 10.14233/ajchem.2015.18056
(3) Cesare, M. D.; Cesare, N. D.; D'Onofrio, A. Appl. Radiat. Isotopes. 2015, 103, 166. doi: 10.1016/j.apradiso.2015.06.011
(4) Bourgeois, D.; Burt-Pichat, B.; Goff, X. L. Anal. Bioanal. Chem. 2015, 407 (22), 6619. doi: 10.1007/s00216-015-8835-7
(5) Bonato, M.; Ragnarsdottir, K. V. Wat. Air Soil. Pollut. 2012, 223 (7), 3845. doi: 3846.10.1007/s11270-012-1153-1
(6) Gu, Z. X.; Tu, C. N.; Wang, Y.; Yang, J. J.; Liu, N.; Liao, J. L.; Yang, Y. Y.; Tang, J. Acta Phys. -Chim. Sin. 2015, 31 (Suppl), 95. [顾泽兴, 涂昌能, 王云, 杨吉军, 刘宁, 廖家莉, 杨远友, 唐军. 物理化学学报, 2015, 31 (Suppl), 95.] doi: 10.3866/PKU.WHXB2014Ac13
(7) Yousif, A. M.; El-Afandy, A. H.; AbdelWahab, G. M.; Mubark, A. E.; Ibrahim, I. A. J. Radioanal. Nucl. Chem. 2015, 303 (3), 1821. doi: 10.1007/s10967-014-3688-7
(8) Sun, T. X.; Shen, X. H.; Chen, Q. D. Acta Phys. -Chim. Sin. 2015, 31 (Suppl), 32. [孙涛祥, 沈兴海, 陈庆德. 物理化学学报, 2015, 31 (Suppl), 32.] doi: 10.3866/PKU. WHXB2014Ac10
(9) Mellah, A.; Chegrouche, S. Barkat, M. Hydrometallurgy 2007, 85, 163. doi: 10.1016/j.hydromet.2006.08.011
(10) Duff, M. C.; Morris, D. E.; Hunter, D. B.; Bertsch, P. M.Geochim. Cosmochim. Ac. 2000, 64 (9), 1535. doi: 10.1016/S0016-7037(99)00410-X
(11) Zou, W. H.; Zhao, L.; Han, R. P. Chin. J. Chem. Eng. 2009, 17, 586. doi: 10.1016/S1004-9541(08)60248-7
(12) John, A. M. S.; Cattrall, R.W.; Kolev, S. D. J. Memb. Sci. 2012, 409 (4), 242. doi: 10.1016/j.memsci.2012.03.061
(13) Gok, C.; Aytas, S. J. Hazard. Mater. 2009, 168 (1), 369. doi: 10.1016/j.jhazmat.2009.02.063
(14) Joseph, C.; Schmeide, K.; Sachs, S.; Brendler, V.; Geipel, G.; Bernhard, G. Chem. Geol. 2011, 284 (3), 240. doi: 10.1016/j.chemgeo.2011.03.001
(15) Oshita, K.; Sabarudin, A.; Takayanagi, T.; Oshima, M.; Motomizu, S. Talanta 2009, 79 (2), 1031. doi: 10.1016/j.talanta.2009.03.035
(16) Qian, L.; Ma, M.; Cheng, D. J. Radioanal. Nucl. Chem. 2015, 303, 161. doi: 10.1007/s10967-014-3352-2
(17) Branislava, M. M.; Milijan, J.; Mirjana, L. M. Radiat. Environ. Bioph. 2015, 54 (2), 217. doi: 10.1007/s00411-015-0589-2
(18) Ahmed, S. H.; Sharaby, C. M.; Gammal, E. M. E.Hydrometallurgy 2013, 134, 150. doi: 10.1016/j.hydromet.2013.02.003
(19) Tan, L.; Liu, Q.; Jing, X. Chem. Eng. J. 2015, 273, 307. doi: 10.1016/j.cej.2015.01.110
(20) Basu, H.; Singhal, R. K.; Pimple, M. V. Int. J. Environ. Sci. Technol. 2015, 12, 1899. doi: 10.1007/s10967-014-3677-x
(21) Sun, Y.; Yang, S.; Wang, Q. Radiochim. Acta 2014, 102, 797. doi: 10.1515/ract-2013-2204
(22) Chao, X.; Wang, J.; Yang, T. Carbohyd. Polym. 2015, 121, 79. doi: 10.1016/j.carbpol.2014.12.024
(23) Sun, Y. B.; Yang, S. B.; Chen, Y.; Ding, C. C.; Cheng, W. C.; Wang, X. K. Environ. Sci. Technol. 2015, 49 (7), 4255. doi: 10.1021/es505590j
(24) Liu, X.; Li, J.; Wang, X. J. Nucl. Mater. 2015, 466 (45), 56. doi: 10.1016/j.jnucmat.2015.07.027
(25) Li, L.; Hu, N.; Ding, D. X.; Xin, X.; Wang, Y. D.; Xue, J. H.; Zhang, H.; Tan, Y. RSC Adv. 2015, 5, 65827. doi: 10.1039/C5RA13516H
(26) Hosseini, M. S.; Abedi, F. J. Radioanal. Nucl. Chem. 2015, 303, 2173. doi: 10.1007/s10967-014-3366-9
(27) Mirzajani, R.; Pourreza, N.; Najjar, S. S. A. Res. Chem. Intermediat. 2014, 40 (8), 2667. doi: 10.1007/s11164-013-1120-5
(28) Ogoshi, T.; Harada, A. Sensors 2008, 8, 4961. doi: 10.3390/s8084961
(29) Wang, Y. L.; Feng, R. S.; Guo, Y. J. Chin. J. Appl. Chem. 2011, 28, 1269. doi: 10.3724/SP.J.1095.2011.00680
(30) Xiao, Y. Q.; Xia, L. S.; Li, R. R.; Li, G.; Huang, X. Atom Energy Science and Technology 2015, 49, 2130. doi: 10.7538/yzk.2015.49.12.2130
(31) Wang, J. S.; Zou, X. L.; Jia, L. Atom Energy Science and Technology 2015, 49, 255. doi: 10.7538/yzk.2015.49.02.0255
(32) Huang. Y.; Fan, X. D. Journal of Northwest University (Natural Science Edition) 2003, 33, 41. doi: 1000-274X(2003)01-0041-04
(33) Ding, H.; Chao, J.; Zhang, G. Spectrochim. Acta A 2003, 59, 3421. doi: 10.1016/S1386-1425(03)00176-8
(34) Ji, X. Z.; Liu, H. J.; Wang, L. L. J. Radioanal. Nucl. Chem.2013, 295, 265. doi: 10.1007/s10967-012-1979-4
(35) Chen, S. P.; Hong, J. X.; Yang, H. X. J. Environ. Radioactiv. 2013, 126, 253. doi: 10.1016/j.jenvrad.2013.09.002
(36) Huang, G. L.; Zou, L. X.; Su, Y.; Lv, T. T.; Wang, L. L.J. Radioanal. Nucl. Chem. 2016, 307 (2), 1135. doi: 10.1007/s10967-015-4275-2
(37) Hosseini, S. H.; Rahmanisani, A.; Jalalabadi, Y. Int. J. Environ. Anal. Chem. 2015, 95 (4), 277. doi: 10.1080/03067319.2015.1016009
(38) Chen, F.; Tan, N.; Long, W.; Yan, X. M.; Chen, F. Mar. Pollut. Bull. 2013, 74, 213. doi: 10.1016/j.marpolbul.2013.06.055
(39) Long, D. J.; Liu, J. H.; Wang, X. M. Nuclear Power Engineering 2012, 33, 1. doi: 10.1128/JVI.06957-11
(40) Tong, K. S.; Kassim, M. J.; Azraa, A. Chem. Eng. J. 2011, 170, 145. doi: 10.1016/j.cej.2011.03.044
(41) Starvin, A. M.; Rao, T. P. Talanta 2004, 63 (2), 225. doi: 10.1016/j.talanta.2003.11.001
(42) Li, Z.; Chen, F.; Yuan, L.; Liu, Y.; Zhao, Y.; Chai, Z.; Shi, W.Chem. Eng. J. 2012, 210, 539. doi: 10.1016/j.cej.2012.09.030
(43) Zhou, L. M.; Shang, C.; Liu, Z. R.; Huang, G. L. Adesina, A. A.J. Colloid Interface Sci. 2012, 366 (1), 165. doi: 10.1016/j.jcis.2011.09.069
(44) Mellah, A.; Chegrouche, S.; Barkat, M. J. Colloid Interface Sci. 2006, 296 (2), 434. doi: 10.1016/j.jcis.2005.09.045
(45) Oguz, E. J. Colloid Interface Sci. 2005, 281 (1), 62. doi: 10.1016/j.jcis.2004.08.074
(46) Aksoyoglu, S. J. Radioanal. Nucl. Chem. 1989, 134 (2), 393. doi: 10.1007/BF02278276

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176.
[2] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[3] NIU Hui-Chang, JI Dan, LIU Nai-An. Method for Optimizing the Kinetic Parameters for the Thermal Degradation of Forest Fuels Based on a Hybrid Genetic Algorithm[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2223-2231.
[4] HE Tian, YUE Ke-Fen, CHEN San-Ping, ZHOU Chun-Sheng, YAN Ni. Synthesis, Structure and Thermodynamics/Kinetics Analysis of Three Different Interpenetrating Zinc(II) Coordination Architectures[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1397-1403.
[5] XIE Fang, ZHANG Xing-Tang, FAN Zhi-Qiang, ZHANG Xiao-Jiao, YU Ji-Hai, XU Hua, CHU Yu-Fang. Effect of Rotation on the Electronic Transport Properties of a Molecular Device[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1453-1459.
[6] ZHENG Zhao-Lei, Lü Zhu-Mei. Generation and Analysis for a Skeletal Chemical Kinetic Model of IC8H18 with Nitric Oxide in HCCI Combustion[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1151-1160.
[7] HONG Qi-Liang, DONG Yi-Hui, ZHUANG Wei, RAO Chao, LIU Chang. Kinetics and Thermodynamics of Lysozyme Adsorption on Mesoporous Titanium Dioxide[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 638-646.
[8] YAN Bo, ZHOU Huan, LI Wen-Xuan. Studies on the Characteristics and Behaviors of the Ion Association Structures of SO42- in Na+,Mg2+//SO42-, Cl-,H2O System by Raman Spectroscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 405-414.
[9] ZHANG Pei-Zhi, YE Mei-Jun, HU Wei-Lian, WU Jun. Kinetics of Acid-Catalyzed Smiles Rearrangement of 2,6-Dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine Derivatives[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 422-428.
[10] TANG Huan-Feng, HUANG Zai-Yin, XIAO Ming, LIANG Min, CHEN Li-Ying. An Investigation into the Reaction Kinetics of Cubic Nano-Cu2O in Theory and Experiment[J]. Acta Phys. -Chim. Sin., 2016, 32(12): 2891-2897.
[11] CHEN Xiang, PAN Jian-Ming, YAN Yong-Sheng. Adsorption of λ-Cyhalothrin onto Macroporous Polymer Foams Derived from Pickering High Internal Phase Emulsions Stabilized by Halloysite Nanotube Nanoparticles[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2794-2802.
[12] NIE Long-Hui, TAN Qiao, ZHU Wei, WEI Qi, LIN Zhi-Kui. Fast Adsorption Removal of Congo Red on Hierarchically Porous γ-Al2O3 Hollow Microspheres Prepared by Microwave-Assisted Hydrothermal Method[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1815-1822.
[13] BAI Mei-Lin, WANG Ming-Lang, HOU Shi-Min. Theoretical Investigation of the Transition Voltages of Cu-Vacuum-Cu Tunneling Junctions[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1474-1482.
[14] CHEN Fei-Wu, LU Tian, WU Zhao. Surface Absorption of a Solution at Equilibrium[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1499-1503.
[15] XU Zhen, CHEN Yu, ZHANG Zhao, ZHANG Jian-Qing. Progress of Research on Underpotential Deposition—— I. Theory of Underpotential Deposition[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1219-1230.