Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (8): 2059-2068    DOI: 10.3866/PKU.WHXB201604225
ARTICLE     
FT-IR, XPS and DFT Study of the Adsorption Mechanism of Sodium Salicylate onto Goethite or Hematite
Hui-Ping HU1,Meng WANG1,*(),Zhi-Ying DING1,*(),Guang-Fu JI2
1 College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
2 Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, Sichuan Province, P. R. China
Download: HTML     PDF(5100KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The adsorption of sodium salicylate on goethite or hematite surfaces was investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoemission spectroscopy (XPS), and periodic plane-wave density functional theory (DFT) calculations. The core level shift (CLS) and charge transfer of the adsorbed surface iron sites calculated by DFT with periodic interfacial structures were compared with the X-ray photoemission experiments. The FT-IR results reveal that the interfacial structure of sodium salicylate adsorbed on goethite or hematite surfaces can be classified as bidentate binuclear (V) or bidentate mononuclear (IV), respectively. The DFT calculated results indicate that the bidentate binuclear (V) structure of sodium salicylate is favorable on the goethite (101) surface, with an adsorption energy of-5.46 eV, while the adsorption of sodium salicylate on the goethite (101) surface as a bidentate mononuclear (IV) structure is not predicted, as it has a positive adsorption energy of 3.80 eV. Conversely, on the hematite (001) surface, the bidentate mononuclear (IV) structure of the adsorbed sodium salicylate has anadsorption energy of-4.07 eV, confirming its favorability. Moreover, the calculated CLS of Fe 2p (-0.68 eV) for the adsorbed iron site on the goethite (101) surface is consistent with the experimentally observed CLS of Fe 2p (-0.5 eV) for SSa-treated goethite (goethite after the treatment of sodium salicylate). Our calculated CLS of Fe 2p (-0.80 eV) for the adsorbed iron site on the hematite (001) surface is likewise in good agreement with the experimentally observed CLS of Fe 2p (-0.8 eV) for SSa-treated hematite (hematite after the treatment of sodium salicylate). Thus, goethite is predicted to adsorb sodium salicylate as a bidentate binuclear (V) structure via the bonding of one carboxylate oxygen atom and the phenolic oxygen atom of sodium salicylate to two surface iron atoms of goethite (101). Meanwhile, on the hematite surface, the bidentate mononuclear (IV) complex formed via the bonding of one carboxylate oxygen atom and the phenolic oxygen atom of sodium salicylate to one surface iron atom of hematite (001) can be regarded as plausible.



Key wordsGoethite      Hematite      Sodium salicylate adsorption      FT-IR      XPS      DFT calculation     
Received: 28 January 2016      Published: 22 April 2016
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(51134007);the National Natural Science Foundation of China(51174231)
Corresponding Authors: Meng WANG,Zhi-Ying DING     E-mail: mengwchem@163.com;huierding@126.com
Cite this article:

Hui-Ping HU,Meng WANG,Zhi-Ying DING,Guang-Fu JI. FT-IR, XPS and DFT Study of the Adsorption Mechanism of Sodium Salicylate onto Goethite or Hematite. Acta Phys. -Chim. Sin., 2016, 32(8): 2059-2068.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201604225     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I8/2059

 
mple Specific surface area/(m2?g-1) Particle size/μm
d10 d50 d90
goethite 1.4 2.224 8.367 36.095
hematite 5.0 0.530 1.685 9.828
 
 
 
 
 
 
 
Sample Fe 2p3/2 Fe 2p1/2
pre-peak multiplets surface peak satellite multiplets surface peak satellite
peak 1 peak 2 peak 3 peak 4 peak 5 peak 6 peak 7 peak 8 peak 9 peak 10
untreated 709.8 710.8 711.8 712.8 713.8 715.0 718.5 724.4 727.0 730.3 733.5
goethite [1.0]a [1.3] [1.3] [1.3] [1.3] [2.7] [5.0] [3.1] [3.5] [3.5] [3.5]
SSa-treated 709.3 710.3 711.3 712.3 713.3 714.5 718.8 724.1 726.5 729.8 733.0
goethite [1.0] [1.4] [1.3] [1.3] [1.3] [2.7] [5.0] [3.1] [3.5] [3.5] [3.5]
untreated 709.9 710.9 711.9 713.0 713.9 715.0 719.2 724.1 726.4 729.5 733.6
hematite [1.0] [1.4] [1.4] [1.3] [1.2] [2.4] [5.0] [2.7] [3.5] [3.5] [3.5]
SSa-treated 709.1 710.0 711.1 712.2 713.1 714.2 718.6 723.6 725.6 728.7 732.8
hematite [1.0] [1.4] [1.4] [1.3] [1.2] [2.4] [5.0] [2.7] [3.5] [3.5] [3.5]
 
Item Distance of Fe―O bonds/nm Lattice parameters
a/nm b/nm c/nm α/(°) β/(°) γ/(°)
Bulk goethite in this work 0.1864,0.1879 (×2),0.1993 (×2),0.2008 0.4395 0.9510 0.2925 90 90 90
in Ref.38 0.1901,0.1979 (×2),0.2121 (×2),0.2136 0.4598 0.9951 0.3018 90 90 90
Bulk hematite in this work 0.2000 (×3),0.2024 (×3) 0.5035 0.5035 1.3720 90 90 120
in Ref.39 0.1951 (×3),0.2103 (×3) 0.5037 0.5037 1.3771 90 90 120
 
Structure d/nm Bond angle/(°)
SSa-goethite Fe18―O2 Fe2―O3 C5―C4 C7―C4 C7―O1 C7―O2 C5―O3 O3―Fe2―Fe18 O2―Fe18―Fe2 Fe2―O3―C5 Fe18―O2―C7 Fe18―O2―C7
(101) (V) 0.2016 0.2042 0.1422 0.1485 0.127 0.1299 0.1344 89.2 93.9 114.5 140.1 140.1
SSa-goethite Fe14―O2 Fe14―O3 Fe13―O2 Fe15―O3 C7―O1 C7―O2 C5―O3 O2―Fe14―O3 Fe14―O3―C5 Fe23―O2―C7 O3―C5―C4 O3―C5―C4
(101) (IV) 0.1896 0.1861 0.1959 0.1955 0.1236 0.1347 0.1346 97.6 124.6 124.1 122.2 122.2
SSa-hematite Fe23―O2 Fe23―O3 C5―C4 C7―C4 C7―O1 C7―O2 C5―O3 O2―Fe23―O3 Fe23―O3―C5 Fe23―O2―C7 O3―C5―C4 O3―C5―C4
(001) (IV) 0.1944 0.1947 0.1421 0.146 0.1295 0.1278 0.1322 88.6 119.9 128.1 125 125
 
Structure ΔEads/eV
SSa-goethite(101)(Ⅴ) -5.46
SSa-goethite(101)(Ⅳ) 3.80
SSa-hematite(001)(Ⅳ) -4.07
 
Structure Atom Mulliken charge of atoms/e Charge transfer/e Calculated CLS/eV
free SSa -0.69 (O1), -0.72 (O2), -0.67 (O3), 0.55 (C7), 0.26 (C5) - -
goethite (101) surface Fe7 0.27 (s), 0.28 (p), 6.46 (d), 7.00 (total), 1.00 (net charge) - -
hematite (001) surface Fe9 0.28 (s), 0.18 (p), 6.37 (d), 6.83 (total), 1.17 (net charge) - -
-0.57 (O1), -0.66 (O2), -0.62 (O3), 0.53 (C7), 0.18 (C5) - -
SSa-goethite (101) (V) Fe2 0.29 (s), 0.21 (p), 6.51 (d), 7.01 (total), 0.99 (net charge) -0.01 -0.68
Fe18 0.28 (s), 0.22 (p), 6.54 (d), 7.04 (total), 0.96 (net charge) -0.04 -0.7
-0.49 (O1), -0.71 (O2), -0.52 (O3), 0.52 (C7), 0.25 (C5) - -
SSa-hematite (001) (IV) Fe11 0.27 (s), 0.20 (p), 6.41 (d), 6.88 (total), 1.12 (net charge) -0.05 -
Fe23 0.27 (s), 0.22 (p), 6.43 (d), 6.91 (total), 1.09 (net charge) 0.08 -0.8
 
1 Swinkels D. A., Chouzadjian K., Removal of Organics fromBayer Process Streams. US Patent 4836990 1989, 6- 6.
2 Power G. ; Loh J. Hydrometallurgy 2010, 105 (1-2), 1.
3 Wang M. ; Hu H. P. ; Liu J.W. ; Chen Q. Y. Journal of Central South University 2016, 23, 1.
3 王 梦 ; 胡 慧萍 ; 刘 锦伟 ; 陈 启元 中南大学学报 2016, 23, 1.
4 Wang, M.; Hu, H. P.; Liu, J.W.; Chen, Q. Y. Transactions of Nonferrous Metals Society of China 2016, Accepted.
4 王梦,胡慧萍,刘锦伟,陈启元.有色金属学报, 2016,已接受.
5 Wang, M.; Hu, H. P.; Chen, Q. Y.; Ji, G. F. FT-IR, XPS andDensity Functional Theory Study of Adsorption Mechanism ofSodium Formate onto Goethite or Hematite. In Alumina & Bauxite; Proceedings of the Minerals, Metals & MaterialsSociety Annual Meeting & Exhibition, Nashville, Tennessee, February 14-18, 2016; McGlade, P. T. Ed.; Warrendale, PA15086 USA, 2016.
6 Tipping E. Chem. Geol. 1981, 33 (1-4), 81.
7 Tipping E. Geochim. Cosmochim. Ac. 1981, 45 (2), 191.
8 Smith R. E. Geoderma 1993, 58 (1-2), 128.
9 Evanko C. R. ; Dzombak D. A. Environ. Sci. Technol. 1998, 32 (19), 2846.
10 Boily J. F. ; Persson P. ; Sjoberg S. J. Colloid Interface Sci. 2000, 227 (1), 132.
11 Yost E. C. ; Tejedor-Tejedor M. I. ; Anderson M. A. Environ. Sci. Technol. 1990, 24 (6), 822.
12 Biber M. V. ; Stumm W. Environ. Sci. Technol. 1994, 28 (5), 763.
13 Zhao C. Investigation of the Magnetic Properties of NonthiolatedAu Nano-structures Grown by Laser Ablation. Ph. D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 2014.
14 Zeng Z. ; Ma X. ; Ding W. ; Li W. Science China Chemistry 2010, 53 (2), 402.
15 Kubicki J. D. ; Paul K.W. ; Kabalan L. ; Zhu Q. ; Mrozik M.K. ; Aryanpour M. ; Pierre-Louis A. M. ; Strongin D. R. Langmuir 2012, 28 (41), 14573.
16 Miceli G. ; Pasquarello A. Appl. Phys. Lett. 2013, 102 (20), 201607.
17 Goffinet C. J. ; Mason S. E. J. Environ. Monitor. 2012, 14 (7), 1860.
18 Yang Y. ; Duan J. ; Jing C. J. Phys. Chem. C 2013, 117 (20), 10597.
19 Otte K. ; Schmahl W.W. ; Pentcheva R. J. Phys. Chem. C 2013, 117 (30), 15571.
20 Luckas N. ; Gotterbarm K. ; Streber R. ; Lorenz M. P. A. ; Hoefert O. ; Vines F. ; Papp C. ; Goerling A. ; Steinrueck H. P. Phys. Chem. Chem. Phys. 2011, 13 (36), 16227.
21 Schwertmann U. ; Cornell R. M. Iron Oxides in the Laboratory: Preparation and Characterization; Wiley-VCH:Weinheim, Germany 1991, p 137.
22 Jones F. ; Farrow J. B. ; van Bronswijk W. Langmuir 1998, 14 (22), 6512.
23 Villalobos M. ; Cheney M. A. ; Alcaraz-Cienfuegos J. J. Colloid Interface Sci. 2009, 336 (2), 412.
24 Paul K.W. ; Kubicki J. D. ; Sparks D. L. Eur. J. Soil Sci. 2007, 58 (4), 978.
25 Manceau A. ; Nagy K. L. ; Spadini L. ; Ragnarsdottir K. V. J. Colloid Interface Sci. 2000, 228 (2), 306.
26 Rohrbach A. ; Hafner J. ; Kresse G. Phys. Rev. B 2004, 70 (12), 125426.
27 Li Y. ; Gao Y. ; Xiao B. ; Min T. ; Fan Z. ; Ma S. ; Xu L. J. Alloy. Compd. 2010, 502 (1), 28.
28 Refson K. ; Tulip P. R. ; Clark S. J. Phys. Rev. B 2006, 73 (15), 155114.
29 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77 (18), 3865.
30 Guo H. ; Barnard A. S. Phys. Rev. B 2011, 83 (9), 094112.
31 Monkhorst H. J. ; Pack J. D. Phys. Rev. B 1976, 13 (12), 5188.
32 Hamann D. R. ; Schlüter M. ; Chiang C. Phys. Rev. Lett. 1979, 43 (20), 1494.
33 Tavakol H. J. Mol. Struc.-Theochem 2009, 916 (1-3), 172.
34 Laasonen K. ; Car R. ; Lee C. ; Vanderbilt D. Phys. Rev. B 1991, 43 (8), 6796.
35 Varsányi G. Normal Vibrations of Benzene and Its Derivatives, In Vibrational Spectra of Benzene Derivatives; Academic Press:New York 1969, pp 141- 393.
36 Grosvenor A. P. ; Kobe B. A. ; Biesinger M. C. ; McIntyre N. S. Surf. Interface Anal. 2004, 36 (12), 1564.
37 Cole R. J. ; Gregory D. A. C. ; Weightman P. Phys. Rev. B 1994, 49 (8), 5657.
38 Blanchard M. ; Balan E. ; Giura P. ; Béneut K. ; Yi H. ; Morin G. ; Pinilla C. ; Lazzeri M. ; Floris A. Phys. Chem. Miner. 2013, 41 (4), 289.
39 Sadykov V. A. ; Isupova L. A. ; Tsybulya S. V. ; Cherepanova S.V. ; Litvak G. S. ; Burgina E. B. ; Kustova G. N. ; Kolomiichuk V. N. ; Ivanov V. P. ; Paukshtis E. A. ; Golovin A. V. ; Avvakumov E. G. J. Solid State Chem. 1996, 123, 191.
[1] Xinfei ZHAO,Hao CHEN,Hao WU,Rui WANG,Yi CUI,Qiang FU,Fan YANG,Xinhe BAO. Growth of Ordered ZnO Structures on Au(111) and Cu(111)[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1373-1380.
[2] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[3] Juan WANG,Zhen-Chao ZHAO,Dan-Hong ZHOU,An-Hui LU,Wei-Ping ZHANG. Density Functional Theory Study of CO2 Adsorption in Amine-Functionalized Carbonaceous Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1666-1673.
[4] Jing-Rong. ZHONG,Lang. SHAO,Chun-Rong. YU,Yi-Ming. REN. In-situ FT-IR Study of Hydrolyzation Reaction at Ambient Temperature and Thermal Transformation Behaviors of UF4/KBr in Air[J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2251-2258.
[5] ZHANG Shuan-Qin, KONG Ling-Dong, ZHAO Xi, Roel JANSEN, CHEN Jian-Min. Effects of Ammonia and Amines on Heterogeneous Oxidation of Carbonyl Sulfide on Hematite[J]. Acta Phys. -Chim. Sin., 2013, 29(09): 2027-2034.
[6] XIE Hu-Jun, MOU Wang-Shu, LIN Fu-Rong, XU Jie-Hui, LEI Qun-Fang, FANG Wen-Jun. Radical Scavenging Activity of Myricetin[J]. Acta Phys. -Chim. Sin., 2013, 29(07): 1421-1432.
[7] HE Rui, JIAO Yan-Hua, LIANG Yuan-Yuan, CHEN Can-Yu. Accurate Predictions of the NMR Parameters in Organic and Biological Crystallines[J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2051-2058.
[8] SU Xiao-Ling, WANG Yue-Kui, WANG Yan, JIA Jie, GAO Xiao-Li. Theoretical Analysis of the ECD Spectra of SalenCo(III) Complexes Containing Axial Imidazole Ligands[J]. Acta Phys. -Chim. Sin., 2011, 27(07): 1633-1639.
[9] SUN Wen-Li, XU Jun, LU Wen-Qi. Chemical Structure and Growth Mechanism of a-SixC1-x:H Films Prepared by Plasma Enhanced Magnetron Sputtering[J]. Acta Phys. -Chim. Sin., 2010, 26(08): 2311-2316.
[10] XU Cong, LI Wei, PAN Gang. Particle Concentration Effect on Zn(II) Adsorption at Water-Goethite Interfaces[J]. Acta Phys. -Chim. Sin., 2009, 25(09): 1737-1742.
[11] MA Miao-Rui, YANG Li-Juan, LIU Qian, LIU Hui, WEI Yu. Effect of Ferrihydrite Sub-microstructure on Its Reactivity[J]. Acta Phys. -Chim. Sin., 2008, 24(12): 2282-2286.
[12] CUI Hu-Xiong, CHENG Tian-Tao, CHEN Jian-Min, XU Yong-Fu, FANG Wen. A Simulated Heterogeneous Reaction of SO2 on the Surface of Hematite at Different Temperatures[J]. Acta Phys. -Chim. Sin., 2008, 24(12): 2331-2336.
[13] XIAO Li-Hua, SUN Kun-Peng, XU Xian-Lun. Catalytic Combustion of Methane over CeO2-MOx (M=La3+, Ca2+) Solid Solution Promoted Pd/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2008, 24(11): 2108-2113.
[14] YU Jun, WU Gui-Sheng, MAO Dong-Sen, LU Guan-Zhong. Effect of La2O3 on Catalytic Performance of Au/TiO2 for CO Oxidation[J]. Acta Phys. -Chim. Sin., 2008, 24(10): 1751-1755.
[15] WANG Hong-Guo; JIANG Heng; XU Jing; SUN Zhao-Lin; ZHANG Xiao-Tong; ZHU He-Li; SONG Li-Juan. Effects of Benzene and 1-Octene on Desulfurization by Selective Adsorption with Ce(IV)Y[J]. Acta Phys. -Chim. Sin., 2008, 24(09): 1714-1718.