Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2016,Vol.32>> Issue(7)>> 1556-1592     doi: 10.3866/PKU.WHXB201604291         中文摘要
Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production
CHANG Jin-Fa1,2, XIAO Yao1,2, LUO Zhao-Yan1,2, GE Jun-Jie1,2, LIU Chang-Peng2, XING Wei1,2
1 State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022, P. R. China;
2 Laboratory of Advanced Power Sources, Jilin Province Key Laboratory of Low Carbon Chemical Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
Full text: PDF (71024KB) HTML Export: BibTeX | EndNote (RIS)

Because of its zero-carbon emission energy, hydrogen energy is considered the cleanest energy. The greatest challenge is to develop a cost-effective strategy for hydrogen generation. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion are promising pathways for sustainable hydrogen production. All of these techniques require highly active noble metal-free hydrogen and oxygen evolution catalysts to make the water splitting process energy efficient and economical. In this review, we highlight recent research efforts toward synthesis and performance optimization of noble metal-free electrocatalysts in our institute over the last 3 years. We focus on (1) hydrogen evolution catalysts, including transition metal phosphide, sulfides, selenides, and carbides; (2) oxygen evolution catalysts, including transition metal phosphide, sulfide, and oxide/hydroxides; and (3) bifunctional catalysts, mainly comprising transition metal phosphides, selenides, sulfides, and so on. Finally, we summarize the challenges and prospective for future development of non-noble metal catalysts for water electrolysis.



Keywords: Water electrolysis   Hydrogen energy   Non-noble catalyst   Hydrogen evolution reaction   Oxygen evolution reaction  
Received: 2016-03-21 Accepted: 2016-05-10 Publication Date (Web): 2016-04-29
Corresponding Authors: XING Wei, LIU Chang-Peng Email: xingwei@ciac.ac.cn;liuchp@ciac.ac.cn

Fund: The project was supported by the National Natural Science Foundation of China (21373199, 21433003), Strategic Priority Research Program of Chinese Academy of Sciences (XDA09030104), Jilin Provincial Science and Technology Development Program, China (20130206068GX, 20140203012SF, 20160622037JC), and Recruitment Program of Foreign Experts, China (WQ20122200077).

Cite this article: CHANG Jin-Fa, XIAO Yao, LUO Zhao-Yan, GE Jun-Jie, LIU Chang-Peng, XING Wei. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production[J]. Acta Phys. -Chim. Sin., 2016,32 (7): 1556-1592.    doi: 10.3866/PKU.WHXB201604291

(1) Wang, M.; Wang, Z.; Gong, X.; Guo, Z. Renew. Sust. Energy Rev. 2014, 29, 573. doi: 10.1016/S1364-0321(99)00011-8
(2) Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148. doi: 10.1039/c4cs00448e
(3) Trancik, J. E. Nature 2014, 507 (7492), 300. doi: 10.1038/507300a
(4) Mallouk, T. E. Nat. Chem. 2013, 5 (5), 362. doi: 10.1038/nchem.1634
(5) Kreuter, W.; Hofmann, H. Int. J. Hydrog. Energy 1998, 23, 661. doi: 10.1016/S0360-3199(97)00109-2
(6) Leroy, R. Int. J. Hydrog. Energy 1983, 8, 401. doi: 10.1016/0360-3199(83)90162-3
(7) Lu, P.W. T.; Srinivasan, S. J. Appl. Electrochem. 1979, 9, 269. doi: 10.1007/BF01112480
(8) Spacil, H. S.; Tedmon, C. S. J. Electrochem. Soc. 1969, 116, 1618. doi: 10.1149/1.2411642
(9) Zeng, K.; Zhang, D. Prog. Energ. Combust. Sci. 2010, 36, 307. doi: 10.1016/j.pecs.2009.11.002
(10) Bockris, J. O. M.; Potter, E. C. J. Electrochem. Soc. 1952, 99, 169. doi: 10.1149/1.2779692
(11) Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. J. Electrochem. Soc. 2005, 152 (3), J23. doi: 10.1149/1.1856988
(12) Luo, J.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Science 2014, 345 (6204), 1593. doi: 10.1126/science.1258307
(13) Oyama, S. T.; Gott, T.; Zhao, H.; Lee, Y. K. Catal. Today 2009, 143 (1-2), 94. doi: 10.1016/j.cattod.2008.09.019
(14) Liu, P.; Rodriguez, J. A. J. Am. Chem. Soc. 2005, 127, 14871. doi: 10.1021/ja0540019
(15) Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. J. Am. Chem. Soc. 2013, 135 (25), 9267. doi: 10.1021/ja403440e
(16) Feng, L.; Vrubel, H.; Bensimon, M.; Hu, X. Phys. Chem. Chem. Phys. 2014, 16 (13), 5917. doi: 10.1039/c4cp00482e
(17) Pu, Z.; Liu, Q.; Tang, C.; Asiri, A. M.; Sun, X. Nanoscale 2014, 16 (13), 5917. doi: 10.1039/c4cp00482e
(18) Jiang, P.; Liu, Q.; Sun, X. Nanoscale 2014, 6 (22), 13440. doi: 10.1039/c4nr04866k
(19) Zhang, W. G.; Shang, Y. P.; Liu, L. N.; Yao, S.W.; Wang, H. Z. Acta Phys. -Chim. Sin. 2011, 27 (4), 900. [张卫国, 尚云鹏, 刘丽娜, 姚素薇, 王宏智. 物理化学学报, 2011, 27 (4), 900.] doi: 10.3866/PKU.WHXB20110344
(20) Duan, Q. H.; Wang, S. L.; Wang, L. P. Acta Phys. -Chim. Sin. 2013, 29 (1), 123. [段钱花, 王森林, 王丽品. 物理化学学报, 2013, 29 (1), 123.] doi: 10.3866/PKU.WHXB201210095
(21) Tang, C.; Asiri, A. M.; Luo, Y.; Sun, X. ChemNanoMat 2015, 1 (8), 558. doi: 10.1002/cnma.201500163
(22) Popczun, E. J.; Read, C. G.; Roske, C.W.; Lewis, N. S.; Schaak, R. E. Angew. Chem. Int. Edit. 2014, 126 (21), 5531. doi: 10.1002/ange.201402646
(23) Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Edit. 2014, 53 (26), 6710. doi: 10.1002/anie.201404161
(24) Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. J. Am. Chem. Soc. 2014, 136 (21), 7587. doi: 10.1021/ja503372r
(25) Li, Q.; Xing, Z.; Asiri, A. M.; Jiang, P.; Sun, X. Int. J. Hydrog. Energy 2014, 39 (30), 16806. doi: 10.1016/j.ijhydene.2014.08.099
(26) Pu, Z.; Liu, Q.; Jiang, P.; Asiri, A. M.; Obaid, A. Y.; Sun, X. Chem. Mater. 2014, 26 (15), 4326. doi: 10.1021/cm501273s
(27) Gu, S.; Du, H.; Asiri, A. M.; Sun, X.; Li, C. M. Phys. Chem. Chem. Phys. 2014, 16 (32), 16909. doi: 10.1039/c4cp02613f
(28) Jiang, P.; Liu, Q.; Ge, C.; Cui, W.; Pu, Z.; Asiri, A. M.; Sun, X. J. Mater. Chem. A 2014, 2 (35), 14634. doi: 10.1039/c4ta03261f
(29) Du, H.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X.; Li, C. M. J. Mater. Chem. A 2014, 2 (36), 14812. doi: 10.1039/c4ta02368d
(30) Huang, Z.; Chen, Z.; Chen, Z.; Lv, C.; Humphrey, M. G.; Zhang, C. Nano Energy 2014, 9, 373. doi: 10.1016/j.nanoen.2014.08.013
(31) Lu, A.; Chen, Y.; Li, H.; Dowd, A.; Cortie, M. B.; Xie, Q.; Guo, H.; Qi, Q.; Peng, D. L. Int. J. Hydrog. Energy 2014, 39 (33), 18919. doi: 10.1016/j.ijhydene.2014.09.104
(32) Saadi, F. H.; Carim, A. I.; Verlage, E.; Hemminger, J. C.; Lewis, N. S.; Soriaga, M. P. J. Phys. Chem. C 2014, 118 (50), 29294. doi: 10.1021/jp5054452
(33) Xu, Y.; Wu, R.; Zhang, J.; Shi, Y.; Zhang, B. Chem. Commun. 2013, 49 (59), 6656. doi: 10.1039/c3cc43107j
(34) Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. ACS Nano 2014, 8, 11101. doi: 10.1021/nn5048553
(35) Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Edit. 2014, 53 (47), 12855. doi: 10.1002/anie.201406848
(36) Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.; Luo, Y. ACS Catal. 2014, 4 (11), 4065. doi: 10.1021/cs501106g
(37) Tian, J.; Liu, Q.; Liang, Y.; Xing, Z.; Asiri, A. M.; Sun, X. ACS Appl. Mater. Interfaces 2014, 6 (23), 20579. doi: 10.1021/am5064684
(38) Tian, J.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Edit. 2014, 53 (36), 9577. doi: 10.1002/anie.201403842
(39) Morales-Guio, C. G.; Stern, L. A.; Hu, X. Chem. Soc. Rev. 2014, 43 (18), 6555. doi: 10.1039/c3cs60468c
(40) Xiao, P.; Sk, M. A.; Thia, L.; Ge, X.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Energy Environ. Sci. 2014, 7 (8), 2624. doi: 10.1039/c4ee00957f
(41) Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. Adv. Mater. 2014, 26 (32), 5702. doi: 10.1002/adma.201401692
(42) Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Alamry, K. A.; Sun, X. Appl. Catal. B: Environ. 2015, 164, 144. doi: 10.1016/j.apcatb.2014.09.016
(43) Kibsgaard, J.; Jaramillo, T. F. Angew. Chem. Int. Edit. 2014, 53 (52), 14433. doi: 10.1002/anie.201408222
(44) McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Biacchi, A. J.; Lewis, N. S.; Schaak, R. E. Chem. Mater. 2014, 26 (16), 4826. doi: 10.1021/cm502035s
(45) McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Read, C. G.; Lewis, N. S.; Schaak, R. E. Chem. Commun. 2014, 50 (75), 11026. doi: 10.1039/c4cc04709e
(46) Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X. ACS Appl. Mater. Interfaces 2014, 6 (24), 21874. doi: 10.1021/am5060178
(47) Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. ACS Catal. 2015, 5 (1), 145. doi: 10.1021/cs5014943
(48) Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Angew. Chem. Int. Edit. 2012, 51 (25), 6131. doi: 10.1002/anie.201200699
(49) Shi, J.; Pu, Z.; Liu, Q.; Asiri, A. M.; Hu, J.; Sun, X. Electrochim. Acta 2015, 154, 345. doi: 10.1016/j.electacta.2014.12.096
(50) Xing, Z.; Li, Q.; Wang, D.; Yang, X.; Sun, X. Electrochim. Acta 2016, 191, 841. doi: 10.1016/j.electacta.2015.12.174
(51) Levy, R. B.; Boudart, M. Science 1973, 181, 547. doi: 10.1126/science.181.4099.547
(52) Bennett, L. H.; Cuthill, J. R.; Mcalister, A. J.; Erickson, N. E. Science 1974, 184, 563. doi: 10.1126/science.184.4136.563
(53) Vrubel, H.; Hu, X. Angew. Chem. Int. Edit. 2012, 51 (51), 12703. doi: 10.1002/ange.201207111
(54) Wan, C.; Regmi, Y. N.; Leonard, B. M. Angew. Chem. Int. Edit. 2014, 53 (25), 6407. doi: 10.1002/ange.201402998
(55) Chen, W. F.; Iyer, S.; Iyer, S.; Sasaki, K.; Wang, C. H.; Zhu, Y.; Muckerman, J. T.; Fujita, E. Energy. Environ. Sci. 2013, 6 (6), 1818. doi: 10.1039/c3ee40596f
(56) Cui, W.; Cheng, N.; Liu, Q.; Ge, C.; Asiri, A. M.; Sun, X. ACS Catal. 2014, 4 (8), 2658. doi: 10.1021/cs5005294
(57) Ge, C.; Jiang, P.; Cui, W.; Pu, Z.; Xing, Z.; Asiri, A. M.; Obaid, A. Y.; Sun, X.; Tian, J. Electrochim. Acta 2014, 134, 182. doi: 10.1016/j.electacta.2014.04.113
(58) Sheng, J. F.; Ma, C. A.; Zhang, C.; Li, G. H. Acta Phys. -Chim. Sin. 2007, 23 (2), 181. [盛江峰, 马淳安, 张诚, 李国华.物理化学学报, 2007, 23 (2), 181.] doi: 10.3866/PKU.WHXB20070209
(59) Xiao, X. F.; Liu, R. F.; Zhu, Z. S. Acta Phys. -Chim. Sin. 1999, 15 (8), 742. [肖秀峰, 刘榕芳, 朱则善. 物理化学学报, 1999, 15 (8), 742.] doi: 10.3866/PKU.WHXB19990814
(60) Wirth, S.; Harnisch, F.; Weinmann, M.; Schröder, U. Appl. Catal. B: Environ. 2012, 126, 225. doi: 10.1016/j.apcatb.2012.07.023
(61) Yan, Y.; Xia, B.; Xu, Z.; Wang, X. ACS Catal. 2014, 4 (6), 1693. doi: 10.1021/cs500070x
(62) Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. J. Am. Chem. Soc. 2005, 127, 5308. doi: 10.1021/ja0504690
(63) Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100. doi: 10.1126/science.1141483
(64) Pu, Z.; Liu, Q.; Asiri, A. M.; Luo, Y.; Sun, X.; He, Y. Electrochim. Acta 2015, 168, 133. doi: 10.1016/j.electacta.2015.04.011
(65) Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G.; Markovic, N. M. Nat. Mater. 2016, 15 (2), 197. doi: 10.1038/NMAT4481
(66) Cui, W.; Ge, C.; Xing, Z.; Asiri, A. M.; Sun, X. Electrochim. Acta 2014, 137, 504. doi: 10.1016/j.electacta.2014.06.035
(67) Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nat. Mater. 2013, 12 (9), 850. doi: 10.1038/NMAT3700
(68) Yang, J.; Voiry, D.; Ahn, S. J.; Kang, D.; Kim, A. Y.; Chhowalla, M.; Shin, H. S. Angew. Chem. Int. Edit. 2013, 52 (51), 13751. doi: 10.1002/anie.201307475
(69) Pu, Z.; Liu, Q.; Asiri, A. M.; Obaid, A. Y.; Sun, X. Electrochim. Acta 2014, 134, 8. doi: 10.1016/j.electacta.2014.04.092
(70) Cao, Y. L.; Wang, F.; Liu, J. J.; Wang, J. J.; Zhang, L. H.; Tan, S. Y. Acta Phys. -Chim. Sin. 2009, 25 (10), 1979. [曹寅亮, 王峰, 刘景军, 王建军, 张良虎, 覃事永. 物理化学学报, 2009, 25 (10), 1979.] doi: 10.3866/PKU.WHXB20091017
(71) Di Giovanni, C.; Wang, W. A.; Nowak, S.; Grenèche, J. M.; Lecoq, H.; Mouton, L.; Giraud, M.; Tard, C. ACS Catal. 2014, 4 (2), 681. doi: 10.1021/cs4011698
(72) Kong, D.; Cha, J. J.; Wang, H.; Lee, H. R.; Cui, Y. Energy Environ. Sci. 2013, 6 (12), 3553. doi: 10.1039/c3ee42413h
(73) Tang, C.; Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X. Electrochim. Acta 2015, 153, 508. doi: 10.1016/j.electacta.2014.12.043
(74) Tang, C.; Pu, Z.; Liu, Q.; Asiri, A. M.; Luo, Y.; Sun, X. Int. J. Hydrog. Energy 2015, 40 (14), 4727. doi: 10.1016/j.ijhydene.2015.02.038
(75) Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S. J. Phys. Chem. C 2014, 118 (37), 21347. doi: 10.1021/jp5054452
(76) Gao, M. R.; Lin, Z. Y.; Zhuang, T. T.; Jiang, J.; Xu, Y. F.; Zheng, Y. R.; Yu, S. H. J. Mater. Chem. 2012, 22 (27), 13662. doi: 10.1039/C2JM31916K
(77) Liu, Q.; Shi, J.; Hu, J.; Asiri, A. M.; Luo, Y.; Sun, X. ACS Appl. Mater. Interfaces 2015, 7 (7), 3877. doi: 10.1021/am509185x
(78) Liu, T.; Liu, Q.; Asiri, A. M.; Luo, Y.; Sun, X. Chem. Commun. 2015, 51 (93), 16683. doi: 10.1039/c5cc06892d
(79) Tang, C.; Cheng, N.; Pu, Z.; Xing, W.; Sun, X. Angew. Chem. Int. Edit. 2015, 127 (32), 9483. doi: 10.1002/anie.201503407
(80) Liu, T.; Asiri, A. M.; Sun, X. Nanoscale 2016, 8 (7), 3911. doi: 10.1039/c5nr07170d
(81) Damjanovic, A.; Dey, A.; Bockris, J. O. M. J. Electrochem. Soc. 1966, 113 (7), 739. doi: 10.1149/1.2424104
(82) Miles, M. H.; Thomason, M. A. J. Electrochem. Soc. 1976, 123 (10), 1459. doi: 10.1149/1.2132820
(83) Lodi, G.; Sivieri, E.; Battisti, A.; Trasatti, S. J. Appl. Electrochem. 1978, 8 (2), 135. doi: 10.1007/BF00617671
(84) Song, S.; Zhang, H.; Ma, X.; Shao, Z.; Baker, R. T.; Yi, B. Int. J. Hydrog. Energy 2008, 33 (19), 4955. doi: 10.1016/j.ijhydene.2008.06.039
(85) Slavcheva, E.; Radev, I.; Bliznakov, S.; Topalov, G.; Andreev, P.; Budevski, E. Electrochim. Acta 2007, 52 (12), 3889. doi: 10.1016/j.electacta.2006.11.005
(86) Hackwood, S.; Schiavone, L. M.; Dautremont-Smith, W. C.; Beni, G. J. Electrochem. Soc. 1981, 128 (12), 2569. doi: 10.1149/1.2127293
(87) Ardizzone, S.; Carugati, A.; Trasatti, S. J. Electroanal. Chem. 1981, 126 (1), 287. doi: 10.1016/S0022-0728(81)80437-8
(88) Kötz, R.; Neff, H.; Stucki, S. J. Electrochem. Soc. 1984, 131 (1), 72. doi: 10.1149/1.2115548
(89) Kötz, R.; Stucki, S. Electrochim. Acta 1986, 31 (10), 1311. doi: 10.1016/0013-4686(86)80153-0
(90) Kötz, R.; Stucki, S. J. Electrochem. Soc. 1985, 132 (1), 103. doi: 10.1149/1.2113735
(91) Cheng, J.; Zhang, H.; Chen, G.; Zhang, Y. Electrochim. Acta 2009, 54 (26), 6250. doi: 10.1016/j.electacta.2009.05.090
(92) Marshall, A.; Børresen, B.; Hagen, G.; Tsypkin, M.; Tunold, R. Electrochim. Acta 2006, 51 (15), 3161. doi: 10.1016/j.electacta.2005.09.004
(93) Xu, J.; Liu, G.; Li, J.; Wang, X. Electrochim. Acta 2012, 59, 105. doi: 10.1016/j.electacta.2011.10.044
(94) Hutchings, R.; Müller, K.; Kötz, R.; Stucki, S. J. Mater. Sci. 1984, 19 (12), 3987. doi: 10.1007/BF00980762
(95) Yeo, R. S.; Orehotsky, J.; Visscher, W.; Srinivasan, S. J. Electrochem. Soc. 1981, 128 (9), 1900. doi: 10.1149/1.2127761
(96) Corona-Guinto, J. L.; Cardeño-García, L.; Martínez-Casillas, D. C.; Sandoval-Pineda, J. M.; Tamayo-Meza, P.; Silva-Casarin, R.; González-Huerta, R. G. Int. J. Hydrog. Energy 2013, 38 (28), 12667. doi: 10.1016/j.ijhydene.2012.12.071
(97) Ardizzone, S.; Bianchi, C. L.; Cappelletti, G.; Ionita, M.; Minguzzi, A.; Rondinini, S.; Vertova, A. J. Electroanal. Chem. 2006, 589 (1), 160. doi: 10.1016/j.jelechem.2006.02.004
(98) Kadakia, K.; Datta, M. K.; Velikokhatnyi, O. I.; Jampani, P.; Park, S. K.; Saha, P.; Poston, J. A.; Manivannan, A.; Kumta, P. N. Int. J. Hydrog. Energy 2012, 37 (4), 3001. doi: 10.1016/j.ijhydene.2011.11.055
(99) Datta, M. K.; Kadakia, K.; Velikokhatnyi, O. I.; Jampani, P. H.; Chung, S. J.; Poston, J. A.; Manivannan, A.; Kumta, P. N. J. Mater. Chem. A 2013, 1 (12), 4026. doi: 10.1039/c3ta01458d
(100) Zhao, C.; E, Y.; Fan, L. Microchimica Acta 2012, 178 (1), 107. doi: 10.1007/s00604-012-0818-1
(101) Zhao, C.; Yu, H.; Li, Y.; Li, X.; Ding, L.; Fan, L. J. Electroanal. Chem. 2013, 688, 269. doi: 10.1016/j.jelechem.2012.08.032
(102) Miles, M. H.; Huang, Y. H. J. Electrochem. Soc. 1978, 125, 1931. doi: 10.1149/1.2131330
(103) Damjanovic, A.; Dey, A.; Bockris, J. O. M. J. Electrochem. Soc. 1966, 113, 739. doi: 10.1149/1.2424104
(104) Miles, M. H.; Kissel, G.; Lu, P.W. T.; Srinivasan, S. J. Electrochem. Soc. 1976, 123, 332. doi: 10.1149/1.2132820
(105) Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X. J. Appl. Electrochem. 2014, 44 (11), 1165. doi: 10.1007/s10800-014-0743-6
(106) Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.; He, Y. Int. J. Hydrog. Energy 2015, 40 (39), 13258. doi: 10.1016/j.ijhydene.2015.07.165
(107) Liu, T.; Liang, Y.; Liu, Q.; Sun, X.; He, Y.; Asiri, A. M. Electrochem. Commun. 2015, 60, 92. doi: 10.1016/j.elecom.2015.08.011
(108) Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11 (6), 550. doi: 10.1038/NMAT3313
(109) Liu, Q.; Asiri, A. M.; Sun, X. Electrochem. Commun. 2014, 49, 21. doi: 10.1016/j.elecom.2014.09.021
(110) Chang, J.; Xiao, Y.; Xiao, M.; Ge, J.; Liu, C.; Xing, W. ACS Catal. 2015, 5, 6874. doi: 10.1021/acscatal.5b02076
(111) Xiao, Y.; Feng, L.; Hu, C.; Fateev, V.; Liu, C.; Xing, W. RSC Adv. 2015, 5 (76), 61900. doi: 10.1039/c5ra08848h
(112) Cheng, N.; Xue, Y.; Liu, Q.; Tian, J.; Zhang, L.; Asiri, A. M.; Sun, X. Electrochim. Acta 2015, 163, 102. doi: 10.1016/j.electacta.2015.02.099
(113) Bao, J. Z.; Wang, S. L. Acta Phys. -Chim. Sin. 2011, 27 (12), 2849. [鲍晋珍, 王森林. 物理化学学报, 2011, 27 (12), 2849.] doi: 10.3866/PKU.WHXB20112849
(114) Wang, S. L.; Wang, L. P.; Zhang, Z. H. Acta Phys. -Chim. Sin. 2013, 29 (5), 981. [王森林, 王丽品, 张振洪. 物理化学学报, 2013, 29 (5), 981.] doi: 10.3866/PKU.WHXB201303071
(115) Tian, J.; Liu, Q.; Asiri, A. M.; Alamry, K. A.; Sun, X. ChemSusChem 2014, 7 (8), 2125. doi: 10.1002/cssc.201402118
(116) Jin, H.; Wang, J.; Su, D.; Wei, Z.; Pang, Z.; Wang, Y. J. Am. Chem. Soc. 2015, 137 (7), 2688. doi: 10.1021/ja5127165
(117) Cobo, S.; Heidkamp, J.; Jacques, P. A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S.; Fontecave, M.; Artero, V. Nat. Mater. 2012, 11 (9), 802. doi: 10.1038/NMAT3313
(118) He, C.; Wu, X.; He, Z. J. Phys. Chem. C 2014, 118 (9), 4578. doi: 10.1021/jp408153b
(119) Yang, Y.; Fei, H.; Ruan, G.; Tour, J. M. Adv. Mater. 2015, 27 (20), 3175. doi: 10.1002/adma.201500894
(120) Tian, J.; Cheng, N.; Liu, Q.; Sun, X.; He, Y.; Asiri, A. M. J. Mater. Chem. A 2015, 3 (40), 20056. doi: 10.1039/C5TA04723D
(121) Ma, J.; Jiang, X.; Jiang, L. C. Acta Phys. -Chim. Sin. 1996, 12 (1), 22. [马洁, 蒋雄, 江琳才. 物理化学学报, 1996, 12 (1), 22.] doi: 10.3866/PKU.WHXB19960106
(122) Wang, S. L.; Zhang, Y. Acta Phys. -Chim. Sin. 2011, 27 (6), 1417. [王森林, 张艺. 物理化学学报, 2011, 27 (6), 1417.] doi: 10.3866/PKU.WHXB20110510
(123) Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. Am. Chem. Soc. 2013, 135 (23), 8452. doi: 10.1021/ja4027715
(124) Song, F.; Hu, X. Nat. Commun. 2014, 5, 4477. doi: 10.1038/ncomms5477
(125) Liang, H.; Meng, F.; Caban-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Nano Lett. 2015, 15 (2), 1421. doi: 10.1021/nl504872s
(126) Liang, H.; Li, L.; Meng, F.; Dang, L.; Zhuo, J.; Forticaux, A.; Wang, Z.; Jin, S. Chem. Mater. 2015, 27 (16), 5702. doi: 10.1021/acs.chemmater.5b02177
(127) Song, F.; Hu, X. J. Am. Chem. Soc. 2014, 136 (47), 16481. doi: 10.1021/ja5096733
(128) Fan, G.; Li, F.; Evans, D. G.; Duan, X. Chem. Soc. Rev. 2014, 43 (20), 7040. doi: 10.1039/c4cs00160e
(129) Stern, L. A.; Feng, L.; Song, F.; Hu, X. Energy Environ. Sci. 2015, 8 (8), 2347. doi: 10.1039/c5ee01155h
(130) Liu, X.; Zheng, H.; Sun, Z.; Han, A.; Du, P. ACS Catal. 2015, 5 (3), 1530. doi: 10.1021/cs501480s
(131) Jiang, N.; You, B.; Sheng, M.; Sun, Y. Angew. Chem. Int. Edit. 2015, 54 (21), 6251. doi: 10. 1002/anie.201501616
(132) Ledendecker, M.; Krick Calderon, S.; Papp, C.; Steinruck, H. P.; Antonietti, M.; Shalom, M. Angew. Chem. Int. Edit. 2015, 127 (42), 12538. doi: 10.1002/anie.201502438
(133) Chang, J.; Liang, L.; Li, C.; Wang, M.; Ge, J.; Liu, C.; Xing, W. Green Chem. 2016, 18, 2287. doi: 1 0.1039/c5gc 02899j.
(134) Shi, J.; Hu, J.; Luo, Y.; Sun, X.; Asiri, A. M. Catal. Sci. Technol. 2015, 5 (11), 4954. doi: 10.1039/c5cy01121c
(135) Fang, W.; Liu, D.; Lu, Q.; Sun, X.; Asiri, A. M. Electrochem. Commun. 2016, 63, 60. doi: 10.1016/j.elecom.2015.10.010
(136) Liu, D.; Lu, Q.; Luo, Y.; Sun, X.; Asiri, A. M. Nanoscale 2015, 7, 15122. doi: 10.1039/c5nr04064g
(137) McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2013, 135 (45), 16977. doi: 10.1021/ja407115p
(138) McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137 (13), 4347. doi: 10.1021/ja510442p

1. XU Li, PAN Guo-Shun, LIANG Xiao-Lu, LUO Gui-Hai, ZOU Chun-Li, LUO Hai-Mei.Electrocatalytic Activity of Fe-N/C-TsOH Catalyst for the Oxygen Reduction Reaction in Alkaline Media[J]. Acta Phys. -Chim. Sin., 2014,30(2): 318-324
2. LIN Pei-Bin, YANG Yu, CHEN Wei, GAO Han-Yang, CHEN Xiao-Ping, YUAN Jian, SHANGGUAN Wen-Feng.Hydrothermal Synthesis and Activity of NiS-PdS/CdS Catalysts for Photocatalytic Hydrogen Evolution under Visible Light Irradiation[J]. Acta Phys. -Chim. Sin., 2013,29(06): 1313-1318
3. LI Shang, WANG Jia-Tang, CHEN Rui-Xin, ZHAO Wei, QIAN Liu, PAN Mu.Catalytic Performance of Heat-Treated Fe-Melamine/C and Fe-g-C3N4/C Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2013,29(04): 792-798
4. ZHENG Hua-Rong, ZHANG Jin-Shui, WANG Xin-Chen, FU Xian-Zhi.Modification of Carbon Nitride Photocatalysts by Copolymerization with Diaminomaleonitrile[J]. Acta Phys. -Chim. Sin., 2012,28(10): 2336-2342
5. FAN Yu-Qian, SHAO Hai-Bo, WANG Jian-Ming, LIU Liang, ZHANG Jian-Qing, CAO Chu-Nan.Discharge Performance of Alkaline Sulfide Fuel Cells Using Non-Precious Anode Catalysts[J]. Acta Phys. -Chim. Sin., 2012,28(01): 90-94
6. SHEN Pei-Kang;WANG Sheng-Long;HU Zhi-Yi;LI Yong-Liang;ZENG Rong;HUANG Yue-Qiang.Hydrogen Production by Alcohol Electrolysis[J]. Acta Phys. -Chim. Sin., 2007,23(01): 107-110
7. Wang Fan;Wei Qing-Shuo;Zhang Yu-Ling;Wu Kai;Xie You-Chang.Preparation of Porous Anodic Aluminum Oxide in Water-Deficient Electrolytes[J]. Acta Phys. -Chim. Sin., 2004,20(09): 1134-1137
8. Yan Wei-Dong,Xu Yi-Jin,Han Shi-Jun.A New Method of Pseudo-Static Ebulliometer for Determination of Osmotic Coefficients of Nonaqueous Electrolyte Solution[J]. Acta Phys. -Chim. Sin., 1995,11(05): 454-459
9. Zhu Long-Zhang, Liu Shu-Lan, Tan Qi-Xian, Guo He-Tong.Study on the Catalytic Property of Ni-WC Composite Electrode for Hydrogen Evolution Reaction in Weak Acidic Medium[J]. Acta Phys. -Chim. Sin., 1994,10(11): 1055-1058
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top