Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (7): 1556-1592    DOI: 10.3866/PKU.WHXB201604291
REVIEW     
Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production
Jin-Fa CHANG1,2,Yao XIAO1,2,Zhao-Yan LUO1,2,Jun-Jie GE1,2,Chang-Peng LIU2,*(),Wei XING1,2,*()
1 State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022, P. R. China
2 Laboratory of Advanced Power Sources, Jilin Province Key Laboratory of Low Carbon Chemical Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
Download: HTML     PDF(71024KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Because of its zero-carbon emission energy, hydrogen energy is considered the cleanest energy. The greatest challenge is to develop a cost-effective strategy for hydrogen generation. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion are promising pathways for sustainable hydrogen production. All of these techniques require highly active noble metal-free hydrogen and oxygen evolution catalysts to make the water splitting process energy efficient and economical. In this review, we highlight recent research efforts toward synthesis and performance optimization of noble metal-free electrocatalysts in our institute over the last 3 years. We focus on (1) hydrogen evolution catalysts, including transition metal phosphide, sulfides, selenides, and carbides; (2) oxygen evolution catalysts, including transition metal phosphide, sulfide, and oxide/hydroxides; and (3) bifunctional catalysts, mainly comprising transition metal phosphides, selenides, sulfides, and so on. Finally, we summarize the challenges and prospective for future development of non-noble metal catalysts for water electrolysis.



Key wordsWater electrolysis      Hydrogen energy      Non-noble catalyst      Hydrogen evolution reaction      Oxygen evolution reaction     
Received: 21 March 2016      Published: 29 April 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21373199);the National Natural Science Foundation of China(21433003);Strategic Priority Research Program of Chinese Academy of Sciences(XDA09030104);Jilin Provincial Science and Technology Development Program, China(20130206068GX);Jilin Provincial Science and Technology Development Program, China(20140203012SF);Jilin Provincial Science and Technology Development Program, China(20160622037JC);Recruitment Program of Foreign Experts, China(WQ20122200077)
Corresponding Authors: Chang-Peng LIU,Wei XING     E-mail: liuchp@ciac.ac.cn;xingwei@ciac.ac.cn
Cite this article:

Jin-Fa CHANG,Yao XIAO,Zhao-Yan LUO,Jun-Jie GE,Chang-Peng LIU,Wei XING. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production. Acta Phys. -Chim. Sin., 2016, 32(7): 1556-1592.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201604291     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I7/1556

Fig 1 Schematic diagram of a water electrolyzer
Fig 2 Volcano plot of experimentally measured exchange current density as a function of the density functional theory(DFT)-calculated Gibbs free energy of adsorbed atomic hydrogen11
Fig 3 Elements used for constructing hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)electrocatalysts
Fig 4 Crustal abundance of metals used for constructing HER and OER electrocatalysts(mass fraction)2
Fig 5 Crystal structures of metal rich phosphides13
Fig 6 Schematic diagram of convert MxOy or Mx(OH)y to MxPz using temperature-programming method
Fig 7 (a)Polarization curves for CoP/CNT, CoP, CNT, Pt/C, and bare glass carbon(GC)electrodes in H2SO4 solution(0.5 mol?L-1)at a scan rate of 2 mV?s-1; (b)Tafel plots of CoP/CNT, CoP, and Pt/C23
Fig 8 (a)XRD patterns of Co(OH)F and CoP; (b)low- and(inset)high-magnification SEM images of Co(OH)F/CC(carbon cloth); (c)low- and(inset)high-magnification SEM images of CoP/CC; TEM images of(d)Co(OH)F and(e)CoP nanowires; (f)HRTEM image of CoP nanowire; (g)STEM image and EDX elemental mapping of P and Co for the CoP nanowire24
Fig 9 (a)Polarization curves of CoP/CC, blank CC, and Pt/C in 0.5 mol?L-1 H2SO4 with a scan rate of 2 mV?L-1; (b)Tafel plots of CoP/CC and Pt/C; (c)polarization curves of CoP/CC initially and after 5000 CV scans between+0.1 and -0.3 V(vs RHE); (d)time-dependent current density curve for CoP/CC under static overpotential of 200 mV for 80000 s24
Fig 10 (a)XRD patterns of CoP NTs and CoP NPs; (b)low and(c)high magnification TEM images of CoP NTs; (d)STEM image of CoP NTs; (e)HRTEM image of CoP NTs; (f)EDX elemental mapping images of Co and P for CoP NTs; (g)typical SEM image of CoP NPs29
Fig 11 XRD patterns for(a)FeOOH and(b)FeP scraped off the Ti plate; (c)low- and(d)high-magnification SEM images of FeOOH NA(nanowire array)/Ti precursor; (e)cross-section SEM image of FeOOH NA/Ti; (f)low- and(g)high-magnification SEM images of FeP NA/Ti; (h)cross-section SEM image of FeP NA/Ti35
Fig 12 (a)Polarization curves of blank CC and GR(graphite rod), FeP/CC, FeP/GR, and Pt/C in 0.5 mol?L-1 H2SO4 at a scan rate of 2 mV?s-1; (b)Tafel plots for FeP/CC, FeP/GR, and Pt/C37
Fig 13 (a)CVs for Cu3P NW/CF(copper foam)and Cu3P MP/CF(inset); (b)capacitive currents at 0.20 V as a function of scan rate for Cu3P NW/CF and Cu3P MP/CF(Δj0=ja - jc)38
Fig 14 (a)XRD pattern, (b)low and(c)high magnification SEM images, (d)TEM and(e)HRTEM images of MoP-CA2, (f)STEM image, and EDX elemental mapping images of Mo and P for MoP-CA2 41
Fig 15 (a)Polarization curves of MoP/CF, bulk MoP, CFs, Pt/C, and bulk MoP-CFs modified GCE in 0.5 mol?L-1 H2SO4 at a scan rate of 2 mV?s-1; (b)Tafel plots of MoP/CF, bulk MoP, Pt/C, and bulk MoP-CFs derived from their corresponding polarization curves; (c)durability test for MoP/CF in 0.5 mol?L-1 H2SO4 for 3000 cycles42
Fig 16 (a)XRD patterns for CC, WO3 NAs/CC, and WP NAs/CC; (b, c)SEM images of WO3 NAs/CC; (d, e)SEM images of WP NAs/CC; (f)TEM image of the WP nanorods; (g)HRTEM image(the zone axis is [111])and(h)SAED pattern taken from one single WP nanorod; (ⅰ)STEM image and EDX elemental mapping of P and W for the WP nanorods46
Fig 17 (a)XRD patterns of carbon-supported MoN, NiMoNx, H2-reduced NiMo, and NiMo precursors; XANES spectra of(b)Ni K-edge and(c)Mo K-edge from NiMo nanoparticles and NiMoNx nanosheets as well as Ni and Mo foils; (d)Fourier transformed magnitudes of the k2-weighted Ni K-edge EXAFS data and first-shell fit for NiMoNx(k: the photoelectron wavenumber)48
Fig 18 (a)XRD patterns for CC, WO3 NA/CC, and WN NA/CC; (b)low- and(c)high-magnification SEM images of WO3 NA/CC; (d)low- and(e)high-magnification SEM images of WN NA/CC; (f)EDX spectrum for WN/CC; (g)TEM image of the WN nanorods; (h)HRTEM image and(ⅰ)SAED pattern taken from one single WN nanorod49
Fig 19 X-ray diffraction(XRD)patterns of(a)α-MoC1-x, (b)η-MoC, (c)γ-MoC, and(d)β-Mo2C54 The insets show the corresponding crystal structures.
Fig 20 (a)Polarization curves of the Mo2C/GCSs(graphitic carbon sheets), commercial Mo2C, GCSs, and Pt/C catalysts with a scan rate of 2 mV?s-1 in 0.5 mol?L-1 H2SO4; (b)Tafel plots of Mo2C/GCSs, commercial Mo2C and Pt/C; (c)durability test for the Mo2C/GCSs catalyst by CV scanning for 3000 cycles in 0.5 mol?L-1 H2SO4; (d)Nyquist plots of Mo2C/GCSs and GCSs56
Fig 21 Comparison of the electrocatalytic hydrogen evolution reaction of selected electrocatalysts by cyclic voltammetry60
Fig 22 Calculated free energy diagram for hydrogen evolution at a potential U=0 V relative to the standard hydrogen electrode at pH=0 62
Fig 23 (a)Polarization curves for MoS2/Mo, Pt/C, and bare Mo foil in 0.5 mol?L-1 H2SO4 with a scan rate of 5 mV?s-1 with current density normalized by geometric surface area of the electrode; (b)polarization curve for MoS2/Mo with current density normalized by ECSA; (c)Tafel plots for MoS2/Mo and Pt/C with current density normalized by ECSA; (d)polarization curves for MoS2/Mo initial and after 1000 CV scanning between+0.28 and 0.27 V(vs RHE)(inset: timedependent current density curve for MoS2/Mo under static overpotential of 175 mV for 17 h)64
Fig 24 (A)XRD patterns of MoS2, NixSy, and NMSHMs; (B)low- and(C)high-magnification SEM images, and(D)HRTEM image of NMSHMs66
Fig 25 (a)Low(inset: cross-section SEM image of G-WS2)and(b)high magnification SEM images of G-WS2; (c)SEM image of G-WS2 after 1000 CV cycles; (d)low magnification SEM image of WS2(inset: high magnification SEM image); (e)EDS of G-WS2; (f)EDS of WS2 69
Fig 26 (a)XRD patterns of CC, Ni(OH)2 NA/CC, and NiS2 NA/CC; SEM images of(b, c)Ni(OH)2 NA/CC and(d, e)NiS2 NA/CC; (f)HRTEM image taken from the NiS2 nanosheet73
Fig 27 Structure of transition metal dichalcogenides in pyrite(a)or marcasite phase(b), in which Fe and S are displayed in orange and yellow respectively; (c)side-view of the stable72 color online
Fig 28 (a)XRD patterns of the precursor and selenized product scratched down from CC; (b, c)SEM images of Co(OH)F NW/CC; (d)TEM image of a Co(OH)F NW; (e, f)SEM images of CoSe2 NW/CC; (g)TEM image of a CoSe2 NW; (h)HRTEM image and(ⅰ)SAED pattern taken from a CoSe2 NW; (j)STEM image and EDX elemental mapping of cobalt and selenium for a CoSe2 NW; (k)SEM image of a CoSe2 MP77
Fig 29 (a)XRD pattern of NiSe/NF(nickel foam); (b)low- and(c)high-magnification SEM images of NiSe/NF; (d)TEM image of one single NiSe nanowire; (e)HRTEM image and(f)SAED pattern taken from NiSe nanowire79
Fig 30 Model for charge storage and oxygen evolution on iridium electrodes88
Fig 31 SEM images of IrOx[0.025]-Au(a)and IrOx[0.1]-Au(b)nanoflowers(high-magnification images shown in the corresponding insets)100
Metal Electrolyte T/℃ i0/(A? cm-2) Tafel slope/(mV? dec-1)
102Pt 30% KOH 80 1.2×10-5 46
103Ir 1 mol? L-1 NaOH N.A. 1.0×10-7 40
103Rh 1 mol? L-1 NaOH N.A. 6.0×10-8 42
102Fe 30% KOH 80 1.7×10-1 191
102Co 30% KOH 80 3.3×10-2 126
104Ni 50% KOH 90 4.2×10-2 95
Table 1 Kinetic parameters of oxygen evolution reaction on different metals
Fig 32 TEM(a), HR-TEM(b), and SAED(c)images of CoP NP; SEM(d), TEM(e), HR-TEM(f), SAED(g), STEM(h), and elemental mapping(ⅰ)of CoP NR110 The inset in the framed area of(b)is FFT(fast Fourier transform)obtained from the yellow framed area of(b).The inset in the yellow framed area of(f)is FFT corresponding to the characteristic(011)facet of CoP, and the inset in the red framed area of(f)corresponds to the characteristic(111)facet of CoOx.The spots observed on the FFT are indicative of the registry order and the crystallinity. The lattice fringe spacings of the materials were determined using FFT.
Fig 33 (a)Low- and high-magnification(inset)SEM images of NiCo2O4/CP; (b)low- and high-magnification(inset)SEM images of NiCo2O4/NF; (c)low- and high-magnification(inset)SEM images of pure NiCo2O4 nanosheet; (d)TEM image of NiCo2O4 nanosheet; (e)HRTEM image of NiCo2O4 nanosheet; (f)SAED pattern of NiCo2O4 nanosheet111
Fig 34 (a)Linear sweep voltammetry(LSV)curve of water electrolysis using original CoOx@CN as HER catalyst and CoOx@CN after HER as OER catalyst in 1 mol?L-1 KOH, with the inset showing the stability test of electrolyzer at 10 mA?cm-2.(b)Optical photograph showing the generation of hydrogen and oxygen bubbles on Ni foam116
Fig 35 SEM images of(A)ZnO NRs/TiM, (B)ZnO@NiMo NRs/TiM, and(C)NiMo HNRs/TiM; (D)XRD pattern of NiMo-alloy hollow nanorods; (E, F)TEM images of one single NiMo-alloy hollow nanorod; (G)HRTEM image taken from NiMo-alloy hollow nanorod; (H)STEM image and the corresponding EDX elemental mapping images of Ni and Mo for one single NiMo-alloy hollow nanorod120
Fig 36 (a)LSV curves of water electrolysis for NiSe/NF, NF, and Pt/C on NF in a two-electrode configuration with a scan rate of 2 mV?s-1; (b)chronopotentiometric curve water electrolysis for NiSe/NF in a two-electrode configuration with constant current density of 20 mA?cm-2; (c)amount of gas theoretically calculated and experimentally measured versus time for overall water splitting of NiSe/NF79
Fig 37 (a)Polarization curve and(b)cell voltage as a function of test time at a current density of 300 mA?cm-2 for 24 h of bifunctional CoP NS|CoP NS and a reference Pt black|IrO2 as a cathode and an anode catalyst; (c)current-potential response of the electrolyzer using CoP NS as catalysts both for OER and HER in 1 mol?L-1 KOH solution(inset is the photograph of the electrodes showing the oxygen(left)and hydrogen(right)generation during water electrolysis); galvanostatic electrolysis(d)in 1 mol?L-1 KOH at a constant current density of 10 mA?cm-2 over 24 h133
1 Wang M. ; Wang Z. ; Gong X. ; Guo Z. Renew. Sust. Energy Rev. 2014, 29, 573.
2 Zou X. ; Zhang Y. Chem. Soc. Rev. 2015, 44, 5148.
3 Trancik J. E. Nature 2014, 507 (7492), 300.
4 Mallouk T. E. Nat. Chem. 2013, 5 (5), 362.
5 Kreuter W. ; Hofmann H. Int. J. Hydrog. Energy 1998, 23, 661.
6 Leroy R. Int. J. Hydrog. Energy 1983, 8, 401.
7 Lu P.W. T. ; Srinivasan S. J. Appl. Electrochem. 1979, 9, 269.
8 Spacil H. S. ; Tedmon C. S. J. Electrochem. Soc. 1969, 116, 1618.
9 Zeng K. ; Zhang D. Prog. Energ. Combust. Sci. 2010, 36, 307.
10 Bockris J. O. M. ; Potter E. C. J. Electrochem. Soc. 1952, 99, 169.
11 N?rskov J. K. ; Bligaard T. ; Logadottir A. ; Kitchin J. R. ; Chen J. G. ; Pandelov S. ; Stimming U. J. Electrochem. Soc. 2005, 152 (3), J23.
12 Luo J. ; Im J. H. ; Mayer M. T. ; Schreier M. ; Nazeeruddin M. K. ; Park N. G. ; Tilley S. D. ; Fan H. J. ; Gr?tzel M. Science 2014, 345 (6204), 1593.
13 Oyama S. T. ; Gott T. ; Zhao H. ; Lee Y. K. Catal. Today 2009, 143 (1-2), 94.
14 Liu P. ; Rodriguez J. A J. Am. Chem. Soc. 2005, 127, 14871.
15 Popczun E. J. ; McKone J. R. ; Read C. G. ; Biacchi A. J. ; Wiltrout A. M. ; Lewis N. S. ; Schaak R. E J. Am. Chem. Soc. 2013, 135 (25), 9267.
16 Feng L. ; Vrubel H. ; Bensimon M. ; Hu X. Phys. Chem. Chem. Phys. 2014, 16 (13), 5917.
17 Pu Z. ; Liu Q. ; Tang C. ; Asiri A. M. ; Sun X. Nanoscale 2014, 16 (13), 5917.
18 Jiang P. ; Liu Q. ; Sun X. Nanoscale 2014, 6 (22), 13440.
19 Zhang W. G. ; Shang Y. P. ; Liu L. N. ; Yao S.W. ; Wang H. Z. Acta Phys. -Chim. Sin. 2011, 27 (4), 900.
19 张卫国; 尚云鹏; 刘丽娜; 姚素薇; 王宏智. 物理化学学报, 2011, 27 (4), 900.
20 Duan Q. H. ; Wang S. L. ; Wang L. P. Acta Phys. -Chim. Sin. 2013, 29 (1), 123.
20 段钱花; 王森林; 王丽品. 物理化学学报, 2013, 29 (1), 123.
21 Tang C. ; Asiri A. M. ; Luo Y. ; Sun X. ChemNanoMat 2015, 1 (8), 558.
22 Popczun E. J. ; Read C. G. ; Roske C.W. ; Lewis N. S. ; Schaak R. E. Angew. Chem. Int. Edit. 2014, 126 (21), 5531.
23 Liu Q. ; Tian J. ; Cui W. ; Jiang P. ; Cheng N. ; Asiri A. M. ; Sun X. Angew. Chem. Int. Edit. 2014, 53 (26), 6710.
24 Tian J. ; Liu Q. ; Asiri A. M. ; Sun X. J. Am. Chem. Soc. 2014, 136 (21), 7587.
25 Li Q. ; Xing Z. ; Asiri A. M. ; Jiang P. ; Sun X. ; Sun X. Int. J. Hydrog. Energy 2014, 39 (30), 16806.
26 Pu Z. ; Liu Q. ; Jiang P. ; Asiri A. M. ; Obaid A. Y. ; Sun X. Chem. Mater. 2014, 26 (15), 4326.
27 Gu S. ; Du H. ; Asiri A. M. ; Sun X. ; Li C. M Phys. Chem. Chem. Phys. 2014, 16 (32), 16909.
28 Jiang P. ; Liu Q. ; Ge C. ; Cui W. ; Pu Z. ; Asiri A. M. ; Sun X. J. Mater. Chem. A 2014, 2 (35), 14634.
29 Du H. ; Liu Q. ; Cheng N. ; Asiri A. M. ; Sun X. ; Li C. M. J. Mater. Chem. A 2014, 2 (36), 14812.
30 Huang Z. ; Chen Z. ; Chen Z. ; Lv C. ; Humphrey M. G. ; Zhang C. Nano Energy 2014, 9, 373.
31 Lu A. ; Chen Y. ; Li H. ; Dowd A. ; Cortie M. B. ; Xie Q. ; Guo H. ; Qi Q. ; Peng D. L. Int. J. Hydrog. Energy 2014, 39 (33), 18919.
32 Saadi F. H. ; Carim A. I. ; Verlage E. ; Hemminger J. C. ; Lewis N. S. ; Soriaga M. P. J. Phys. Chem. C 2014, 118 (50), 29294.
33 Xu Y. ; Wu R. ; Zhang J. ; Shi Y. ; Zhang B. Chem. Commun. 2013, 49 (59), 6656.
34 Callejas J. F. ; McEnaney J. M. ; Read C. G. ; Crompton J. C. ; Biacchi A. J. ; Popczun E. J. ; Gordon T. R. ; Lewis N. S. ; Schaak R. E. ACS Nano 2014, 8, 11101.
35 Jiang P. ; Liu Q. ; Liang Y. ; Tian J. ; Asiri A. M. ; Sun X. Angew. Chem. Int. Edit. 2014, 53 (47), 12855.
36 Liang Y. ; Liu Q. ; Asiri A. M. ; Sun X. ; Luo Y. ACS Catal. 2014, 4 (11), 4065.
37 Tian J. ; Liu Q. ; Liang Y. ; Xing Z. ; Asiri A. M. ; Sun X. ACS Appl. Mater. Interfaces 2014, 6 (23), 20579.
38 Tian J. ; Liu Q. ; Cheng N. ; Asiri A. M. ; Sun X. Angew. Chem. Int. Edit. 2014, 53 (36), 9577.
39 Morales-Guio C. G. ; Stern L. A. ; Hu X. Chem. Soc. Rev. 2014, 43 (18), 6555.
40 Xiao P. ; Sk M. A. ; Thia L. ; Ge X. ; Lim R. J. ; Wang J. Y. ; Lim K. H. ; Wang X. Energy Environ. Sci. 2014, 7 (8), 2624.
41 Xing Z. ; Liu Q. ; Asiri A. M. ; Sun X. Adv. Mater. 2014, 26 (32), 5702.
42 Cui W. ; Liu Q. ; Xing Z. ; Asiri A. M. ; Alamry K. A. ; Sun X. Appl. Catal. B: Environ. 2015, 164, 144.
43 Kibsgaard J. ; Jaramillo T. F. Angew. Chem. Int. Edit. 2014, 53 (52), 14433.
44 McEnaney J. M. ; Crompton J. C. ; Callejas J. F. ; Popczun E. J. ; Biacchi A. J. ; Lewis N. S. ; Schaak R. E. Chem. Mater. 2014, 26 (16), 4826.
45 McEnaney J. M. ; Crompton J. C. ; Callejas J. F. ; Popczun E. J. ; Read C. G. ; Lewis N. S. ; Schaak R. E. Chem. Commun. 2014, 50 (75), 11026.
46 Pu Z. ; Liu Q. ; Asiri A. M. ; Sun X. ACS Appl. Mater. Interfaces 2014, 6 (24), 21874.
47 Xing Z. ; Liu Q. ; Asiri A. M. ; Sun X. ACS Catal. 2015, 5 (1), 145.
48 Chen W. F. ; Sasaki K. ; Ma C. ; Frenkel A. I. ; Marinkovic N. ; Muckerman J. T. ; Zhu Y. ; Adzic R. R. Angew. Chem. Int. Edit. 2012, 51 (25), 6163.
49 Shi J. ; Pu Z. ; Liu Q. ; Asiri A. M. ; Hu J. ; Sun X. Electrochim. Acta 2015, 154, 345.
50 Xing Z. ; Li Q. ; Wang D. ; Yang X. ; Sun X. Electrochim. Acta 2016, 191, 841.
51 Levy R. B. ; Boudart M. Science 1973, 181, 547.
52 Bennett L. H. ; Cuthill J. R. ; Mcalister A. J. ; Erickson N. E. Science 1974, 184, 563.
53 Vrubel H. ; Hu X. Angew. Chem. Int. Edit. 2012, 51 (51), 12703.
54 Wan C. ; Regmi Y. N. ; Leonard B. M. Angew. Chem. Int. Edit. 2014, 53 (25), 6407.
55 Chen W. F. ; Iyer S. ; Iyer S. ; Sasaki K. ; Wang C. H. ; Zhu Y. ; Muckerman J. T. ; Fujita E. Energy. Environ. Sci. 2013, 6 (6), 1818.
56 Cui W. ; Cheng N. ; Liu Q. ; Ge C. ; Asiri A. M. ; Sun X. ACS Catal. 2014, 4 (8), 2658.
57 Ge C. ; Jiang P. ; Cui W. ; Pu Z. ; Xing Z. ; Asiri A. M. ; Obaid A. Y. ; Sun X. ; Tian J. Electrochim. Acta 2014, 134, 182.
58 Sheng J. F. ; Ma C. A. ; Zhang C. ; Li G. H. Acta Phys. -Chim. Sin. 2007, 23 (2), 181.
58 盛江峰; 马淳安; 张诚; 李国华. 物理化学学报, 2007, 23 (2), 181.
59 Xiao X. F. ; Liu R. F. ; Zhu Z. S. Acta Phys. -Chim. Sin. 1999, 15 (8), 742.
59 肖秀峰; 刘榕芳; 朱则善. 物理化学学报, 1999, 15 (8), 742.
60 Wirth S. ; Harnisch F. ; Weinmann M. ; Schr?der U. Appl. Catal. B: Environ. 2012, 126, 225.
61 Yan Y. ; Xia B. ; Xu Z. ; Wang X. ACS Catal. 2014, 4 (6), 1693.
62 Hinnemann B. ; Moses P. G. ; Bonde J. ; J?rgensen K. P. ; Nielsen J. H. ; Horch S. ; Chorkendorff I. ; N?rskov J. K. J. Am. Chem. Soc. 2005, 127, 5308.
63 Jaramillo T. F. ; J?rgensen K. P. ; Bonde J. ; Nielsen J. H. ; Horch S. ; Chorkendorff I. Science 2007, 317, 100.
64 Pu Z. ; Liu Q. ; Asiri A. M. ; Luo Y. ; Sun X. ; He Y. Electrochim. Acta 2015, 168, 133.
65 Staszak-Jirkovsky J. ; Malliakas C. D. ; Lopes P. P. ; Danilovic N. ; Kota S. S. ; Chang K. C. ; Genorio B. ; Strmcnik D. ; Stamenkovic V. R. ; Kanatzidis M. G. ; Markovic N. M. Nat. Mater. 2016, 15 (2), 197.
66 Cui W. ; Ge C. ; Xing Z. ; Asiri A. M. ; Sun X. Electrochim. Acta 2014, 137, 504.
67 Voiry D. ; Yamaguchi H. ; Li J. ; Silva R. ; Alves D. C. ; Fujita T. ; Chen M. ; Asefa T. ; Shenoy V. B. ; Eda G. ; Chhowalla M. Nat. Mater. 2013, 12 (9), 850.
68 Yang J. ; Voiry D. ; Ahn S. J. ; Kang D. ; Kim A. Y. ; Chhowalla M. ; Shin H. S. Angew. Chem. Int. Edit. 2013, 52 (51), 13751.
69 Pu Z. ; Liu Q. ; Asiri A. M. ; Obaid A. Y. ; Sun. X. Electrochim. Acta 2014, 134, 8.
70 Cao Y. L. ; Wang F. ; Liu J. J. ; Wang J. J. ; Zhang L. H. ; Tan S. Y. Acta Phys. -Chim. Sin. 2009, 25 (10), 1979.
70 曹寅亮; 王峰; 刘景军; 王建军; 张良虎; 覃事永. 物理化学学报, 2009, 25 (10), 1979.
71 Di Giovanni C. ; Wang W. A. ; Nowak S. ; Grenèche J. M. ; Lecoq H. ; Mouton L. ; Giraud M. ; Tard C. ACS Catal. 2014, 4 (2), 681.
72 Kong D. ; Cha J. J. ; Wang H. ; Lee H. R. ; Cui Y. Energy Environ. Sci. 2013, 6 (12), 3553.
73 Tang C. ; Pu Z. ; Liu Q. ; Asiri A. M. ; Sun X. Electrochim. Acta 2015, 153, 508.
74 Tang C. ; Pu Z. ; Liu Q. ; Asiri A. M. ; Luo Y. ; Sun X. Int. J. Hydrog. Energy 2015, 40 (14), 4727.
75 Faber M. S. ; Lukowski M. A. ; Ding Q. ; Kaiser N. S. ; Jin S. J. Phys. Chem. C 2014, 118 (37), 21347.
76 Gao M. R. ; Lin Z. Y. ; Zhuang T. T. ; Jiang J. ; Xu Y. F. ; Zheng Y. R. ; Yu S. H. J. Mater. Chem. 2012, 22 (27), 13662.
77 Liu Q. ; Shi J. ; Hu J. ; Asiri A. M. ; Luo Y. ; Sun X. ACS Appl. Mater. Interfaces 2015, 7 (7), 3877.
78 Liu T. ; Liu Q. ; Asiri A. M. ; Luo Y. ; Sun X. Chem. Commun. 2015, 51 (93), 16683.
79 Tang C. ; Cheng N. ; Pu Z. ; Xing W. ; Sun X. Angew. Chem. Int. Edit. 2015, 127 (32), 9483.
80 Liu T. ; Asiri A. M. ; Sun X. Nanoscale 2016, 8 (7), 3911.
81 Damjanovic A. ; Dey A. ; Bockris J. O. M. J. Electrochem. Soc. 1966, 113 (7), 739.
82 Miles M. H. ; Thomason M. A. J. Electrochem. Soc. 1976, 123 (10), 1459.
83 Lodi G. ; Sivieri E. ; Battisti A. ; Trasatti S. J. Appl. Electrochem. 1978, 8 (2), 135.
84 Song S. ; Zhang H. ; Ma X. ; Shao Z. ; Baker R. T. ; Yi B. Int. J. Hydrog. Energy 2008, 33 (19), 4955.
85 Slavcheva E. ; Radev I. ; Bliznakov S. ; Topalov G. ; Andreev P. ; Budevski E. Electrochim. Acta 2007, 52 (12), 3889.
86 Hackwood S. ; Schiavone L. M. ; Dautremont-Smith W. C. ; Beni G. J. Electrochem. Soc. 1981, 128 (12), 2569.
87 Ardizzone S. ; Carugati A. ; Trasatti S. J. Electroanal. Chem. 1981, 126 (1), 287.
88 K?tz R. ; Neff H. ; Stucki S. J. Electrochem. Soc. 1984, 131 (1), 72.
89 K?tz R. ; Stucki S. Electrochim. Acta 1986, 31 (10), 1311.
90 K?tz R. ; Stucki S. J. Electrochem. Soc. 1985, 132 (1), 103.
91 Cheng J. ; Zhang H. ; Chen G. ; Zhang Y. Electrochim. Acta 2009, 54 (26), 6250.
92 Marshall A. ; B?rresen B. ; Hagen G. ; Tsypkin M. ; Tunold R. Electrochim. Acta 2006, 51 (15), 3161.
93 Xu J. ; Liu G. ; Li J. ; Wang X. Electrochim. Acta 2012, 59, 105.
94 Hutchings R. ; Müller K. ; K?tz R. ; Stucki S. J. Mater. Sci. 1984, 19 (12), 3987.
95 Yeo R. S. ; Orehotsky J. ; Visscher W. ; Srinivasan S. J. Electrochem. Soc. 1981, 128 (9), 1900.
96 Corona-Guinto J. L. ; Carde?o-García L. ; Martínez-Casillas D. C. ; Sandoval-Pineda J. M. ; Tamayo-Meza P. ; Silva-Casarin R. ; González-Huerta R. G. Int. J. Hydrog. Energy 2013, 38 (28), 12667.
97 Ardizzone S. ; Bianchi C. L. ; Cappelletti G. ; Ionita M. ; Minguzzi A. ; Rondinini S. ; Vertova A. J. Electroanal. Chem. 2006, 589 (1), 160.
98 Kadakia K. ; Datta M. K. ; Velikokhatnyi O. I. ; Jampani P. ; Park S. K. ; Saha P. ; Poston J. A. ; Manivannan A. ; Kumta P. N. Int. J. Hydrog. Energy 2012, 37 (4), 3001.
99 Datta M. K. ; Kadakia K. ; Velikokhatnyi O. I. ; Jampani P. H. ; Chung S. J. ; Poston J. A. ; Manivannan A. ; Kumta P. N. J. Mater. Chem. A 2013, 1 (12), 4026.
100 Zhao C. ; E Y. ; Fan L. Microchimica Acta 2012, 178 (1), 107.
101 Zhao C. ; Yu H. ; Li Y. ; Li X. ; Ding L. ; Fan L. J. Electroanal. Chem. 2013, 688, 269.
102 Miles M. H. ; Huang Y. H. J. Electrochem. Soc. 1978, 125, 1931.
103 Damjanovic A. ; Dey A. ; Bockris J. O. M. J. Electrochem. Soc. 1966, 113, 739.
104 Miles M. H. ; Kissel G. ; Lu P.W. T. ; Srinivasan S. J. Electrochem. Soc. 1976, 123, 332.
105 Pu Z. ; Liu Q. ; Asiri A. M. ; Sun X. J. Appl. Electrochem. 2014, 44 (11), 1165.
106 Liang Y. ; Liu Q. ; Asiri A. M. ; Sun X. ; He Y. Int. J. Hydrog. Energy 2015, 40 (39), 13258.
107 Liu T. ; Liang Y. ; Liu Q. ; Sun X. ; He Y. ; Asiri A. M. Electrochem. Commun. 2015, 60, 92.
108 Subbaraman R. ; Tripkovic D. ; Chang K. C. ; Strmcnik D. ; Paulikas A. P. ; Hirunsit P. ; Chan M. ; Greeley J. ; Stamenkovic V. ; Markovic N. M. Nat. Mater. 2012, 11 (6), 550.
109 Liu Q. ; Asiri A. M. ; Sun X. Electrochem. Commun. 2014, 49, 21.
110 Chang J. ; Xiao Y. ; Xiao M. ; Ge J. ; Liu C. ; Xing W. ACS Catal. 2015, 5, 6874.
111 Xiao Y. ; Feng L. ; Hu C. ; Fateev V. ; Liu C. ; Xing W. RSC Adv. 2015, 5 (76), 61900.
112 Cheng N. ; Xue Y. ; Liu Q. ; Tian J. ; Zhang L. ; Asiri A. M. ; Sun X. Electrochim. Acta 2015, 163, 102.
113 Bao J. Z. ; Wang S. L Acta Phys. -Chim. Sin. 2011, 27 (12), 2849.
113 鲍晋珍; 王森林. 物理化学学报, 2011, 27 (12), 2849.
114 Wang S. L. ; Wang L. P. ; Zhang Z. H. Acta Phys. -Chim. Sin. 2013, 29 (5), 981.
114 王森林; 王丽品; 张振洪. 物理化学学报, 2013, 29 (5), 981.
115 Tian J. ; Liu Q. ; Asiri A. M. ; Alamry K. A. ; Sun X. ChemSusChem 2014, 7 (8), 2125.
116 Jin H. ; Wang J. ; Su D. ; Wei Z. ; Pang Z. ; Wang Y. J. Am. Chem. Soc. 2015, 137 (7), 2688.
117 Cobo S. ; Heidkamp J. ; Jacques P. A. ; Fize J. ; Fourmond V. ; Guetaz L. ; Jousselme B. ; Ivanova V. ; Dau H. ; Palacin S. ; Fontecave M. ; Artero V. Nat. Mater. 2012, 11 (9), 802.
118 He C. ; Wu X. ; He Z. J. Phys. Chem. C 2014, 118 (9), 4578.
119 Yang Y. ; Fei H. ; Ruan G. ; Tour J. M. Adv. Mater. 2015, 27 (20), 3157.
120 Tian J. ; Cheng N. ; Liu Q. ; Sun X. ; He Y. ; Asiri A. M. J. Mater. Chem. A 2015, 3 (40), 20056.
121 Ma J. ; Jiang X. ; Jiang L. C. Acta Phys. -Chim. Sin. 1996, 12 (1), 22.
121 马洁; 蒋雄; 江琳才. 物理化学学报, 1996, 12 (1), 22.
122 Wang S. L. ; Zhang Y. Acta Phys. -Chim. Sin. 2011, 27 (6), 1417.
122 王森林; 张艺. 物理化学学报, 2011, 27 (6), 1417.
123 Gong M. ; Li Y. ; Wang H. ; Liang Y. ; Wu J. Z. ; Zhou J. ; Wang J. ; Regier T. ; Wei F. ; Dai H. J. Am. Chem. Soc. 2013, 135 (23), 8452.
124 Song F. ; Hu X. Nat. Commun. 2014, 5, 4477.
125 Liang H. ; Meng F. ; Caban-Acevedo M. ; Li L. ; Forticaux A. ; Xiu L. ; Wang Z. ; Jin S. Nano Lett. 2015, 15 (2), 1421.
126 Liang H. ; Li L. ; Meng F. ; Dang L. ; Zhuo J. ; Forticaux A. ; Wang Z. ; Jin S. Chem. Mater. 2015, 27 (16), 5702.
127 Song F. ; Hu X. J. Am. Chem. Soc. 2014, 136 (47), 16481.
128 Fan G. ; Li F. ; Evans D. G. ; Duan X. Chem. Soc. Rev. 2014, 43 (20), 7040.
129 Stern L. A. ; Feng L. ; Song F. ; Hu X. Energy Environ. Sci. 2015, 8 (8), 2347.
130 Liu X. ; Zheng H. ; Sun Z. ; Han A. ; Du P. ACS Catal. 2015, 5 (3), 1530.
131 Jiang N. ; You B. ; Sheng M. ; Sun Y. Angew. Chem. Int. Edit. 2015, 54 (21), 6521.
132 Ledendecker M. ; Krick Calderon S. ; Papp C. ; Steinruck H. P. ; Antonietti M. ; Shalom M. Angew. Chem. Int. Edit. 2015, 127 (42), 12538.
133 Chang J. ; Liang L. ; Li C. ; Wang M. ; Ge J. ; Liu C. ; Xing W. Green Chem. 2016, 18, 2287.
134 Shi J. ; Hu J. ; Luo Y. ; Sun X. ; Asiri A. M. Catal. Sci. Technol. 2015, 5 (11), 4954.
135 Fang W. ; Liu D. ; Lu Q. ; Sun X. ; Asiri A. M. Electrochem. Commun. 2016, 63, 60.
136 Liu D. ; Lu Q. ; Luo Y. ; Sun X. ; Asiri A. M. Nanoscale 2015, 7, 15122.
137 McCrory C. C. ; Jung S. ; Peters J. C. ; Jaramillo T. F. J. Am. Chem. Soc. 2013, 135 (45), 16977.
138 McCrory C. C. ; Jung S. ; Ferrer I. M. ; Chatman S. M. ; Peters J. C. ; Jaramillo T. F. J. Am. Chem. Soc. 2015, 137 (13), 4347.
[1] Jordan LEE,Yong LI,Jianing TANG,Xiaoli CUI. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1080-1087.
[2] Pan LUO,Fang SUN,Ju DENG,Haitao XU,Huijuan ZHANG,Yu WANG. Tree-Like NiS-Ni3S2/NF Heterostructure Array and Its Application in Oxygen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1397-1404.
[3] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[4] Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 869-885.
[5] Kun YANG,Qi-Lu YAO,Zhang-Hui LU,Zhi-Bing KANG,Xiang-Shu CHEN. Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 993-1000.
[6] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[7] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2022-2028.
[8] Cui-Juan XUAN,Jie WANG,Jing ZHU,De-Li WANG. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 149-164.
[9] Yu WU,Jian LUO. In situ Growth of a Pd/Ni(OH)2/NF Composite Catalyst for the Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2745-2752.
[10] CAO Yin-Liang, LI Zhi-Lin, WANG Feng, LIU Jing-Jun, JI Jing, WANG Jian-Jun, ZHANG Liang-Hu, QIN Shi-Yong. Electrochemical Preparation of Ni-Sn Active Cathode and Its Electrocatalytic Hydrogen Evolution Reaction Mechanisms in Alkaline Solution[J]. Acta Phys. -Chim. Sin., 2013, 29(07): 1479-1486.
[11] LIN Pei-Bin, YANG Yu, CHEN Wei, GAO Han-Yang, CHEN Xiao-Ping, YUAN Jian, SHANGGUAN Wen-Feng. Hydrothermal Synthesis and Activity of NiS-PdS/CdS Catalysts for Photocatalytic Hydrogen Evolution under Visible Light Irradiation[J]. Acta Phys. -Chim. Sin., 2013, 29(06): 1313-1318.
[12] WANG Sen-Lin, WANG Li-Pin, ZHANG Zhen-Hong. Preparation and Oxygen Evolution Reaction Performance of Ni/NiCo2O4 Electrode[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 981-988.
[13] DUAN Qian-Hua, WANG Sen-Lin, WANG Li-Pin. Electro-Deposition of the Porous Composite Ni-P/LaNi5 Electrode and Its Electro-Catalytic Performance toward Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 123-130.
[14] WANG Sen-Lin, ZHANG Yi. Preparation and Electrocatalytic Performance of Ni-Mo/LaNi5 Porous Composite Electrode toward Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2011, 27(06): 1417-1423.
[15] ZHANG Wei-Guo, SHANG Yun-Peng, LIU Li-Na, YAO Su-Wei, WANG Hong-Zhi. Electrochemical Preparation of a Ni-W-P Nanowire Array and Its Photoelectrocatalytic Activity for the Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2011, 27(04): 900-904.