Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (6): 1314-1329    DOI: 10.3866/PKU.WHXB201605035
Structure of 2D Graphdiyne and Its Application in Energy Fields
HUANG Chang-Shui1, LI Yu-Liang2
1 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong Province, P. R. China;
2 Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download:   PDF(15856KB) Export: BibTeX | EndNote (RIS)      


This paper focuses on application of graphdiyne (GDY) in both energy storage and conversion fields, including the most recent theoretical and experimental progress. The unique three-dimensional pore structure formed by stacking of the GDY layer, make it possess the natural advantage which can be applied to lithium storage and hydrogen storage. Because of its lithiumstorage ability, GDY can be used in energy storage devices, such as lithium ion batteries and lithium ion capacitors. While with the hydrogen storage property, GDY can be used as a hydrogen storage material in fuel cells. By doping method, the performance of GDY for lithium and hydrogen storage can be further improved. Owing to acetylene units composed of sp hybridized carbon atoms and benzene rings composed of sp2 hybridized carbon atoms, GDY possesses multiple conjugated electronic structures. Thus, its band gap can be regulated through many ways accompanied with existence of Dirac cones. This property means that GDY can not only be used as a high-activity non-metal catalyst in place of noble metal catalysts in photocatalysis, but it also plays a promotional role in the hole transport layer and electron transport layer of solar cells. All of the reported results including theoretical and experimental data reviewed here, show the great potential of GDY in energy field applications.

Key wordsGraphdiyne      Lithium storage      Hydrogen storage      Catalysis      Solar cell     
Received: 26 February 2016      Published: 03 May 2016
MSC2000:  O647  

The project was supported by the National Basic Research 973 Program of China (2012CB932901) and the “100 Talents” Program of the Chinese Academy of Sciences.

Corresponding Authors: HUANG Chang-Shui, LI Yu-Liang     E-mail:;
Cite this article:

HUANG Chang-Shui, LI Yu-Liang. Structure of 2D Graphdiyne and Its Application in Energy Fields. Acta Phys. -Chim. Sin., 2016, 32(6): 1314-1329.

URL:     OR

(1) Acheson, E. J. Franklin Institute 1907, 164, 0375
(2) Diederich, F.: Kivala, M. Adv. Mater. 2010, 22, 803. doi: 10.1002/adma.200902623
(3) Haley, M. M. Pure Appl. Chem. 2008, 80, 519. doi: 10.1351/pac200880030519
(4) Hirsch, A. Nature Mater. 2010, 9, 868. doi: 10.1038/nmat2885
(5) Dai, B.: Fu, L.: Zou, Z.: Wang, M.: Xu, H.: Wang, S.: Liu, Z.Nature Commun. 2011, 2, 522. doi: 10.1038/ncomms1539
(6) Haddon, R. Science 1993, 261, 1545. doi: 10.1126/science.261.5128.1545
(7) Allen, M. J.: Tung, V. C.: Kaner, R. B. Chem. Rev. 2009, 110, 132. doi: 10.1021/cr900070d
(8) Baughman, R. H.: Zakhidov, A. A.: de Heer, W. A. Science 2002, 297, 787. doi: 10.1126/science.1060928
(9) Yao, Y.: Li, Q.: Zhang, J.: Liu, R.: Jiao, L.: Zhu, Y. T.: Liu, Z.Nature Mater. 2007, 6, 283. doi: 10.1038/nmat1865
(10) Huang, C.: Wang, N.: Li, Y.: Li, C.: Li, J.: Liu, H.: Zhu, D.Macromolecules 2006, 39, 5319. doi: 10.1021/ma060084h
(11) Hu, Y. J.: Jin, J.: Zhang, H.: Wu, P.: Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812
(12) Yang, Y. H.: Sun, H. J.: Peng, T. J.: Huang, Q. Acta Phys. -Chim. Sin. 2011, 27, 736. [杨勇辉, 孙红娟, 彭同江, 黄桥.物理化学学报, 2011, 27, 736.] doi: 10.3866/PKU.WHXB20110320
(13) Kroto, H.W.: Heath, J. R.: O'Brien, S. C.: Curl, R. F.: Smalley, R. E. Nature 1985, 318, 162. doi: 10.1038/318162a0
(14) Geim, A. K.: Novoselov, K. S. Nature Mater. 2007, 6, 183. doi: 10.1038/nmat1849
(15) Novoselov, K. S.: Geim, A. K.: Morozov, S.: Jiang, D.: Zhang, Y.: Dubonos, S. A.: Grigorieva, I.: Firsov, A. Science 2004, 306, 666. doi: 10.1126/science.1102896
(16) Yan, K.: Fu, L.: Peng, H.: Liu, Z. Acc. Chem. Res. 2013, 46, 2263. doi: 10.1021/ar400057n
(17) Hu, Y.: Kang, L. X.: Zhao, Q. C.: Zhong, H.: Zhang, S. C.: Yang, L.W.: Wang, Z. Q.: Lin, J. J.: Li, Q.W.: Zhang, Z. Y.: Peng, L. M.: Liu, Z. F.: Zhang, J. Nature Commun. 2015, 6, 6099. doi: 10.1038/ncomms7099
(18) Baughman, R. H.: Eckhardt, H.: Kertesz, M. J. Chem. Phys. 1987, 87, 6687. doi: 10.1063/1.453405
(19) Coluci, V. R.: Galvao, D. S.: Baughman, R. H. J. Chem. Phys. 2004, 121, 3228. doi: 10.1063/1.1772756
(20) Haley, M. M.: Brand, S. C.: Pak, J. J. Angew. Chem. Int. Edit. 1997, 36, 836. doi: 10.1002/anie.199708361
(21) Narita, N.: Nagai, S.: Suzuki, S.: Nakao, K. Phys. Rev. B 1998, 58, 11009. doi: 10.1103/PhysRevB.58.11009
(22) Li, G.: Li, Y.: Liu, H.: Guo, Y.: Li, Y.: Zhu, D. Chem. Commun. 2010, 46, 3256. doi: 10.1039/B922733D
(23) Li, Y.: Xu, L.: Liu, H.: Li, Y. Chem. Soc. Rev. 2014, 43, 2572. doi: 10.1039/C3CS60388A
(24) Zhou, J.: Gao, X.: Liu, R.: Xie, Z.: Yang, J.: Zhang, S.: Zhang, G.: Liu, H.: Li, Y.: Zhang, J. J. Am. Chem. Soc. 2015, 137, 7596. doi: 10.1021/jacs.5b04057
(25) Bartolomei, M.: Carmona-Novillo, E.: Hernandez, M. I.: Campos-Martinez, J.: Pirani, F.: Giorgi, G.: Yamashita, K. J. Phys. Chem. Lett. 2014, 5, 751. doi: 10.1021/jz4026563
(26) Chandra Shekar, S.: Swathi, R. J. Phys. Chem. A 2013, 117, 8632. doi: 10.1021/jp402896v
(27) Coluci, V. R.: Braga, S. F.: Legoas, S. B.: Galvao, D. S.: Baughman, R. H. Phys. Rev. B 2003, 68, 035430. doi: 10.1103/PhysRevB.68.035430
(28) Cranford, S.W.: Brommer, D. B.: Buehler, M. J. Nanoscale 2012, 4, 7797. doi: 10.1039/C2NR31644G
(29) He, J.: Ma, S. Y.: Zhou, P.: Zhang, C. X.: He, C.: Sun, L. Z. J. Phys. Chem. C 2012, 116, 26313. doi: 10.1021/jp307408u
(30) Ivanovskii, A. Prog. Solid State Chem. 2013, 41, 1. doi: 10.1016/j.progsolidstchem.2012.12.001
(31) Kou, J.: Zhou, X.: Lu, H.: Wu, F.: Fan, J. Nanoscale 2014, 6, 1865. doi: 10.1039/C3NR04984A
(32) Leenaerts, O.: Partoens, B.: Peeters, F. M. Appl. Phys. Lett. 2013, 103, 013105. doi: 10.1063/1.4812977
(33) Li, C.: Li, J.: Wu, F.: Li, S. S.: Xia, J. B.: Wang, L.W. J. Phys. Chem. C 2011, 115, 23221. doi: 10.1021/jp208423y
(34) Lin, S.: Buehler, M. J. Nanoscale 2013, 5, 11801. doi: 10.1039/C3NR03241H
(35) Lu, R.: Rao, D.: Meng, Z.: Zhang, X.: Xu, G.: Liu, Y.: Kan, E.: Xiao, C.: Deng, K. Phys. Chem. Chem. Phys. 2013, 15, 16120. doi: 10.1039/C3CP52364K
(36) Malko, D.: Neiss, C.: Vines, F.: Gö: rling, A. Phys. Rev. Lett. 2012, 108, 086804. doi: 10.1103/PhysRevLett.108.086804
(37) Narita, N.: Nagai, S.: Suzuki, S. Phys. Rev. B 2001, 64, 245408. doi: 10.1103/PhysRevB.64.245408
(38) Ouyang, T.: Chen, Y.: Liu, L. M.: Xie, Y.: Wei, X.: Zhong, J.Phys. Rev. B 2012, 85, 235436. doi: 10.1103/PhysRevB.85.235436
(39) Pan, L. D.: Zhang, L. Z.: Song, B. Q.: Du, S. X.: Gao, H. J.Appl. Phys. Lett. 2011, 98, 173102. doi: 10.1063/1.3583507
(40) Srinivasu, K.: Ghosh, S. K. J. Phys. Chem. C 2012, 116, 5951. doi: 10.1021/jp212181h
(41) van Miert, G.: Juricic, V.: Smith, C. M. Phys. Rev. B 2014, 90, 195414. doi: 10.1103/PhysRevB.90.195414
(42) Wu, P.: Du, P.: Zhang, H.: Cai, C. J. Phys. Chem. C 2012, 116, 20472. doi: 10.1021/jp3074305
(43) Xu, B.: Lei, X. L.: Liu, G.: Wu, M. S.: Ouyang, C. Y. Int. J. Hydrog. Energy 2014, 39, 17104. doi: 10.1016/j.ijhydene.2014.07.182
(44) Xu, Y. G.: Ming, C.: Lin, Z. Z.: Meng, F. X.: Zhuang, J.: Ning, X. J. Carbon 2014, 73, 283. doi: 10.1016/j.carbon.2014.02.065
(45) Xue, M.: Qiu, H.: Guo, W. Nanotechnology 2013, 24, 505720. doi: 10.1088/0957-4484/24/50/505720
(46) Yue, Q.: Chang, S.: Kang, J.: Tan, J.: Qin, S.: Li, J. J. Chem. Phys. 2012, 136, 244702. doi: 10.1063/1.4730325
(47) Zhang, H.: Zhao, M.: He, X.: Wang, Z.: Zhang, X.: Liu, X. J. Phys. Chem. C 2011, 115, 8845. doi: 10.1021/jp201062m
(48) Zhang, Y. Y.: Pei, Q. X.: Wang, C. M. Comp. Mater. Sci. 2012, 65, 406. doi: 10.1016/j.commatsci.2012.07.044
(49) Zhu, C.: Li, H.: Zeng, X. C.: Wang, E. G.: Meng, S. Sci. Rep. 2013, 3, 3163. doi: 10.1038/srep03163
(50) Bu, H.: Zhao, M.: Zhang, H.: Wang, X.: Xi, Y.: Wang, Z. J. Phys. Chem. A 2012, 116, 3934. doi: 10.1021/jp300107d
(51) Cranford, S.W.: Buehler, M. J. Nanoscale 2012, 4, 4587. doi: 10.1039/C2NR30921A
(52) Cui, H. J.: Sheng, X. L.: Yan, Q. B.: Zheng, Q. R.: Su, G. Phys. Chem. Chem. Phys. 2013, 15, 8179. doi: 10.1039/C3CP44457K
(53) Du, H.: Deng, Z.: Lu, Z.: Yin, Y.: Yu, L.: Wu, H.: Chen, Z.: Zou, Y.: Wang, Y.: Liu, H.: Li, Y. Synth. Met. 2011, 161, 2055. doi: 10.1016/j.synthmet.2011.04.015
(54) Kang, J.: Wu, F.: Li, J. J. Phys. -Condens. Mat. 2012, 24, 165301. doi: 10.1088/0953-8984/24/16/165301
(55) Koo, J.: Park, M.: Hwang, S.: Huang, B.: Jang, B.: Kwon, Y.: Lee, H. Phys. Chem. Chem. Phys. 2014, 16, 8935. doi: 10.1039/C4CP00800F
(56) Kuang, C.: Tang, G.: Jiu, T.: Yang, H.: Liu, H.: Li, B.: Luo, W.: Li, X.: Zhang, W.: Lu, F.: Fang, J.: Li, Y. Nano Lett. 2015, 15, 2756. doi: 10.1021/acs.nanolett.5b00787
(57) Li, G.: Li, Y.: Qian, X.: Liu, H.: Lin, H.: Chen, N.: Li, Y. J. Phys. Chem. C 2011, 115, 2611. doi: 10.1021/jp107996f
(58) Long, M.: Tang, L.: Wang, D.: Li, Y.: Shuai, Z. ACS Nano 2011, 5, 2593. doi: 10.1021/nn102472s
(59) Luo, G.: Zheng, Q.: Me, W. N.: Lu, J.: Nagase, S. J. Phys. Chem. C 2013, 117, 13072. doi: 10.1021/jp402218k
(60) Qi, H.: Yu, P.: Wang, Y.: Han, G.: Liu, H.: Yi, Y.: Li, Y.: Mao, L. J. Am. Chem. Soc. 2015, 137, 5260. doi: 10.1021/ja5131337
(61) Qian, X.: Ning, Z.: Li, Y.: Liu, H.: Ouyang, C.: Chen, Q.: Li, Y.Dalton Trans. 2012, 41, 730. doi: 10.1039/C1DT11641J
(62) Sun, C.: Searles, D. J. J. Phys. Chem. C 2012, 116, 26222. doi: 10.1021/jp309638z
(63) Wang, S.: Yi, L.: Halpert, J. E.: Lai, X.: Liu, Y.: Cao, H.: Yu, R.: Wang, D.: Li, Y. Small 2012, 8, 265. doi: 10.1002/smll.201101686
(64) Xiao, J.: Shi, J.: Liu, H.: Xu, Y.: Lv, S.: Luo, Y.: Li, D.: Meng, Q.: Li, Y. Adv. Energy Mater. 2015, 5, 1401943. doi: 10.1002/aenm.201401943
(65) Zhang, H.: Xia, Y.: Bu, H.: Wang, X.: Zhang, M.: Luo, Y.: Zhao, M. J. Appl. Phys. 2013, 113, 044309. doi: 10.1063/1.4789635
(66) Zhang, H.: Zhao, X.: Zhang, M.: Luo, Y.: Li, G.: Zhao, M. J. Phys. D Appl. Phys. 2013, 46, 495307. doi: 10.1088/0022-3727/46/49/495307
(67) Zhang, X.: Zhu, M.: Chen, P.: Li, Y.: Liu, H.: Li, Y.: Liu, M.Phys. Chem. Chem. Phys. 2015, 17, 1217. doi: 10.1039/C4CP04683H
(68) Zheng, Q.: Luo, G.: Liu, Q.: Quhe, R.: Zheng, J.: Tang, K.: Gao, Z.: Nagase, S.: Lu, J. Nanoscale 2012, 4, 3990. doi: 10.1039/C2NR12026G
(69) Zhong, J.: Wang, J.: Zhou, J. G.: Mao, B. H.: Liu, C. H.: Liu, H. B.: Li, Y. L.: Sham, T. K.: Sun, X. H.: Wang, S. D. J. Phys. Chem. C 2013, 117, 5931. doi: 10.1021/jp310013z
(70) Cao, J.: Tang, C. P.: Xiong, S. J. Physica B 2012, 407, 4387. doi: 10.1016/j.physb.2012.07.041
(71) Chen, J.: Xi, J.: Wang, D.: Shuai, Z. J. Phys. Chem. Lett. 2013, 4, 1443. doi: 10.1021/jz4005587
(72) Guo, Y.: Jiang, K.: Xu, B.: Xia, Y.: Yin, J.: Liu, Z. J. Phys. Chem. C 2012, 116, 13837. doi: 10.1021/jp302062c
(73) Hwang, H. J.: Kwon, Y.: Lee, H. J. Phys. Chem. C 2012, 116, 20220. doi: 10.1021/jp306222v
(74) Huang, C.: Zhang, S.: Liu, H.: Li, Y.: Cui, G.: Li, Y. Nano Energy 2015, 11, 481. doi: 10.1016/j.nanoen.2014.11.036
(75) Jiao, Y.: Du, A.: Hankel, M.: Zhu, Z.: Rudolph, V.: Smith, S. C.Chem. Commun. 2011, 47, 11843. doi: 10.1039/C1CC15129K
(76) Liu, R.: Liu, H.: Li, Y.: Yi, Y.: Shang, X.: Zhang, S.: Yu, X.: Zhang, S.: Cao, H.: Zhang, G. Nanoscale 2014, 6, 11336. doi: 10.1039/C4NR03185G
(77) Luo, G.: Qian, X.: Liu, H.: Qin, R.: Zhou, J.: Li, L.: Gao, Z.: Wang, E.: Mei, W. N.: Lu, J.: Li, Y.: Nagase, S. Phys. Rev. B 2011, 84, 075439. doi: 10.1103/PhysRevB.84.075439
(78) Yang, N.: Liu, Y.: Wen, H.: Tang, Z.: Zhao, H.: Li, Y.: Wang, D. ACS Nano 2013, 7, 1504. doi: 10.1021/nn305288z
(79) Zhang, S.: Liu, H.: Huang, C.: Cui, G.: Li, Y. Chem. Commun. 2015, 51, 1834. doi: 10.1039/C4CC08706B
(80) Ren, H.: Shao, H.: Zhang, L.: Guo, D.: Jin, Q.: Yu, R.: Wang, L.: Li, Y.: Wang, Y.: Zhao, H. Adv. Energy Mater. 2015, 5, 1500296. doi: 10.1002/aenm.201570066
(81) Dinadayalane, T. C.: Leszczynski, J. Struct. Chem. 2010, 21, 1155. doi: 10.1007/s11224-010-9670-2
(82) Fuhrer, M. S.: Lau, C. N.: MacDonald, A. H. MRS Bull. 2010, 35, 289. doi: 10.1557/mrs2010.551
(83) Huang, C. S.: Wang, R. K.: Wong, B. M.: McGee, D. J.: Leonard, F.: Kim, Y. J.: Johnson, K. F.: Arnold, M. S.: Eriksson, M. A.: Gopalan, P. ACS Nano 2011, 5, 7767. doi: 10.1021/nn202725g
(84) Huang, C.: Lu, F.: Li, Y.: Gan, H.: Jiu, T.: Xiao, J.: Xu, X.: Cui, S.: Liu, H.: Zhu, D. J. Nanosci. Nanotechn. 2007, 7, 1472. doi: 10.1166/jnn.2007.329
(85) Liao, L.: Peng, H. L.: Liu, Z. F. J. Am. Chem. Soc. 2014, 136, 12194. doi: 10.1021/ja5048297
(86) Georgakilas, V.: Perman, J. A.: Tucek, J.: Zboril, R. Chem. Rev. 2015, 115, 4744. doi: 10.1021/cr500304f
(87) Yang, Z.: Ren, J.: Zhang, Z.: Chen, X.: Guan, G.: Qiu, L.: Zhang, Y.: Peng, H. Chem. Rev. 2015, 115, 5159. doi: 10.1021/cr5006217
(88) Avouris, P. Nano Lett. 2010, 10, 4285. doi: 10.1021/nl102824h
(89) Bekyarova, E.: Sarkar, S.: Wang, F. H.: Itkis, M. E.: Kalinina, I.: Tian, X. J.: Haddon, R. C. Acc. Chem. Res. 2013, 46, 65. doi: 10.1021/ar300177q
(90) Castro Neto, A. H.: Guinea, F.: Peres, N. M. R.: Novoselov, K.S.: Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. doi: 10.1103/RevModPhys.81.109
(91) Jiao, L.: Zhang, L.: Wang, X.: Diankov, G.: Dai, H. Nature 2009, 458, 877. doi: 10.1038/nature07919
(92) Kim, K.: Choi, J. Y.: Kim, T.: Cho, S. H.: Chung, H. J. Nature 2011, 479, 338. doi: 10.1038/nature10680
(93) Lee, C.: Wei, X. D.: Kysar, J.W.: Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996
(94) Novoselov, K. S.: Jiang, Z.: Zhang, Y.: Morozov, S.: Stormer, H.: Zeitler, U.: Maan, J.: Boebinger, G.: Kim, P.: Geim, A.Science 2007, 315, 1379. doi: 10.1126/science.1137201
(95) Wang, H.: Dai, H. Chem. Soc. Rev. 2013, 42, 3088. doi: 10.1039/C2CS35307E
(96) Li, Y. J.: Li, Y. L. Acta Polym. Sin. 2015, No. 2, 147. [李勇军, 李玉良. 高分子学报, 2015, No. 2, 147.] doi: 10.11777/j.issn1000-3304.2015.14409
(97) Qian, X.: Liu, H.: Huang, C.: Chen, S.: Zhang, L.: Li, Y.: Wang, J.: Li, Y. Sci. Rep. 2015, 5, 7756. doi: 10.1038/srep07756
(98) Hwang, H. J.: Koo, J.: Park, M.: Park, N.: Kwon, Y.: Lee, H. J. Phys. Chem. C 2013, 117, 6919. doi: 10.1021/jp3105198
(99) Zhang, H.: Zhao, M.: Bu, H.: He, X.: Zhang, M.: Zhao, L.: Luo, Y. J. Appl. Phys. 2012, 112, 084305. doi: 10.1063/1.4759235
(100) Bhatia, S. K.: Myers, A. L. Langmuir 2006, 22, 1688. doi: 10.1021/la0523816
(101) Li, Q.W.: Yan, H.: Cheng, Y.: Zhang, J.: Liu, Z. F. J. Mater. Chem. 2002, 12, 1179. doi: 10.1039/B109763F
(102) Dai, L.: Xue, Y.: Qu, L.: Choi, H. J.: Baek, J. B. Chem. Rev. 2015, 115, 4823. doi: 10.1021/cr5003563
(103) Fei, H.: Dong, J.: Arellano-Jiménez, M. J.: Ye, G.: Kim, N. D.: Samuel, E. L.: Peng, Z.: Zhu, Z.: Qin, F.: Bao, J. Nature Commun. 2015, 6, 8668. doi: 10.1038/ncomms9668
(104) Bonaccorso, F.: Colombo, L.: Yu, G.: Stoller, M.: Tozzini, V.: Ferrari, A. C.: Ruoff, R. S.: Pellegrini, V. Science 2015, 347, 1246501. doi: 10.1126/science.1246501
(105) Bajpai, R.: Roy, S.: Kumar, P.: Bajpai, P.: Kulshrestha, N.: Rafiee, J.: Koratkar, N.: Misra, D. ACS Appl. Mater. Interfaces 2011, 3, 3884. doi: 10.1021/am200721x
(106) Tang, H.: Hessel, C. M.: Wang, J.: Yang, N.: Yu, R.: Zhao, H.: Wang, D. Chem. Soc. Rev. 2014, 43, 4281. doi: 10.1039/C3CS60437C

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[2] CHENG Fang, LI Mingyang, HE Wei, WANG Hanqi. Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 177-184.
[3] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[4] QI Helena W., KARELINA Maria, KULIK Heather J.. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 81-91.
[5] HUANG Yang, SUN Qing-De, XU Wen, HE Yao, YIN Wan-Jian. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1730-1751.
[6] ZHENG Jiang-Bo, CHEN Zhi-Ming, HU Zhi-Cheng, ZHANG Jie, HUANG Fei. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1635-1643.
[7] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[8] GU Jin-Yu, QI Peng-Wei, PENG Yang. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1379-1389.
[9] WU Guang-Xin, PENG Wang-Jun, ZHANG Jie-Yu. Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1108-1113.
[10] ZHAO Yuan, CAO Ze-Xing. Global Simulations of Enzymatic Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 691-708.
[11] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[12] XIA Rui, WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 670-690.
[13] HUANG Hao, LONG Ran, XIONG Yu-Jie. Design of Plasmonic-Catalytic Materials for Organic Hydrogenation Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 661-669.
[14] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[15] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.