Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (6): 1314-1329    DOI: 10.3866/PKU.WHXB201605035
REVIEW     
Structure of 2D Graphdiyne and Its Application in Energy Fields
Chang-Shui HUANG1,*(),Yu-Liang LI2,*()
1 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101,Shandong Province, P. R. China
2 Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download: HTML     PDF(15856KB) Export: BibTeX | EndNote (RIS)      

Abstract  

This paper focuses on application of graphdiyne (GDY) in both energy storage and conversion fields, including the most recent theoretical and experimental progress. The unique three-dimensional pore structure formed by stacking of the GDY layer, make it possess the natural advantage which can be applied to lithium storage and hydrogen storage. Because of its lithium storage ability, GDY can be used in energy storage devices, such as lithium ion batteries and lithium ion capacitors. While with the hydrogen storage property, GDY can be used as a hydrogen storage material in fuel cells. By doping method, the performance of GDY for lithium and hydrogen storage can be further improved. Owing to acetylene units composed of sp hybridized carbon atoms and benzene rings composed of sp2 hybridized carbon atoms, GDY possesses multiple conjugated electronic structures. Thus, its band gap can be regulated through many ways accompanied with existence of Dirac cones. This property means that GDY can not only be used as a high-activity non-metal catalyst in place of noble metal catalysts in photocatalysis, but it also plays a promotional role in the hole transport layer and electron transport layer of solar cells. All of the reported results including theoretical and experimental data reviewed here, show the great potential of GDY in energy field applications.



Key wordsGraphdiyne      Lithium storage      Hydrogen storage      Catalysis      Solar cell     
Received: 26 February 2016      Published: 03 May 2016
MSC2000:  O647  
Fund:  the National Basic Research 973 Program of China(2012CB932901);the “100 Talents” Program of the Chinese
Corresponding Authors: Chang-Shui HUANG,Yu-Liang LI     E-mail: huangcs@qibebt.ac.cn;ylli@iccas.ac.cn
Cite this article:

Chang-Shui HUANG,Yu-Liang LI. Structure of 2D Graphdiyne and Its Application in Energy Fields. Acta Physico-Chimica Sinca, 2016, 32(6): 1314-1329.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605035     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I6/1314

Fig 1 Structure of graphyne, graphdiyne, and so on
Fig 2 Structure of graphdiyne GDY
Fig 3 Configuration of bilayer and trilayer graphdiyne GDY68 (a) optimized configuration of the bilayer GDY AB (β1) and the band structure at E = 0 V?nm-1; (b) ABA configuration of the trilayer GDY and related band structure at E = 0 V?nm-1
Fig 4 Electronic structure of GDY77 (a) band structures and density of states (DOS) of GDY at the LDA and GW levels. Optical transitions between the first two Van Hove singularities are indicated. (b) experimental absorbance (blue circle) of GDY film and theoretical absorbance at the GW + RPA (green dotted line) and BSE (red solid line) level of GDY. color online
Fig 5 Diffusion pathways of Li in bulk GDY47, 65 (a) in-plane and (b) out-of-plane diffusion pathways of Li in bulk GDY. (c, d) corresponding energy profiles as a function of intercalation sites. (e) schematic plots for the single-layer GDY in a 2 × 2 supercell and possible Li adsorption sites. (f) top view of the optimized Li-intercalated three-dimensional GDY compound LiC6.
Fig 6 Application of GDY in lithium ion batteries79 (a) schematical images of bulk GDY baesd lithium ion battery; (b) cycle performance and coulombic efficiency; (c) rate performance and (d) charge/ discharge profiles of GDY electrode; (e) Nyquist plots of GDY-based electrode before and after 200 cycles, and the inset is the equivalent circuit.
Fig 7 Mechanism of Li intercalated GDY74 (a) representation of an assembled GDY-based battery and its cycle performance; (b) Li-storage of GDY in a Li-ion cell; (1) Li-intercalated GDY. (2) Three different sites for occupation by Li atoms in GDY, absorption of Li atoms on (3, 4) both sides and (5, 6) one side of a GDY plane; (3, 5) angled and (4, 6) top views of Li absorption geometries
Fig 8 Adsorption of Li and Ca atoms on GY72, 73 (a) atomic arrangements of different numbers of hydrogen molecules adsorbed on Li/GY complex and their average adsorption energy. The red dash line indicates one of the 2-fold rotational axes in a TP. (b) the optimized atomic geometries of Ca atoms adsorbed on 2 × 2 α- and γ-GY with the H2 molecules, respectively. color online. GY: graphyne
Fig 9 Photocatalytic performance of TiO2/GDY63, 78 (a) schematic representation of the proposed photodegradation of methylene blue (MB) over the P25/GDY composite; (b) photocatalytic degradation of MB under visible light irradiation over (A) P25, (B) P25-CNTs, (C) P25-GR, and (D) P25-GDY. (c) schematic representation of calculated Fermi energy and VB and CB positions of the TiO2(001)-GD or TiO2(001)-GR composites, (d) photocatalyticdegradation of MB over TiO2(001), TiO2(001)- GD, TiO2(001)-GR composites, and the blank experiment (without any photocatalyst)
Fig 10 Formation and catalytic performance of Pd/GDY and Pd/GDYO60 (a) schematic Illustration of Formation of Pd/GDY and Pd/GDYO through electroless deposition. (b) plots of ln(Ct/C0) as a function of the reaction time for the reduction of 4-NP catalyzed by four different catalysts of Pd/GDYO (red), commercial Pd/C (black), Pd/GO (blue), and Pd/CNT (green). color online
Fig 11 ORR performance of N-doped GDY76 (a) scheme of N-doped GDY. The grey spheres represent the C atoms and the yellow, purple and red spheres represent the imine 1 N, imine 2 N, and pyridinic N atoms, respectively. (b) CV curves (scan rate 10 mV?s-1) of GDY and N-doped GDY on a GC RDE in an O2-saturated 0.1 mol?L-1 KOH solution. CV curves of (c) N 550-GDY and (d) Pt/C in Ar-saturated (black), O2-saturated (red), 3 mol?L-1 methanol and O2-saturated 0.1 mol?L-1 KOH (blue) solution at a scan rate of 10 mV?s-1. color online
Fig 12 Application of Pt2-GDY in DSSCs80 (a) localized orbital locator (LOL) maps and Mayer bond order analysis for the Pt2-GDY fragment (off-center adsorption site). (b) ESP surfaces with an isovalue of 0.0004 e?au-3 for Pt2-GDY (off-center adsorption site). (c) cyclic voltammetry curves of different counter electrodes. (d) photocurrent density-voltage (J-V) curves of DSSCs using different counter electrodes
Fig 13 Application of P3HT/GDY composite in perovskite solar cell64 (a) the microscopic interaction between GDY and P3HT. (b) the energy levels in P3HT/GDY-based perovskite solar cell. (c) J-V characteristics and (d) IPCE spectra of perovskite solar cells with different HTM layers
Fig 14 Application of PCBM/GDY composite in perovskite solar cell56 (a) device architecture of perovskite solar cell and chemical structure of graphdiyne. from the bottom: glass/ITO/PEDOT:PSS/Perovskite/PCBM: GDY/C60/Al. (b) J-V characteristic curves of pure PCBM and PCBM:GDY based perovskite solar cells under AM 1.5G 100 mW?cm-2 simulated solar light. Inset is corresponding external quantum efficiency (EQE) spectra of the optimal PCBM:GDY and PCBM based devices. (c) steady-state efficiency (blue) with the photocurrent density (black) of the optimal PCBM:GDY based perovskite solar cell device as a function of time applied at a forward bias of 0.775 V. color online
1 Acheson E. J. Franklin Institute 1907, 164, 0375.
2 Diederich F. ; Kivala M. Adv. Mater. 2010, 22, 803.
3 Haley M. M. Pure Appl. Chem. 2008, 80, 519.
4 Hirsch A. Nature Mater. 2010, 9, 868.
5 Dai B. ; Fu L. ; Zou Z. ; Wang M. ; Xu H. ; Wang S. ; Liu Z. Nature Commun. 2011, 2, 522.
6 Haddon R. Science 1993, 261, 1545.
7 Allen M. J. ; Tung V. C. ; Kaner R. B. Chem. Rev. 2009, 110, 132.
8 Baughman R. H. ; Zakhidov A. A. ; de Heer W. A. Science 2002, 297, 787.
9 Yao Y. ; Li Q. ; Zhang J. ; Liu R. ; Jiao L. ; Zhu Y. T. ; Liu Z. Nature Mater. 2007, 6, 283.
10 Huang C. ; Wang N. ; Li Y. ; Li C. ; Li J. ; Liu H. ; Zhu D. Macromolecules 2006, 39, 5319.
11 Hu Y. J. ; Jin J. ; Zhang H. ; Wu P. ; Cai C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073.
11 胡耀娟; 金娟; 张卉; 吴萍蔡称心. 物理化学学报, 2010, 26, 2073.
12 Yang Y. H. ; Sun H. J. ; Peng T. J. ; Huang Q. Acta Phys. -Chim. Sin. 2011, 27, 736.
12 杨勇辉; 孙红娟; 彭同江黄桥. 物理化学学报, 2011, 27, 736.
13 Kroto H. W. ; Heath J. R. ; O'Brien S. C. ; Curl R. F. ; Smalley R. E. Nature 1985, 318, 162.
14 Geim A. K. ; Novoselov K. S. Nature Mater. 2007, 6, 183.
15 Novoselov K. S. ; Geim A. K. ; Morozov S. ; Jiang D. ; Zhang Y. ; Dubonos S. A. ; Grigorieva I. ; Firsov A. Science 2004, 306, 666.
16 Yan K. ; Fu L. ; Peng H. ; Liu Z. Acc. Chem. Res. 2013, 46, 2263.
17 Hu Y. ; Kang L. X. ; Zhao Q. C. ; Zhong H. ; Zhang S. C. ; Yang L. W. ; Wang Z. Q. ; Lin J. J. ; Li Q. W. ; Zhang Z. Y. ; Peng L. M. ; Liu Z. F. ; Zhang J. Nature Commun. 2015, 6, 6099.
18 Baughman R. H. ; Eckhardt H. ; Kertesz M. J. Chem. Phys. 1987, 87, 6687.
19 Coluci V. R. ; Galvao D. S. ; Baughman R. H. J. Chem. Phys. 2004, 121, 3228.
20 Haley M. M. ; Brand S. C. ; Pak J. J. Angew. Chem. Int. Edit. 1997, 36, 836.
21 Narita N. ; Nagai S. ; Suzuki S. ; Nakao K. Phys. Rev. B. 1998, 58, 11009.
22 Li G. ; Li Y. ; Liu H. ; Guo Y. ; Li Y. ; Zhu D. Chem. Commun. 2010, 46, 3256.
23 Li Y. ; Xu L. ; Liu H. ; Li Y. Chem. Soc. Rev. 2014, 43, 2572.
24 Zhou J. ; Gao X. ; Liu R. ; Xie Z. ; Yang J. ; Zhang S. ; Zhang G. ; Liu H. ; Li Y. ; Zhang J. J. Am. Chem. Soc. 2015, 137, 7596.
25 Bartolomei M. ; Carmona-Novillo E. ; Hernandez M. I. ; Campos-Martinez J. ; Pirani F. ; Giorgi G. ; Yamashita K. J. Phys. Chem. Lett. 2014, 5, 751.
26 Chandra Shekar S. ; Swathi R. J. Phys. Chem. A. 2013, 117, 8632.
27 Coluci V. R. ; Braga S. F. ; Legoas S. B. ; Galvao D. S. ; Baughman R. H. Phys. Rev. B. 2003, 68, 035430.
28 Cranford S. W. ; Brommer D. B. ; Buehler M. J. Nanoscale 2012, 4, 7797.
29 He J. ; Ma S. Y. ; Zhou P. ; Zhang C. X. ; He C. ; Sun L. Z. J. Phys. Chem. C. 2012, 116, 26313.
30 Ivanovskii A. Prog. Solid State Chem. 2013, 41, 1.
31 Kou J. ; Zhou X. ; Lu H. ; Wu F. ; Fan J. Nanoscale 2014, 6, 1865.
32 Leenaerts O. ; Partoens B. ; Peeters F. M. Appl. Phys. Lett. 2013, 103, 013105.
33 Li C. ; Li J. ; Wu F. ; Li S. S. ; Xia J. B. ; Wang L. W. J. Phys. Chem. C. 2011, 115, 23221.
34 Lin S. ; Buehler M. J. Nanoscale 2013, 5, 11801.
35 Lu R. ; Rao D. ; Meng Z. ; Zhang X. ; Xu G. ; Liu Y. ; Kan E. ; Xiao C. ; Deng K. Phys. Chem. Chem. Phys. 2013, 15, 16120.
36 Malko D. ; Neiss C. ; Vines F. ; G?rling A. Phys. Rev. Lett. 2012, 108, 086804.
37 Narita N. ; Nagai S. ; Suzuki S. Phys. Rev. B. 2001, 64, 245408.
38 Ouyang T. ; Chen Y. ; Liu L. M. ; Xie Y. ; Wei X. ; Zhong J. Phys. Rev. B. 2012, 85, 235436.
39 Pan L. D. ; Zhang L. Z. ; Song B. Q. ; Du S. X. ; Gao H. J. Appl. Phys. Lett. 2011, 98, 173102.
40 Srinivasu K. ; Ghosh S. K. J. Phys. Chem. C. 2012, 116, 5951.
41 van Miert G. ; Juricic V. ; Smith C. M. Phys. Rev. B. 2014, 90, 195414.
42 Wu P. ; Du P. ; Zhang H. ; Cai C. J. Phys. Chem. C. 2012, 116, 20472.
43 Xu B. ; Lei X. L. ; Liu G. ; Wu M. S. ; Ouyang C. Y. ; Int J. Hydrog. Energy 2014, 39, 17104.
44 Xu Y. G. ; Ming C. ; Lin Z. Z. ; Meng F. X. ; Zhuang J. ; Ning X. J. Carbon 2014, 73, 283.
45 Xue M. ; Qiu H. ; Guo W. Nanotechnology 2013, 24, 505720.
46 Yue Q. ; Chang S. ; Kang J. ; Tan J. ; Qin S. ; Li J. J. Chem. Phys. 2012, 136, 244702.
47 Zhang H. ; Zhao M. ; He X. ; Wang Z. ; Zhang X. ; Liu X. J. Phys. Chem. C. 2011, 115, 8845.
48 Zhang Y. Y. ; Pei Q. X. ; Wang C. M. Comp. Mater. Sci. 2012, 65, 406.
49 Zhu C. ; Li H. ; Zeng X. C. ; Wang E. G. ; Meng S. Sci. Rep. 2013, 3, 3163.
50 Bu H. ; Zhao M. ; Zhang H. ; Wang X. ; Xi Y. ; Wang Z. J. Phys. Chem. A. 2012, 116, 3934.
51 Cranford S. W. ; Buehler M. J. Nanoscale 2012, 4, 4587.
52 Cui H. J. ; Sheng X. L. ; Yan Q. B. ; Zheng Q. R. ; Su G. Phys. Chem. Chem. Phys. 2013, 15, 8179.
53 Du H. ; Deng Z. ; Lu Z. ; Yin Y. ; Yu L. ; Wu H. ; Chen Z. ; Zou Y. ; Wang Y. ; Liu H. ; Li Y. Synth. Met. 2011, 161, 2055.
54 Kang J. ; Wu F. ; Li J. J. Phys. -Condens. Mat. 2012, 24, 165301.
55 Koo J. ; Park M. ; Hwang S. ; Huang B. ; Jang B. ; Kwon Y. ; Lee H. Phys. Chem. Chem. Phys. 2014, 16, 8935.
56 Kuang C. ; Tang G. ; Jiu T. ; Yang H. ; Liu H. ; Li B. ; Luo W. ; Li X. ; Zhang W. ; Lu F. ; Fang J. ; Li Y. Nano Lett. 2015, 15, 2756.
57 Li G. ; Li Y. ; Qian X. ; Liu H. ; Lin H. ; Chen N. ; Li Y. J. Phys. Chem. C. 2011, 115, 2611.
58 Long M. ; Tang L. ; Wang D. ; Li Y. ; Shuai Z. ACS Nano 2011, 5, 2593.
59 Luo G. ; Zheng Q. ; Me W. N. ; Lu J. ; Nagase S. J. Phys. Chem. C. 2013, 117, 13072.
60 Qi H. ; Yu P. ; Wang Y. ; Han G. ; Liu H. ; Yi Y. ; Li Y. ; Mao L. J. Am. Chem. Soc. 2015, 137, 5260.
61 Qian X. ; Ning Z. ; Li Y. ; Liu H. ; Ouyang C. ; Chen Q. ; Li Y. Dalton Trans. 2012, 41, 730.
62 Sun C. ; Searles D. J. J. Phys. Chem. C. 2012, 116, 26222.
63 Wang S. ; Yi L. ; Halpert J. E. ; Lai X. ; Liu Y. ; Cao H. ; Yu R. ; Wang D. ; Li Y. Small 2012, 8, 265.
64 Xiao J. ; Shi J. ; Liu H. ; Xu Y. ; Lv S. ; Luo Y. ; Li D. ; Meng Q. ; Li Y. Adv. Energy Mater. 2015, 5, 1401943.
65 Zhang H. ; Xia Y. ; Bu H. ; Wang X. ; Zhang M. ; Luo Y. ; Zhao M.J. Appl. Phys. 2013, 113, 044309.
66 Zhang H. ; Zhao X. ; Zhang M. ; Luo Y. ; Li G. ; Zhao M. J. Phys. D Appl. Phys. 2013, 46, 495307.
67 Zhang X. ; Zhu M. ; Chen P. ; Li Y. ; Liu H. ; Li Y. ; Liu M. Phys. Chem. Chem. Phys. 2015, 17, 1217.
68 Zheng Q. ; Luo G. ; Liu Q. ; Quhe R. ; Zheng J. ; Tang K. ; Gao Z. ; Nagase S. ; Lu J. Nanoscale 2012, 4, 3990.
69 Zhong J. ; Wang J. ; Zhou J. G. ; Mao B. H. ; Liu C. H. ; Liu H. B. ; Li Y. L. ; Sham T. K. ; Sun X. H. ; Wang S. D. J. Phys. Chem. C. 2013, 117, 5931.
70 Cao J. ; Tang C. P. ; Xiong S. J. Physica B 2012, 407, 4387.
71 Chen J. ; Xi J. ; Wang D. ; Shuai Z. J. Phys. Chem. Lett. 2013, 4, 1443.
72 Guo Y. ; Jiang K. ; Xu B. ; Xia Y. ; Yin J. ; Liu Z. J. Phys.Chem. C. 2012, 116, 13837.
73 Hwang H. J. ; Kwon Y. ; Lee H. J. Phys. Chem. C. 2012, 116, 20220.
74 Huang C. ; Zhang S. ; Liu H. ; Li Y. ; Cui G. ; Li Y. Nano Energy 2015, 11, 481.
75 Jiao Y. ; Du A. ; Hankel M. ; Zhu Z. ; Rudolph V. ; Smith S. C. Chem. Commun. 2011, 47, 11843.
76 Liu R. ; Liu H. ; Li Y. ; Yi Y. ; Shang X. ; Zhang S. ; Yu X. ; Zhang S. ; Cao H. ; Zhang G. Nanoscale 2014, 6, 11336.
77 Luo G. ; Qian X. ; Liu H. ; Qin R. ; Zhou J. ; Li L. ; Gao Z. ; Wang E. ; Mei W. N. ; Lu J. ; Li Y. ; Nagase S. Phys. Rev. B. 2011, 84, 075439.
78 Yang N. ; Liu Y. ; Wen H. ; Tang Z. ; Zhao H. ; Li Y. ; Wang D. ACS Nano 2013, 7, 1504.
79 Zhang S. ; Liu H. ; Huang C. ; Cui G. ; Li Y. Chem. Commun. 2015, 51, 1834.
80 Ren H. ; Shao H. ; Zhang L. ; Guo D. ; Jin Q. ; Yu R. ; Wang L. ; Li Y. ; Wang Y. ; Zhao H. Adv. Energy Mater. 2015, 5, 1500296.
81 Dinadayalane T. C. ; Leszczynski J. Struct. Chem. 2010, 21, 1155.
82 Fuhrer M. S. ; Lau C. N. ; MacDonald A. H. MRS Bull. 2010, 35, 289.
83 Huang C. S. ; Wang R. K. ; Wong B. M. ; McGee D. J. ; Leonard F. ; Kim Y. J. ; Johnson K. F. ; Arnold M. S. ; Eriksson M. A. ; Gopalan P. ACS Nano 2011, 5, 7767.
84 Huang C. ; Lu F. ; Li Y. ; Gan H. ; Jiu T. ; Xiao J. ; Xu X. ; Cui S. ; Liu H. ; Zhu D. J. Nanosci. Nanotechn. 2007, 7, 1472.
85 Liao L. ; Peng H. L. ; Liu Z. F. J. Am. Chem. Soc. 2014, 136, 12194.
86 Georgakilas V. ; Perman J. A. ; Tucek J. ; Zboril R. Chem. Rev. 2015, 115, 4744.
87 Yang Z. ; Ren J. ; Zhang Z. ; Chen X. ; Guan G. ; Qiu L. ; Zhang Y. ; Peng H. Chem. Rev. 2015, 115, 5159.
88 Avouris P. Nano Lett. 2010, 10, 4285.
89 Bekyarova E. ; Sarkar S. ; Wang F. H. ; Itkis M. E. ; Kalinina I. ; Tian X. J. ; Haddon R. C. Acc. Chem. Res. 2013, 46, 65.
90 Castro Neto A. H. ; Guinea F. ; Peres N. M. R. ; Novoselov K. S. ; Geim A. K. Rev. Mod. Phys. 2009, 81, 109.
91 Jiao L. ; Zhang L. ; Wang X. ; Diankov G. ; Dai H. Nature 2009, 458, 877.
92 Kim K. ; Choi J. Y. ; Kim T. ; Cho S. H. ; Chung H. J. Nature 2011, 479, 338.
93 Lee C. ; Wei X. D. ; Kysar J. W. ; Hone J. Science 2008, 321, 385.
94 Novoselov K. S. ; Jiang Z. ; Zhang Y. ; Morozov S. ; Stormer H. ; Zeitler U. ; Maan J. ; Boebinger G. ; Kim P. ; Geim A. Science 2007, 315, 1379.
95 Wang H. ; Dai H. Chem. Soc. Rev. 2013, 42, 3088.
96 Li Y. J. ; Li Y. L. Acta Polym. Sin, 2015, No. , 2, 147.
96 李勇军;李玉良. 高分子学报,, 2015, No. 2, 147.
97 Qian X. ; Liu H. ; Huang C. ; Chen S. ; Zhang L. ; Li Y. ; Wang J. ; Li Y. Sci. Rep. 2015, 5, 7756.
98 Hwang H. J. ; Koo J. ; Park M. ; Park N. ; Kwon Y. ; Lee H. J. Phys. Chem. C. 2013, 117, 6919.
99 Zhang H. ; Zhao M. ; Bu H. ; He X. ; Zhang M. ; Zhao L. ; Luo Y. J. Appl. Phys. 2012, 112, 084305.
100 Bhatia S. K. ; Myers A. L. Langmuir 2006, 22, 1688.
101 Li Q. W. ; Yan H. ; Cheng Y. ; Zhang J. ; Liu Z. F. J. Mater. Chem. 2002, 12, 1179.
102 Dai L. ; Xue Y. ; Qu L. ; Choi H. J. ; Baek J. B. Chem. Rev. 2015, 115, 4823.
103 Fei H. ; Dong J. ; Arellano-Jiménez M. J. ; Ye G. ; Kim N. D. ; Samuel E. L. ; Peng Z. ; Zhu Z. ; Qin F. ; Bao J. Nature Commun. 2015, 6, 8668.
104 Bonaccorso F. ; Colombo L. ; Yu G. ; Stoller M. ; Tozzini V. ; Ferrari A. C. ; Ruoff R. S. ; Pellegrini V. Science 2015, 347, 1246501.
105 Bajpai R. ; Roy S. ; Kumar P. ; Bajpai P. ; Kulshrestha N. ; Rafiee J. ; Koratkar N. ; Misra D. ACS Appl. Mater. Interfaces 2011, 3, 3884.
106 Tang H. ; Hessel C. M. ; Wang J. ; Yang N. ; Yu R. ; Zhao H. ; Wang D. Chem. Soc. Rev. 2014, 43, 4281.
[1] Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 424-436.
[2] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 344-347.
[3] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 391-406.
[4] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 286-295.
[5] Fang CHENG,Mingyang LI,Wei HE,Hanqi WANG. Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 177-184.
[6] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 36-48.
[7] Helena W. QI,Maria KARELINA,Heather J KULIK. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 81-91.
[8] Yang HUANG,Qing-De SUN,Wen XU,Yao HE,Wan-Jian YIN. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1730-1751.
[9] Jiang-Bo ZHENG,Zhi-Ming CHEN,Zhi-Cheng HU,Jie ZHANG,Fei HUANG. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1635-1643.
[10] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[11] Jin-Yu GU,Peng-Wei QI,Yang PENG. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1379-1389.
[12] . Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1108-1113.
[13] Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 670-690.
[14] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 709-728.
[15] Yuan ZHAO,Ze-Xing CAO. Global Simulations of Enzymatic Catalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 691-708.