Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (8): 1999-2006    DOI: 10.3866/PKU.WHXB201605032
ARTICLE     
A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries
Wen LUO,Lei HUANG,Dou-Dou GUAN,Ru-Han HE,Feng LI,Li-Qiang MAI*()
Download: HTML     PDF(12871KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

A selenium disulfide-impregnated hollow carbon sphere composite was prepared as the cathode material for lithium-ion batteries. The morphology, composition, and structure of the as-synthesized composite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and the Brunauer-Emmett- Teller (BET) technique. It was found that uniform monodispersive hollow carbon spheres can be synthesized by the template method combined with chemical polymerization. The diameter of the spheres is about 500 nm and the thickness of their wall is about 30 nm. Furthermore, a selenium disulfide-impregnated hollow carbon sphere composite can be achieved by the melting-diffusion method. The electrochemical performance of the as-synthesized composite as a cathode material for lithium-ion batteries was also investigated. Compared with the pristine bulk SeS2 material, the SeS2@HCS composite exhibits higher initial discharge capacity (956 mAh· g-1 at a current density of 100 mA·g-1), longer cycle life (200 cycles at a current density of 100 mA·g-1), and better rate performance. The results indicate that this composite can be considered as a promising candidate for the cathode material of lithium-ion batteries.



Key wordsSelenium disulfide      Hollow carbon sphere      Large pore volume      Lithium-ion battery      Cathode material     
Received: 29 February 2016      Published: 03 May 2016
Corresponding Authors: Li-Qiang MAI     E-mail: mlq518@whut.edu.cn
Cite this article:

Wen LUO,Lei HUANG,Dou-Dou GUAN,Ru-Han HE,Feng LI,Li-Qiang MAI. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries. Acta Phys. -Chim. Sin., 2016, 32(8): 1999-2006.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605032     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I8/1999

Fig 1 (a-c) SEM and (d-f) TEM images of hollow carbon spheres
Fig 2 SEM images and elemental mapping images (a) SEM images of mixture (pristine SeS2 and HCS); (b and c) SEM images of SeS2@HCS; (d) elemental mapping images of sulfur, selenium and carbon in SeS2@HCS
Fig 3 (a) XRD patterns, (b) Raman spectra, (c) N2 adsorption-desorption isotherms, and (d) TG curve (a) X-ray diffraction (XRD) patterns of pristine SeS2, HCS, and SeS2@HCS; (b) Raman spectra of pristine SeS2, HCS, and SeS2@HCS; (c) N2 adsorption-desorption isotherms of HCS and SeS2@HCS; (d) thermogravimetry (TG) curve of SeS2@HCS
Fig 4 Characterization of electrochemical performance (a) 1st, 2nd, and 3rd charge-discharge voltage profiles of SeS2@HCS at 100 mA·g-1; (b) 1st, 2nd, and 3rd charge-discharge voltage profiles of pristine SeS2 at 100 mA·g-1; (c) 20th, 50th, and 100th charge-discharge voltage profiles of SeS2@HCS at 100 mA·g-1; (d) cycling performance of SeS2@HCS at 200 mA·g-1; (e) cycling performance of SeS2@HCS and pristine SeS2 at 100 mA·g-1; (f) rate capacity of SeS2@HCS and pristine SeS2
Fig 5 Electrochemical impedance spectra of pristine SeS2 and SeS2@HCS
1 Bruce P. G. Solid State Ionics 2008, 179, 752.
2 Mai L. ; Tian X. ; Xu X. ; Chang L. ; Xu L. Chem. Rev. 2014, 114, 11828.
3 Kang B. ; Ceder G. Nature 2009, 458, 190.
4 Mai L. Q. ; Yang S. ; Han C. H. ; Xu L. ; Xu X. ; Pi Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 1551.
4 麦立强; 杨霜; 韩春华; 徐林; 许絮皮玉强. 物理化学学报, 2011, 27, 1551.
5 Yang Y. ; Zheng G. ; Cui Y. Chem. Soc. Rev. 2013, 42, 3018.
6 Yao Z. D. ; Wei W. ; Wang J. L. ; Yang J. ; Nuli Y. N. Acta Phys. -Chim. Sin. 2011, 27, 1005.
6 姚真东; 魏巍; 王久林; 杨军努丽燕娜. 物理化学学报, 2011, 27, 1005.
7 Kim J. ; Lee D. J. ; Jung H. G. ; Sun Y. K. ; Hassoun J. ; Scrosati B. Adv. Funct. Mater. 2013, 23, 1076.
8 Li Q. Z. ; Li Y. H. ; Li Y. J. ; Liu Y. N. Acta Phys. -Chim. Sin. 2014, 30, 1474.
8 李庆洲; 李玉惠; 李亚娟刘又年. 物理化学学报, 2014, 30, 1474.
9 Ji X. ; Lee K. T. ; Nazar L. F. Nat. Mater. 2009, 8, 500.
10 Yang C. P. ; Xin S. ; Yin Y. X. ; Ye H. ; Zhang J. ; Guo Y. Angew. Chem. Int. Edit. 2013, 52, 8363.
11 Abouimrane A. ; Dambournet D. ; Chapman K.W. ; Chupas P.J. ; Weng W. ; Amine K. J. Am. Chem. Soc. 2012, 134, 4505.
12 Cui Y. ; Abouimrane A. ; Lu J. ; Bolin T. ; Ren Y. ; Weng W. ; Sun C. ; Maroni V. A. ; Heald S. M. ; Amine K. J. Am. Chem. Soc. 2013, 135, 8047.
13 Luo C. ; Zhu Y. ; Wen Y. ; Wang J. ; Wang C. Adv. Funct. Mater. 2014, 24, 4082.
14 Li X. ; Liang J. ; Zhang K. ; Hou Z. ; Zhang W. ; Zhu Y. ; Qian Y. Energy Environ. Sci. 2015, 8, 3181.
15 Zhang C. ; Wu H. B. ; Yuan C. ; Guo Z. ; Lou X. Angew. Chem. Int. Edit. 2012, 124, 9730.
16 Jayaprakash N. ; Shen J. ; Moganty S. S. ; Corona A. ; Archer L. A. Angew. Chem. Int. Edit. 2011, 123, 6026.
17 Zhang J. ; Fan L. ; Zhu Y. ; Xu Y. ; Liang J. ; Wei D. ; Qian Y. Nanoscale 2014, 6, 12952.
18 Qu Y. ; Zhang Z. ; Jiang S. ; Wang X. ; Lai Y. ; Liu Y. ; Li J. J. Mater. Chem. A 2014, 2, 12255.
19 Li D. ; Han F. ; Wang S. ; Cheng F. ; Sun Q. ; Li W. C. ACS Appl. Mater. Interfaces 2013, 5, 2208.
20 Wang H. ; Yang Y. ; Liang Y. ; Robinson J. T. ; Li Y. ; Jackson A. ; Cui Y. ; Dai H. Nano Lett. 2011, 11, 2644.
21 Lu S. ; Cheng Y. ; Wu X. ; Liu J. Nano Lett. 2013, 13, 2485.
22 Li W. ; Chen D. ; Li Z. ; Shi Y. ; Wan Y. ; Wang G. ; Jiang Z. ; Zhao D. Carbon 2007, 45, 1757.
23 Lee J. ; Kim J. ; Hyeon T. Adv. Mater. 2006, 18, 2073.
24 Luo C. ; Xu Y. ; Zhu Y. ; Liu Y. ; Zheng S. ; Liu Y. ; Langrock A. ; Wang C. ACS Nano 2013, 7, 8003.
25 Li Z. ; Yuan L. ; Yi Z. ; Liu Y. ; Huang Y. Nano Energy 2014, 9, 229.
26 Li Z. ; Jiang Y. ; Yuan L. ; Yi Z. ; Wu C. ; Liu Y. ; Strasser P. ; Huang Y. ACS Nano 2014, 8, 9295.
27 Zhang Z. ; Li Z. ; Hao F. ; Wang X. ; Li Q. ; Qi Y. ; Fan R. ; Yin L. Adv. Funct. Mater. 2014, 24, 2500.
28 Luo W. ; Zhang P. ; Wang X. ; Li Q. ; Dong Y. ; Hua J. ; Zhou L. ; Mai L. J. Power Sources 2016, 304, 340.
29 Zhang Z. ; Jiang S. ; Lai Y. ; Li J. ; Song J. ; Li J. J. Power Sources 2015, 284, 95.
[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[2] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[3] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[4] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547.
[5] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[6] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[7] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[8] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[9] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[10] Sheng-Yi MIAO,Xian-Fu WANG,Cheng-Lin YAN. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 18-27.
[11] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.
[12] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292.
[13] Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2293-2300.
[14] Ai-Ming WU,Guo-Feng XIA,Shui-Yun SHEN,Jie-Wei YIN,Ya MAO,Qing-You BAI,Jing-Ying XIE,Jun-Liang ZHANG. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1866-1879.
[15] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1489-1494.