Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (8): 1913-1928    DOI: 10.3866/PKU.WHXB201605052
REVIEW     
Advances in the Synthesis of Mesoporous Carbon Nitride Materials
Yue WANG,Quan JIANG,Jie-Kun SHANG,Jie XU*(),Yong-Xin LI
Download: HTML     PDF(15293KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphitic carbon nitride (g-C3N4) is a new metal-free material. Owing to its multiple unique physicochemical properties, g-C3N4 has promising applications in various research fields, including heterogeneous catalysis, photocatalysis, fuel cells, and gas storage. Compared with bulk g-C3N4 prepared via direct thermal condensation, mesoporous g-C3N4 possesses a higher surface area and abundant accessible mesoporous pores. These features expose many more surface active sites, thereby improving the performance of this material in catalysis as well as in other applications. Thermal condensation is the most convenient strategy to prepare g-C3N4 and, when fabricating mesoporous g-C3N4, one may employ hard-, soft-, or non-templating method. This paper reviews recent advances in the synthesis of mesoporous g-C3N4 using all three routes. Specifically, several crucial issues regarding the hard-templating method are discussed with regard to the synthetic mechanism associated with various precursors and the physicochemical properties of the g-C3N4 products. Novel soft- and non-templating approaches for the preparation of mesoporous g-C3N4 are also addressed and a detailed comparison to the hard-templating method is provided. Finally, future prospects for the development of mesoporous g-C3N4 materials are also assessed.



Key wordsGraphitic carbon nitride      Mesoporous material      Nanocasting method      Hard-templating method      Soft-templating method     
Received: 01 March 2016      Published: 05 May 2016
MSC2000:  O643  
Fund:  The project was supported by the National Natural Science Foundation of China(21203014);Postgraduate Innovation Project of Jiangsu Province, China(KYLX14_1097);Postgraduate Innovation Project of Jiangsu Province, China(KYLX15_1119);Project Funded by Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, China(ACGM2016-06-28)
Corresponding Authors: Jie XU     E-mail: shine6832@163.com
Cite this article:

Yue WANG,Quan JIANG,Jie-Kun SHANG,Jie XU,Yong-Xin LI. Advances in the Synthesis of Mesoporous Carbon Nitride Materials. Acta Physico-Chimica Sinca, 2016, 32(8): 1913-1928.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605052     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I8/1913

Fig 1 Five allotropes of C3N4
Fig 2 Synthetic pathways of mesoporous g-C3N4 through hard-templating methods
Fig 3 Synthetic mechanism of g-C3N4 from cyanamide via thermal condensation15, 33
Fig 4 TEM image of mpg-C3N4/1 sample (A) and XRD patterns of mpg-C3N4 materials synthesized upon adjusting the mass ratios of the templates to cyanamide (B)10 TEM: transmission electron microscopy, XRD: X-ray diffraction. The inset is the selected area electron diffraction (SAED) pattern.
Fig 5 SAXS pattern (a) and TEM images (b, c) of ompg-C3N4 material35 SAXS: small angle X-ray diffraction. The insets are all selected area electron diffraction patterns.
Precursor Price/RMBa LD50/(mg?kg-1)b m.p./℃ Solubility/(g?L-1)c
cyanamide 7100 125, orl-rat 42 775
dicyandiamide 415 10000, orl-mus 209 3
melamine 388 3248, orl-rat 345 0.3
urea 142 8471, orl-rat 133 1080
guanidinium chloride 380 475, orl-rat 183 2280
hexamethylenetetramine 528 9200, ivn-rat 263 895
Table 1 Prices, toxicity, melting points, and aqueous solubility of various reagents
Fig 6 N2 adsorption-desorption isotherms and their corresponding pore size distributions of mesoporous g-C3N4 prepared using dicyandiamide as a precursor, ethylenediamine as a solvent, and SBA-15 (A, C) and FDU-12 (B, D) as templates41
Fig 7 Synthetic mechanism of g-C3N4 from urea via thermal condensation44, 46
Fig 8 A possible mechanism of transformation from guanidinium chloride to g-C3N428
Precursor Mass yielda
cyanamide 40%-50%
dicyandiamide 40%-52%
melamine 40%-50%
urea 5%-10%
guanidinium chloride 20%-25%
Table 2 Mass yields of g-C3N4 materials synthesized using various precursors
Mesoporous CN Template Space group SBET/(m2?g-1) Pore size/nm Vp/(cm3?g-1) C/N molar ratio
MCN-153 SBA-15 p6mm 505-830 4.2-6.4 0.55-1.25 3.0-4.5a
MCN-254 SBA-16 Im3m 810 3.5 0.81 4.1a
MCN-355 IBN-4 p6m 645 3.8 0.67 2.3a
MCN-656 KIT-6 Ia3d 558-637 0.8-0.9 10.0-11.5 4.3-4.5a
CN-MCF57 MCF - 432 5.4 0.84 6.3b
CN-FDU1258 FDU-12 fcc 702 7.5 1.4 5.5b
Table 3 Textual parameters and C/N molar ratios of various mesoporous CN materials prepared using carbon tetrachloride and ethylenediamine as precursors, and different mesoporous silicas as hard templates
Fig 9 TEM images of FDU-12 (A, B) and its negative replica CN-FDU12 (C)58
Fig 10 Synthetic mechanism of CN starting from carbon tetrachloride and ethylenediamine53
Fig 11 g-C3N4 and CN materials constituted by tri-s-triazine (A) and pyridine-like heterocycles (B) units60
Fig 12 FT-IR spectra of C3N4-G and CN-MCF materials
Fig 13 Complete and partial pore filling of precursor during the hard-detemplating synthesis of mesoporous g-C3N467
Fig 14 Heating sequences from dicyandiamide to g-C3N474 A: a typical sequence, and the synthesized sample is bulk nonporous g-C3N4; B: a sequence for the synthesis of nanoporous g-C3N4 materials adopting P123 as soft template; C: a sequence for the synthesis of nanoporous g-C3N4 materials adopting Trixon X-100 as soft template; RT: room temperature
Fig 15 Low-(a) and high-magnification (b) TEM images and corresponding SAED image (inset) of mpg-C3N478
1 Schreiner P. R. Chem. Soc. Rev. 2003, 32, 289.
2 Su D. S. ; Zhang J. ; Frank B. ; Thomas A. ; Wang X. ; Paraknowitsch J. ; Schl?gl R. ChemSusChem 2010, 3, 169.
3 Lotsch B. V. ; Schnick W. Chem.-Eur. J. 2007, 13, 4956.
4 Zhang Y. ; Mori T. ; Ye J. Sci. Adv. Mater. 2012, 4, 282.
5 Thomas A. ; Fischer A. ; Goettmann F. ; Antonietti M. ; Müller J. O. ; Schl?gl R. ; Carlsson J. M. J. Mater. Chem. 2008, 18, 4893.
6 Liu A. ; Cohen M. Phys. Rev. B 1985, 41, 10727.
7 Teter D. M. ; Hemley R. J. Science 1996, 271, 53.
8 Kroke E. ; Schwarz M. Coord. Chem. Rev. 2004, 248, 493.
9 Zhang J. S. ; Wang B. ; Wang X. C. Acta Phys.-Chim. Sin. 2013, 29, 1865.
9 张金水; 王博; 王心晨. 物理化学学报, 2013, 29, 1865.
10 Goettmann F. ; Fischer A. ; Antonietti M. ; Thomas A. Angew. Chem. Int. Edit. 2006, 45, 4467.
11 Ansari M. B. ; Min B. H. ; Mo Y. H. ; Park S. E. Green Chem. 2011, 13, 1416.
12 Zhu J. ; Wei Y. ; Chen W. ; Zhao Z. ; Thomas A. Chem. Commun. 2010, 46, 6965.
13 Xu J. ; Long K. Z. ; Wang Y. ; Xue B. ; Li Y. X. Appl. Catal. A 2015, 496, 1.
14 Gong Y. ; Li M. ; Li H. ; Wang Y. Green Chem. 2015, 17, 715.
15 Wang X. ; Maeda K. ; Thomas A. ; Takanabe K. Nat. Mater. 2009, 8, 76.
16 Su F. ; Mathew S. C. ; Lipner G. ; Fu X. ; Antonietti M. ; Blechert S. ; Wang X. J. Am. Chem. Soc. 2010, 132, 16299.
17 Cao S. ; Low J. ; Yu J. ; Jaroniec M. Adv. Mater. 2015, 27, 2150.
18 Cao S. ; Yu J. J. Phys. Chem. Lett. 2014, 5, 2101.
19 Bai X. ; Yan S. ; Wang J. ; Wang L. ; Jiang W. ; Wu S. ; Sun C. ; Zhu Y. J. Mater. Chem. A 2014, 2, 17521.
20 Yin S. ; Han J. ; Zhou T. ; Xu R. Catal. Sci. Technol. 2015, 5, 5048.
21 Zheng Y. ; Liu J. ; Liang J. ; Jaroniec M. ; Qiao S. Z. Energy Environ. Sci. 2012, 5, 6717.
22 Kim M. ; Hwang S. ; Yu J. S. J. Mater. Chem. 2007, 17, 1656.
23 Park S. S. ; Chu S.W. ; Xue C. ; Zhao D. ; Ha C. S. J. Mater. Chem. 2011, 21, 108017.
24 Koh G. ; Zhang Y.W. ; Pan H. Int. J. Hydrog. Energy 2012, 37, 4170.
25 Wang Y. ; Wang X. ; Antonietti M. Angew. Chem. Int. Edit. 2012, 51, 68.
26 Chu Z. Y. ; Yuan B. ; Yan T. N. J. Inorg. Mater. 2014, 29, 785.
27 Li Q. ; Yang J. ; Feng D. ; Wu Z. ; Wu Q. ; Park S. S. ; Ha C. S. ; Zhao D. Nano Res. 2010, 3, 632.
28 Xu J. ; Wu H. T. ; Wang X. ; Xue B. ; Li Y. X. ; Cao Y. Phys. Chem. Chem. Phys. 2013, 15, 4510.
29 Lu A. H. ; Schüth F. Adv. Mater. 2006, 18, 1793.
30 Tiemann M. Chem. Mater. 2007, 20, 961.
31 Yang H. ; Zhao D. J. Mater. Chem. 2005, 15, 1217.
32 Schüth F. Angew. Chem. Int. Edit. 2003, 42, 3604.
33 Groenewolt M. ; Antonietti M. Adv. Mater. 2005, 17, 1789.
34 Fischer, A."Reactive Hard Templating": from Carbon Nitridesto Metal Nitrides. Ph. D. Dissertation, Max Planck Institute ofColloids and Interfaces: Potsdam, 2008.
35 Chen X. ; Jun Y. S. ; Takanabe K. ; Maeda K. ; Domen K. ; Fu X. ; Antonietti M. ; Wang X. Chem. Mater. 2009, 21, 4093.
36 Lee E. Z. ; Jun Y. S. ; Hong W. H. ; Thomas A. ; Jin M. M. Angew. Chem. Int. Edit. 2010, 49, 9706.
37 Wehrstedt K. D. ; Wildner W. ; Güthner T. ; Holzrichter K. ; Mertschenk B. ; Ulrich A. J. Hazard. Mater. 2009, 170, 829.
38 Jürgens B. ; Irran E. ; Senker J. ; Kroll P. ; Müller H. ; Schnick W. J. Am. Chem. Soc. 2003, 125, 10288.
39 Ansari M. B. ; Jin H. ; Parvin M. N. ; Park S. E. Catal. Today 2012, 185, 211.
40 Wang Y. ; Wang F. ; Zuo Y. ; Zhang X. ; Cui L. F. Mater. Lett. 2014, 136, 271.
41 Xu J. ; Chen T. ; Jiang Q. ; Li Y. X. Chem.-Asian J. 2014, 9, 3269.
42 Tian C. ; Lu C. ; Wang B. ; Xie X. ; Miao Y. ; Li X. RSC Adv. 2015, 5, 103829.
43 Schaber P. M. ; Colson J. ; Higgins S. ; Thielen D. ; Anspach B. ; Brauer J. Thermochim. Acta 2004, 424, 131.
44 Liu J. ; Zhang T. ; Wang Z. ; Dawson G. ; Chen W. J. Mater. Chem. 2011, 21, 14398.
45 Zhang G. ; Zhang J. ; Zhang M. ; Wang X. J. Mater. Chem. 2012, 22, 8083.
46 Su Q. ; Sun J. ; Wang J. ; Yang Z. ; Cheng W. ; Zhang S. Catal. Sci. Technol. 2014, 4, 1556.
47 Lee S. C. ; Lintang H. O. ; Yuliati L. Chem.-Asian J. 2012, 7, 2139.
48 Lotsch B. V. ; Schnick W. New J. Chem. 2004, 28, 1129.
49 Long B. ; Lin J. ; Wang X. J. Mater. Chem. A 2014, 2, 2942.
50 Zhu J. ; Xiao P. ; Li H. ; Carabineiro S. A. C. ACS Appl. Mater. Inter. 2014, 6, 16449.
51 Qiu Y. ; Gao L. Chem. Commun. 2003, 2378
52 Vinu A. ; Ariga K. ; Mori T. ; Nakanishi T. ; Hishita S. ; Golberg D. ; Bando Y. Adv. Mater. 2005, 17, 1648.
53 Vinu A. Adv. Funct. Mater. 2008, 18, 816.
54 Vinu A. ; Srinivasu P. ; Sawant D. P. ; Mori T. ; Ariga K. ; Chang J. S. ; Jhung S. H. ; Balasubramanian V. V. ; Hwang Y. K. Chem. Mater. 2007, 19, 4367.
55 Jin X. ; Balasubramanian V. V. ; Selvan S. T. ; Sawant D. P. ; Chari M. A. ; Lu G. Q. ; Vinu A. Angew. Chem. Int. Edit. 2009, 48, 7884.
56 Talapaneni S. N. ; Anandan S. ; Mane G. P. ; Anand C. ; Dhawale D. S. ; Varghese S. ; Mano A. ; Mori T. ; Vinu A. J. Mater. Chem. 2012, 22, 9831.
57 Xu J. ; Long K. Z. ; Chen T. ; Xue B. ; Li Y. X. ; Cao Y. Catal. Sci. Technol. 2013, 3, 3192.
58 Xu J. ; Wu F. ; Wu H. T. ; Xue B. ; Li Y. X. ; Cao Y. Microporous Mesoporous Mat. 2014, 198, 223.
59 Xu J. ; Shen K. ; Xue B. ; Li Y. X. ; Cao Y. Catal. Lett. 2013, 143, 600.
60 Xu J. ; Shen K. ; Xue B. ; Li Y. X. J. Mol. Catal. A 2013, 372, 105.
61 Thrower P. A. Carbon 2004, 42, 2367.
62 Xu J. ; Chen T. ; Wang X. ; Xue B. ; Li Y. X. Catal. Sci. Technol. 2014, 4, 2126.
63 Ryoo R. ; Joo S. H. ; Jun S. J. Phys. Chem. B 1999, 103, 7743.
64 Shen W. ; Dong X. ; Zhu Y. ; Chen H. ; Shi J. Microporous Mesoporous Mat. 2005, 85, 157.
65 Shi Y. ; Wan Y. ; Zhang R. ; Zhao D. Adv. Funct. Mater. 2008, 18, 2436.
66 Zhang J. ; Guo F. ; Wang X. Adv. Funct. Mater. 2013, 23, 3008.
67 Borchardt L. ; Kockrick E. ; Wollmann P. ; Kaskel S. ; Guron M. M. ; Sneddon L. G. ; Geiger D. Chem. Mater. 2010, 22, 4660.
68 Bojdys M. J. ; Müller J. O. ; Antonietti M. ; Thomas A. Chem.-Eur. J. 2008, 14, 8177.
69 Su F. ; Antonietti M. ; Wang X. Catal. Sci. Technol. 2012, 2, 1005.
70 Xu J. ; Wu F. ; Jiang Q. ; Li Y. X. Catal. Sci. Technol. 2015, 5, 447.
71 Zhang Y. ; Thomas A. ; Antonietti M. J. Am. Chem. Soc. 2008, 131, 50.
72 Xu J. ; Wang Y. ; Shang J. K. ; Jiang Q. ; Li Y. X. Catal. Sci. Technol. 2016, 6, 4192.
73 Yan H. Chem. Commun. 2012, 48, 3430.
74 Wang Y. ; Wang X. ; Antonietti M. ; Zhang Y. ChemSusChem 2010, 3, 435.
75 Zhao D. ; Feng J. ; Huo Q. ; Melosh N. ; Fredrickson G. H. ; Chmelka B. F. ; Stucky G. D. Science 1998, 279, 548.
76 Wei J. ; Zhou D. ; Sun Z. ; Deng Y. ; Xia Y. ; Zhao D. Adv. Funct. Mater. 2013, 23, 2322.
77 Li H. ; Wang L. ; Liu Y. ; Lei J. ; Zhang J. Res. Chem. Intermed. 2016, 42, 3979.
78 Min S. ; Lu G. J. Phys. Chem. C 2012, 116, 19644.
79 Han K. K. ; Wang C. C. ; Li Y. Y. ; Wan M. M. ; Wang Y. ; Zhu J. H. RSC Adv. 2013, 3, 9465.
80 Ding J. ; Liu Q. ; Zhang Z. ; Liu X. ; Zhao J. ; Cheng S. ; Zong B. ; Dai W. L. Appl. Catal. B 2015, 165, 511.
81 Zhang X. ; Xie X. ; Wang H. ; Zhang J. ; Pan B. ; Xie Y. J. Am. Chem. Soc. 2012, 135, 18.
82 Xu J. ; Zhang L. ; Shi R. ; Zhu Y. J. Mater. Chem. A 2013, 1, 14766.
83 Lu X. ; Xu K. ; Chen P. ; Jia K. ; Liu S. ; Wu C. J. Mater. Chem. A 2014, 2, 18924.
84 Dong F. ; Li Y. ; Wang Z. ; Ho W. K. Appl. Sur. Sci. 2015, 358, 393.
85 Niu P. ; Zhang L. ; Liu G. ; Cheng H. M. Adv. Funct. Mater. 2012, 22, 4763.
86 Dong X. ; Cheng F. J. Mater. Chem. A 2015, 3, 23642.
87 Kumar S. ; Surendar T. ; Kumar B. ; Baruah A. ; Shanker V. RSC Adv. 2014, 4, 8132.
[1] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[2] Jin BAI,Xin CHEN,Zhao-Yi XI,Xiang WANG,Qiang LI,Shao-Zheng HU. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 611-619.
[3] Dong-Mei LIANG,Xia LENG,Yu-Chen MA. Quasiparticle Band Structures and Optical Properties of Graphitic Carbon Nitrides[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1967-1976.
[4] ZUO Hui-Wen, LU Chun-Hai, REN Yu-Rong, LI Yi, ZHANG Yong-Fan, CHEN Wen-Kai. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1183-1190.
[5] Dan LIU,Yan-Yan HU,Chao ZENG,De-Yu QU. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization[J]. Acta Physico-Chimica Sinca, 2016, 32(12): 2826-2840.
[6] ZHANG Jian, WANG Yan-Juan, HU Shao-Zheng. Effect of K+ Doping on the Band Structure and Photocatalytic Performance of Graphitic Carbon Nitride Photocatalysts[J]. Acta Physico-Chimica Sinca, 2015, 31(1): 159-165.
[7] LI Jian-Mei, LIU Jian, REN Li-Wei, LIU Qing-Long, ZHAO Zhen, WEI Yue-Chang, DUAN Ai-Jun, JIANG Gui-Yuan. Selective Oxidation of Ethane to Aldehydes over Potassium-Promoted SBA-15-Supported Molybdenum Oxide Catalysts[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1736-1744.
[8] JIN Rui-Rui, YOU Ji-Guang, ZHANG Qian, LIU Dan, HU Shao-Zheng, GUI Jian-Zhou. Preparation of Fe-Doped Graphitic Carbon Nitride with Enhanced Visible-Light Photocatalytic Activity[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1706-1712.
[9] ZHOU Yang, HU Xian-Chao, LI Li-Qing, CHEN Xi-Rong. Palladium Nanoparticles Supported on Hollow Mesoporous Tungsten Trioxide Microsphere as Electrocatalyst for Formic Acid Oxidation[J]. Acta Physico-Chimica Sinca, 2014, 30(1): 83-87.
[10] ZHANG Jin-Shui, WANG Bo, WANG Xin-Chen. Chemical Synthesis and Applications of Graphitic Carbon Nitride[J]. Acta Physico-Chimica Sinca, 2013, 29(09): 1865-1876.
[11] SHAO Xin-Chao, DUAN Lin-Hai, WU Yu-Ye, QIN Yu-Cai, YU Wen-Guang, WANG Yuan, LI Huai-Lei, SUN Zhao-Lin, SONG Li-Juan. Effect of Surface Acidity of CuO-SBA-15 on Adsorptive Desulfurization of Fuel Oils[J]. Acta Physico-Chimica Sinca, 2012, 28(06): 1467-1473.
[12] ZHAO Hui-Min, LIN Dan, YANG Gang, CHUN Yuan, XU Qin-Hua. Adsorption Capacity of Carbon Dioxide on Amine Modified Mesoporous Materials with Larger Pore Sizes[J]. Acta Physico-Chimica Sinca, 2012, 28(04): 985-992.
[13] CHE Hong-Wei, HAN Shu-Hua, HOU Wan-Guo, LIU Ai-Feng. Novel Synthesis of Mesoporous Nanocrystalline Zirconia[J]. Acta Physico-Chimica Sinca, 2010, 26(08): 2177-2181.
[14] LIU Si-Yu, MENG Xiang-Ju, XIAO Feng-Shou. Hydrothermal Synthesis of Ordered Mesoporous Materials with High Stability at High Temperatures[J]. Acta Physico-Chimica Sinca, 2010, 26(07): 1852-1859.
[15] YUAN Jin-Fang, LI Jian-Sheng, GU Juan, WANG Fang, SUN Xiu-Yun, HAN Wei-Qing, WANG Lian-Jun. Synthesis and Adsorption Properties of Amino-Functionalized H2N-Zr-Ce-SBA-15 Mesoporous Materials with Short Mesochannels[J]. Acta Physico-Chimica Sinca, 2010, 26(06): 1711-1716.