Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (8): 2077-2083    DOI: 10.3866/PKU.WHXB201605081
ARTICLE     
Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst
Ying-Shuang MENG1,Yi AN2,Qian GUO1,Ming GE1,3,*()
1 College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei Province, P. R. China
2 Yisheng Innovation Education Base, North China University of Science and Technology, Tangshan 063009, Hebei Province, P. R.China
3 Hebei Key Laboratory of Photocatalytic and Electrocatalytic Materials for Environment, Tangshan 063009, Hebei Province, P. R. China
Download: HTML     PDF(4499KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Hydrothermal processing in conjunction with in situ precipitation were successfully applied to synthesize the magnetic composite catalyst silver bromide/silver phosphate/zinc ferrite (AgBr/Ag3PO4/ZnFe2O4). The phase structure, composition, morphology, and optical property of this material were subsequently assessed by X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and UV-Vis diffuse reflectance spectroscopy. Under visible light illumination, the as-prepared AgBr/Ag3PO4/ZnFe2O4 photocatalyst exhibited superior photocatalytic performance during rhodamine B (RhB) degradation compared with Ag3PO4/ZnFe2O4, AgBr/ZnFe2O4, and P25 TiO2. This new catalyst also showed excellent photocatalytic activity in both acidic and basic solutions. The RhB photodegradation rate was slightly increased at higher temperatures, and the activation energy for this reaction was determined to be 31.9 kJ·mol-1 according to the Arrhenius equation. The high performance of the AgBr/Ag3PO4/ZnFe2O4 catalyst can be attributed to efficient photo-induced charge separation, and the generation of superoxide radicals and holes that are responsible for RhB degradation.



Key wordsAgBr/Ag3PO4/ZnFe2O4      Magnetism      Photocatalysis      Visible light      Mechanism     
Received: 23 February 2016      Published: 08 May 2016
MSC2000:  O644  
  O649  
Fund:  the Natural Science Foundation of Hebei Province, China(B2014209182);Youth Foundation of Hebei Education Department, China(QN2014045);College Students′Innovative Entrepreneurial Training Plan Program of North China University of Science and Technology, China(X2015117)
Corresponding Authors: Ming GE     E-mail: geminggena@163.com
Cite this article:

Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst. Acta Physico-Chimica Sinca, 2016, 32(8): 2077-2083.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605081     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I8/2077

 
 
 
 
 
 
 
 
 
 
 
 
1 Kubacka A. ; Fernández-García M. ; Colón G. Chem. Rev. 2012, 112, 1555.
2 Alfano O. M. ; Bahnemann D. ; Cassano A. E. ; Dillert R. ; Goslich R. Catal. Today 2000, 58, 199.
3 Chong M. N. ; Jin B. ; Chow C.W. K. ; Saint C. Wat. Res 2010, 44, 2997.
4 Li G. P. ; Wang Y. X. ; Mao L. Q. RSC Adv. 2014, 4, 53649.
5 Yi Z. G. ; Ye J. H. ; Kikugawa N. ; Kako T. ; Ouyang S. X. ; Stuart-Williams H. ; Yang H. ; Cao J. Y. ; Luo W. J. ; Li Z. S. ; Liu Y. ; Withers R. L. Nat. Mater. 2010, 9, 559.
6 Martin D. J. ; Liu G. G. ; Moniz S. J. A. ; Bi Y. P. ; Beale A. M. ; Ye J. H. ; Tang J. W. Chem. Soc. Rev. 2015, 44, 7808.
7 Ge M. ; Zhu N. ; Zhao Y. P. ; Li J. ; Liu L. Ind. Eng. Chem. Res. 2012, 51, 5167.
8 Ge M. Chin. J. Catal. 2014, 35, 1410.
8 葛 明 催化学报 2014, 35, 1410.
9 Ge M. ; Tan M. M. ; Cui G. H. Acta Phys.-Chim. Sin. 2014, 30, 2107.
9 葛 明 ; 谭 勉勉 ; 崔 广华 物理化学学报 2014, 30, 2107.
10 Dong C. ; Wu K. L. ; Li M. R. ; Liu L. ; Wei X. W. Catal. Commun. 2014, 46, 32.
11 Hong X. T. ; Wu X. H. ; Zhang Q. Y. ; Xiao M. F. ; Yang G. L. ; Qiu M. R. ; Han G. C. Appl. Surf. Sci. 2012, 258, 4801.
12 Fu Y. S. ; Wang X. Ind. Eng. Chem. Res. 2011, 50, 7210.
13 Hochepied J. F. ; Bonvilie P. ; Pileni M. P. J. Phys. Chem. B 2000, 104, 905.
14 Chen X. J. ; Dai Y. Z. ; Huang W. K. Mater. Lett. 2015, 145, 125.
15 Ge M. ; Chen Y. Y. ; Liu M. L. ; Li M. J. Envi. Chem. Eng. 2015, 3, 2809.
16 Li J. Q. ; Liu Z. X. ; Zhu Z. F. J. Alloy. Compd. 2015, 636, 229.
17 Cao J. ; Luo B. D. ; Lin H. L. ; Xu B. Y. ; Chen S. F. J. Hazard. Mater. 2012, 217-218, 107.
18 Wang B. ; Gu X. Q. ; Zhao Y. L. ; Qiang Y. H. Appl. Surf. Sci. 2013, 283, 396.
19 Su M. H. ; He C. ; Sharma V. K. ; Asi M. A. ; Xia D. H. ; Li X.Z. ; Deng H. Q. ; Xiong Y. J. Hazard. Mater. 2012, 211-212, 95.
20 Wu Y. ; Song L. M. ; Zhang S. J. ; Wu X. Q. ; Zhang S. N. ; Tian H. F. ; Ye J. Y. Catal. Commun. 2013, 37, 14.
21 Jiang J. ; Li H. ; Zhang L. Z. Chem.-A Eur. J. 2012, 18, 6360.
22 Butler M. A. J. Appl. Phys. 1977, 48, 1914.
23 Chen X. J. ; Dai Y. Z. ; Liu T. H. ; Guo J. ; Wang X. Y. ; Li F. F. J. Mol. Catal. A: Chem. 2015, 409, 198.
24 Zhang X. ; Zhang L. Z. ; Xie T. F. ; Wang D. J. J. Phys. Chem. C 2009, 113, 7371.
25 Jia C. ; Xie X.W. ; Ge M. ; Zhao Y. Q. ; Li Z. L. ; Zhang H. ; Cui G. H. Mat. Sci. Semicon. Proc. 2015, 36, 71.
26 Sakkas V. A. ; Arabatzis I. M. ; Konstantinou I. K. ; Dimou A.D. ; Albanis T. A. ; Falaras P. Appl. Catal. B: Environ. 2004, 49, 195.
27 Liu Y. P. ; Fang L. ; Lu H. D. ; Li Y.W. ; Hu C. Z. ; Yu H. G. Appl. Catal. B: Environ. 2012, 115-116, 245.
28 Katsumata H. ; Taniguchi M. ; Kaneco S. ; Suzuki T. Catal. Commun. 2013, 34, 30.
29 Yang X. F. ; Cui H. Y. ; Li Y. ; Qin J. L. ; Zhang R. X. ; Tang H. ACS Catal. 2013, 3, 363.
[1] Mengxiong CAO,Xingyu WANG,Yaru MA,Chunlin MA,Weiping ZHOU,Xiaoxiong WANG,Haiou WANG,Weishi TAN. Point Defects Induced Ferromagnetism in Neutron Irradiated MgO(110) Single Crystals[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 437-444.
[2] Linji GONG,Jiani XIE,Shuang ZHU,Zhanjun GU,Yuliang ZHAO. Application of Multifunctional Nanomaterials in Tumor Radiosensitization[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 140-167.
[3] Jie XIAO,Bo ZHANG,Zhao-Lei ZHENG. Development and Validation of a Reduced Chemical Kinetic Mechanism for HCCI Engine of Biodiesel Surrogate[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1752-1764.
[4] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1905-1914.
[5] Ling-Xuan WANG,Hua-Tong ZHU,Li-Li ZU. Studying ionization and decomposition mechanism of alkyl dinitrites by mass spectrometry[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1709-1714.
[6] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[7] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[8] Zi-Min WANG,Mo ZHENG,Yong-Bing XIE,Xiao-Xia LI,Ming ZENG,Hong-Bin CAO,Li GUO. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1399-1410.
[9] Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1085-1107.
[10] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 590-601.
[11] Yuan-Fei WU,Ming-Xue LI,Jian-Zhang ZHOU,De-Yin WU,Zhong-Qun TIAN. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 530-538.
[12] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 399-406.
[13] . Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 270-282.
[14] Hai-Yang YU,Fang WANG,Qi-Chun LIU,Qing-Yu MA,Zheng-Gui GU. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 344-355.
[15] Dong ZHENG,Bei-Jing ZHONG,Tong YAO. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2438-2445.