Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (7): 1634-1638    DOI: 10.3866/PKU.WHXB201605111
ARTICLE     
A Study of Graphene Oxidation Using Thermal Analysis-Mass Spectrometry Combined with Pulse Thermal Analysis
Heng ZHANG1,2,Hui-Mei YU1,*(),Chao-He XU1,Ming-Hui ZHANG1,Xiu-Hong PAN1,Yan-Feng GAO1,2,*()
1 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
2 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
Download: HTML     PDF(2056KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In the present work, graphene samples were obtained from graphene oxide (GO) by a direct hydrothermal method, using thermogravimetry-differential thermal analysis to ascertain changes in mass as well as the oxidization temperature. Thermal analysis-mass spectrometry was also used to assess the generation of H2O+ (m/z = 18) and CO2+ (m/z = 44) ions over the temperature range of 400-650 ℃. On the basis of the resulting data, the mass loss of the GO during the oxidation process is attributed to the loss of H2O and CO2. The thermal kinetics of graphene under ambient air were also studied at heating rates of 5, 10, and 15 ℃·min-1. The activation energy (Ea) and logarithm of pre-exponential factor (lg(A/s-1)) values calculated by the Kissinger method were 155.11 kJ·mol-1 and 6.90. The dependence of Ea and lgA on the extent of conversion,α, were also calculated, using the Ozawa-Flynn-Wall (FWO) method. The results of this work provide a frame of reference for the use of graphene in thermal applications, such as in thermal interface and thermal conductive materials, advanced composites and materials synthesis.



Key wordsKinetic analysis      Graphene      TG-DTA-MS      Pulse thermal analysis      Evolved gas     
Received: 01 April 2016      Published: 11 May 2016
MSC2000:  O642.3  
Fund:  the National Natural Science Foundation of China(51325203);the National Natural Science Foundation of China(51472263);Shanghai Materials Genome Project, China(14DZ2261200);Shanghai Technical Platform for Testing and Characterization on Inorganic Materials, China(14DZ2292900);Shanghai Sailing Program, China(16YF1413100);Program of the Innovative Fund of Shanghai Institute of Ceramics, Chinese Academy of Science(Y37ZC4143G)
Corresponding Authors: Hui-Mei YU,Yan-Feng GAO     E-mail: huimeiyu@mail.sic.ac.cn;yfgao@shu.edu.cn
Cite this article:

Heng ZHANG,Hui-Mei YU,Chao-He XU,Ming-Hui ZHANG,Xiu-Hong PAN,Yan-Feng GAO. A Study of Graphene Oxidation Using Thermal Analysis-Mass Spectrometry Combined with Pulse Thermal Analysis. Acta Physico-Chimica Sinca, 2016, 32(7): 1634-1638.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605111     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I7/1634

 
 
 
 
 
 
α FWO method
Ea/(kJ?mol-1) lg(A/s-1)
0.1 239 ± 200 17.32
0.2 150 ± 16 8.03
0.3 141 ± 8 6.93
0.4 138 ± 5 6.5
0.5 136 ± 3 6.32
0.6 137 ± 3 6.35
0.7 133 ± 1 6.06
0.8 120 ± 3 5.29
0.9 107 ± 2 4.5
0.95 101 ± 1 4.19
0.98 100 ± 2 4.17
 
1 Lee W. H. ; Park J. ; Sim S. H. ; Jo S. B. ; Kim K. S. ; Hong B. H. ; Cho K. Adv. Mater. 2011, 23, 1752.
2 Wu Y. Q. ; Lin Y. M. ; Bol A. A. ; Jenkins K. A. ; Xia F. N. ; Farmer D. B. ; Zhu Y. ; Avouris P. Nature 2011, 472, 74.
3 Liu W. ; Jackson B. L. ; Zhu J. ; Miao C. Q. ; Chung C. H. ; Park Y. J. ; Sun K. ; Woo J. ; Xie Y. H. ACS Nano 2010, 4, 3927.
4 Eda G. ; Fanchini G. ; Chhowalla M. Nat. Nanotech. 2008, 3, 270.
5 Yin S. Y. ; Zhang Y. Y. ; Kong J. H. ; Zou C. J. ; Li C. M. ; Lu X. H. ; Ma J. ; Boey F. Y. C. ; Chen X. D. ACS Nano 2011, 5, 3831.
6 Wang D. R. ; Wang X. G. Langmuir 2011, 27, 2007.
7 Rao S. S. ; Stesmans A. ; Keunen K. ; Kosynkin D. V. ; Higginbotham A. ; Tour J. M. Appl. Phys. Lett. 2011, 98, 083116.
8 Wang Y. ; Yang R. ; Shi Z.W. ; Zhang L. C. ; Shi D. X. ; Wang E. ; Zhang G. Y. ACS Nano 2011, 5, 3645.
9 Li D. ; Muller M. B. ; Gilje S. ; Kaner R. B. ; Wallace G. G. Nat. Nanotech. 2008, 3, 101.
10 Villar-Rodil S. ; Paredes J. I. ; Martinez-Alonso A. ; Tascon J. M. D. J. Mater. Chem. 2009, 19, 3591.
11 Si Y. ; Samulski E. T. Nano Letters 2008, 8, 1679.
12 Pei S. F. ; Zhao J. P. ; Du J. H. ; Ren W. C. ; Cheng H. M. Carbon 2010, 48, 4466.
13 Zhou X. J. ; Zhang J. L. ; Wu H. X. ; Yang H. J. ; Zhang J. Y. ; Guo S. W. J. Phys. Chem. C 2011, 115, 11957.
14 Mao S. ; Yu K. H. ; Cui S. M. ; Bo Z. ; Lu G. H. ; Chen J. H. Nanoscale 2011, 3, 2849.
15 Fernandez-Merino M. J. ; Guardia L. ; Paredes J. I. ; Villar-Rodil S. ; Solis-Fernandez P. ; Martinez-Alonso A. ; Tascon J. M. D. J. Phys. Chem. C 2010, 114, 6426.
16 Fan Z. J. ; Wang K. ; Wei T. ; Yan J. ; Song L. P. ; Shao B. Carbon 2010, 48, 1686.
17 Fan Z. J. ; Kai W. ; Yan J. ; Wei T. ; Zhi L. J. ; Feng J. ; Ren Y. M. ; Song L. P. ; Wei F. ACS Nano 2011, 5, 191.
18 Zhou Y. ; Bao Q. L. ; Tang L. A. L. ; Zhong Y. L. ; Loh K. P. Chem. Mater. 2009, 21, 2950.
19 Cao J. Y. ; Wang Y. M. ; Xiao P. ; Chen Y. C. ; Zhou Y. ; Ouyang J. H. ; Jia D. C. Carbon 2013, 56, 389.
20 Yu H. M. ; Zhang Q. H. ; Qi L. J. ; Lu C.W. ; Xi T. G. ; Luo L. Thermochim. Acta 2006, 451, 10.
21 Yu H. M. ; Lu C.W. ; Qi L. J. ; Xie H. Q. ; Xi T. G. ; Luo L. J. Therm. Anal. Calorim. 2006, 85, 657.
22 Hummers W. S. ; Offeman R. E. J. Am. Chem. Soc. 1958, 80, 1339.
23 Maciejewski M. ; Muller C. A. ; Tschan R. ; Emmerich W. D. ; Baiker A. Thermochim. Acta 1997, 295, 167.
24 Maciejewski M. ; Baiker A. Thermochim. Acta 1997, 295, 95.
25 Yu H. M. ; Zhang Q. H. ; Qi L. J. ; Lu C.W. ; Xi T. G. ; Luo L. Thermochim. Acta 2006, 440, 195.
26 Opfermann J. J. Thermal Anal. 2000, 60, 641.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[3] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[4] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[5] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[6] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[7] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[8] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[9] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.
[10] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.
[11] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[12] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.
[13] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2404-2423.
[14] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2284-2292.
[15] Xu-Chun WANG,Jin-Ze LI,Guang-Yong LI,Jin WANG,Xue-Tong ZHANG,Qiang GUO. Fabrication and Performance of Various Aerogel Microspheres[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2141-2152.