Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (9): 2280-2286    DOI: 10.3866/PKU.WHXB201605124
ARTICLE     
Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries
Yan-Ping TANG1,Sha YUAN1,Yu-Zhong GUO1,*(),Rui-An HUANG2,*(),Jian-Hua WANG1,Bin YANG2,Yong-Nian DAI2
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
2 National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, P. R. China
Download: HTML     PDF(5742KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A highly ordered mesoporous Si/C composite was prepared by magnesiothermic reduction method, using SBA-15 as the precursor at 660 ℃ with subsequent carbon coating. This Si/C composite preserved the ordered honeycomb pore channels of SBA-15 and exhibited a lotus root-like structure with high packing density. A liquid ambient reaction model is proposed to explain the reaction between SBA-15 and magnesium powder at 660 ℃ as well as the mechanism by which the highly ordered mesoporous structure is generated. The phase composition and morphology of this material were analyzed by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption and Raman spectroscopy. The excellent electrochemical performance of the as-prepared material suggests potential applications as an anode material in second-generation Li-ion batteries.



Key wordsLi-ion battery      Mesoporous silicon      Anode material      Nanocomposite      Magnesiothermic reduction method     
Received: 14 March 2016      Published: 12 May 2016
MSC2000:  O646  
Fund:  National Natural Science Foundation of China(51464025)
Corresponding Authors: Yu-Zhong GUO,Rui-An HUANG     E-mail: ynguocn62@sina.com;rahuang2002@163.com
Cite this article:

Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries. Acta Physico-Chimica Sinca, 2016, 32(9): 2280-2286.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605124     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I9/2280

Fig 1 XRD patterns of the OMP-Si and OMP-Si/C samples
Fig 2 Raman spectra of the synthesized samples
Fig 3 Field emission scanning electron microscopy (FE-SEM) images of (a, b) OMP-Si and (c, d) OMP-Si/C samples
Fig 4 TEM images of (a) SBA-15, (b) OMP-Si, and (c, d) OMP-Si/C samples
Fig 5 Schematic illustration of the mechanism of SBA-15 magnesiothermic reduction
Fig 6 (a) Nitrogen adsorption-desorption isotherms and (b) the corresponding pore size distribution curves for synthesized samples
Fig 7 (a) Charge/discharge curves of OMP-Si/C sample; (b) the specific capacity and columbic efficiency versus cycle number for as-prepared samples; rate performances of (c) OMP-Si and (d) OMP-Si/C
1 Ding P. ; Xu Y. L. ; Sun X. F. Acta Phys.-Chim. Sin 2013, 29, 293.
1 丁朋; 徐友龙; 孙孝飞. 物理化学学报, 2013, 29, 293d.
2 Choi N. S. ; Chen Z. ; Freunberger S. A. ; Ji X. ; Sun Y. K. ; Amine K. ; Yushin G. ; Linda F. N. ; Cho J. ; Peter G. B. Angew. Chem. Int. Ed 2012, 51, 9994.
3 Xu J. ; Wang X. F. ; Wang X.W. ; Chen D. ; Chen X. Y. ; Li D.D. ; Shen G. Z. ChemElectroChem 2014, 1, 975.
4 Munao D. ; Valvo M. ; Van Erven J. ; Kelder E. M. ; Hassoun J. ; Panero S. J. Mater. Chem 2012, 22, 1556.
5 Peng K. Q. ; Jie J. S. ; Zhang W. J. ; Lee S. T. Appl. Phys. Lett 2008, 93, 033105.
6 Kim G. ; Jeong S. ; Shin J. ; Cho J. ; Lee H. ACS Nano 2014, 8, 1907.
7 Wu H. ; Cui Y. Nano Today 2012, 7, 414.
8 Cui L. F. ; Ruffo R. ; Chan C. K. ; Peng H. L. ; Cui Y. Nano Lett 2009, 9, 491.
9 Zhou Y. L. ; Jiang X. L. ; Chen L. ; Yue J. ; Xu H. Y. ; Yang J. ; Qian Y. T. Electrochim. Acta 2014, 127, 252.
10 Yao Y. ; McDowell M. T. ; Ryu I. ; Wu H. ; Liu N. ; Hu L. ; Nix W. D. ; Cui Y. Nano Lett 2011, 11, 2949.
11 Datta M. K. ; Maranchi J. ; Chung S. J. ; Epur R. ; Kadakia K. ; Jampani P. ; Kumta P. N. Electrochim. Acta 2011, 56, 4717.
12 Tang Y. Y. ; Xia X. H. ; Yu Y. X. ; Shi S. J. ; Chen J. ; Zhang Y.Q. ; Tu J. P. Electrochim. Acta 2013, 88, 664.
13 Wang J. T. ; Wang Y. ; Huang B. ; Yang J. Y. ; Tan A. ; Lu S. G. Acta Phys.-Chim. Sin 2014, 30, 305.
13 王建涛; 王耀; 黄斌; 杨娟玉; 谭翱; 卢世刚. 物理化学学报, 2014, 30, 305d.
14 Yue L. ; Zhang W. H. ; Yang J. F. ; Zhang L. Z. Electrochim. Acta 2014, 125, 206.
15 Jia H. P. ; Gao P. F. ; Yang J. ; Wang J. L. ; Nuli Y.N. ; Yang Z. Adv. Energy Mater 2011, 1, 1036.
16 Park J. B. ; Lee K. H. ; Jeon Y. J. ; Lim S. H. ; Lee S. M. Electrochim. Acta 2014, 133, 73.
17 Zhang R. Y. ; Du Y. J. ; Li D. ; Shen D. K. ; Yang J. P. ; Guo Z.P. ; Liu H. K. ; Elzatahry A. A. ; Zhao D. Y. Adv. Mater 2014, 26, 6749.
18 Park J. ; Kim G. P. ; Nam I. ; Park S. ; Yi J. H. Nanotechnology 2013, 24, 025602.
19 Zhou Y. L. ; Jiang X. L. ; Chen L. ; Yu J. ; Xu H. Y. ; Yang J. ; Qian Y. T. Electrochim. Acta 2014, 127, 252.
20 Hong I. ; Scrosati B. ; Croce F. Solid State Ionics 2013, 232, 24.
21 Tao H. C. ; Fan L. Z. ; Qu X. H. Electrochim. Acta 2012, 71, 194.
22 Tao H. C. ; Huang M. ; Fan L. Z. ; Qu X.H. Solid State Ionics 2012, 220, 1.
23 Wang B. ; Li X. L. ; Qiu T. F. ; Luo B. ; Ning J. ; Li J. ; Zhang X. F. ; Liang M. H. ; Zhi L. J. Nano Lett 2013, 13, 5578d.
24 Lu Z. D. ; Liu N. ; Lee H.W. ; Zhao J. ; Li W. Y. ; Li Y. Z. ; Cui Y. ACS Nano 2015, 9, 2540.
25 Du Y. J. ; Zhu G. N. ; Wang K. ; Wang Y. G. ; Wang C. X. ; Xia Y. Y. Electrochem. Commun 2013, 36, 107.
26 Wang L. L. ; Munir Z. A. ; Maximov Y. M. J. Mater. Sci 1993, 28, 3693.
27 Jun S. ; Joo S. H. ; Ryoo R. ; Kruk M. ; Jaroniec M. ; Liu Z. ; Ohsuna T. ; Terasaki O. J. Am. Chem. Soc 2000, 122, 10712d.
28 Liu X. R. ; Yan H. J. ; Wang D. ; Wan L. J. Acta Phys.-Chim. Sin 2016, 32, 283.
28 刘兴蕊; 严会娟; 王栋; 万立骏. 物理化学学报, 2016, 32, 283.
[1] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[2] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[3] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 845-852.
[4] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.
[5] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2127-2132.
[6] Jia-Jun HUANG,Zhi-Jun DONG,Xu ZHANG,Guan-Ming YUAN,Ye CONG,Zheng-Wei CUI,Xuan-Ke LI. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1699-1707.
[7] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 975-982.
[8] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 573-580.
[9] Shou-Pu ZHU,Tian WU,Hai-Ming SU,Shan-Shan QU,Yong-Juan XIE,Ming CHEN,Guo-Wang DIAO. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2737-2744.
[10] CHEN Cheng-Cheng, ZHANG Ning, LIU Yong-Chang, WANG Yi-Jing, CHEN Jun. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 349-355.
[11] LI Wan-Li, LIU Xiao-Yun, MIAO Yan-Qin, YANG Jun-Li, WU Cong-Ling, LI Yuan-Hao, GUO Kun-Peng, WANG Hua, XU Bing-She. MgF2 Modified Alq3 Nanocomposite: Synthesis and Improvement of Anti-Aging Performance of OLED[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1780-1786.
[12] SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1521-1526.
[13] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1527-1534.
[14] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1437-1451.
[15] XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(5): 913-919.