Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (9): 2287-2292    DOI: 10.3866/PKU.WHXB201605164
ARTICLE     
Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy
Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN*(),Ze ZHANG
Download: HTML     PDF(6401KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this work, Li1.2Mn0.54Co0.13Ni0.13NaxO2 was prepared via an ion-exchange process combined with a solid-state reaction. Aberration-corrected scanning transmission electron microscopy (STEM), energydispersive X-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) were all used to study the surface structure and chemical distribution of the resulting material. Nickel (Ni) was found to be enriched at the surface in regions perpendicular to the lithium diffusion channels (that is, the (200) surfaces) and also exhibited a tendency to diffuse into the lithium (Li) layers, generating a Fm3m rocksalt phase. In contrast, cobalt (Co) segregated along the transition metal (TM) layers of the (001) and (200) surfaces. The results of aging trials demonstrated that Co-enriched layers lead to surface structure instability, as evidenced by the formation of a large number of antisite defects (Li-TM) and rocksalt phase structures at the (001) surface during aging.



Key wordsLithium ion battery      Cathode material      Lithium rich cathode material      Surface segregation      Scanning transmission electron microscopy     
Received: 05 April 2016      Published: 16 May 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51222202)
Corresponding Authors: Chuan-Hong JIN     E-mail: chhjin@zju.edu.cn
Cite this article:

Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy. Acta Physico-Chimica Sinca, 2016, 32(9): 2287-2292.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605164     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I9/2287

Fig 1 XRD pattern of Li1.2Mn0.54Co0.13Ni0.13NaxO2 and corresponding SEM image
Fig 2 High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images of the bulk structure for the pristine materials and corresponding atomic models
Fig 3 Surface segregation of transition metals (a-d) EDS maps of the pristine material; (e, f) HAADF-STEM images of the surface structures; (g) corresponding EDS quantification results of the areas labeled by the rectangular frames in Fig. 3(a).
Fig 4 Surface reconstruction of the sample after aging process (a) HAADF-STEM image of the particle at low magnification, (001) surface shows an enhanced contrast due to the formation of surface reconstructed layer (SRL); (b) mixed EDS map of Co and Ni; (c, d) HAADF-HRSTEM image of the (001) surface; (e) HAADF-HRSTEM image of the surface which is perpendicular to the lithium diffusion channel; (f, g) ADF-STEM image and corresponding EELS line scan spectra with plural scatterings and backgrounds removed
1 Sun Y. K. ; Myung S. T. ; Park B. C. ; Prakash J. ; Belharouak I. ; Amine K. Nat. Mater 2009, 8, 320.
2 Armstrong A. R. ; Bruce P. G. Nature 1996, 381, 499.
3 Ohzuku T. ; Makimura Y. Chem. Lett 2001, (No. 7), 642.
4 Kim J. S. ; Johnson C. S. ; Vaughey J. T. ; Thackeray M. M. ; Hackney S. A. Chem. Mater 2004, 16, 1996.
5 Thackeray M. M. ; Kang S. H. ; Johnson C. S. ; Vaughey J. T. ; Benedek R. ; Hackney S. A. J. Mater. Chem 2007, 17, 3112.
6 Shi S. J. ; Tu J. P. ; Tang Y. Y. ; Yu Y. X. ; Zhang Y. Q. ; Wang X. L. ; Gu C. D. J. Power Sources 2013, 228, 14.
7 Li Q. ; Li G. S. ; Fu C. C. ; Luo D. ; Fan J. M. ; Li L. P. ACS Appl. Mater. Inter 2014, 6, 10330.
8 Chen L. ; Chen S. ; Hu D. Z. ; Su Y. F. ; Li W. K. ; Wang Z. ; Bao L. Y. ; Wu F. Acta Phys. -Chim. Sin 2014, 30, 467.
8 陈来; 陈实; 胡道中; 苏岳锋; 李维康; 王昭; 包丽颖; 吴锋. 物理化学学报, 2014, 30, 467.
9 Ren X. Z. ; Liu T. ; Sun L. N. ; Zhang P. X. Acta Phys. -Chim. Sin 2014, 30, 1641.
9 任祥忠; 刘涛; 孙灵娜; 张培新. 物理化学学报, 2014, 30, 1641.
10 Croy J. R. ; Kim D. ; Balasubramanian M. ; Gallagher K. ; Kang S. H. ; Thackeray M. M. J. Electrochem. Soc 2012, 159, A781.
11 Gu M. ; Belharouak I. ; Zheng J. M. ; Wu H. M. ; Xiao J. ; Genc A. ; Amine K. ; Thevuthasan S. ; Baer D. R. ; Zhang J. G. ; Browning N. D. ; Liu J. ; Wang C. M. ACS Nano 2013, 7, 760.
12 Boulineau A. ; Simonin L. ; Colin J. F. ; Bourbon C. ; Patoux S. Nano Lett 2013, 13, 3857.
13 Boulineau A. ; Simonin L. ; Colin J. F. ; Canevet E. ; Daniel L. ; Patoux S. Chem. Mater 2012, 24, 3558.
14 Lin F. ; Markus I. M. ; Nordlund D. ; Weng T. C. ; Asta M. D. ; Xin H. L. L. ; Doeff M. M. Nat. Commun 2014, 5, 3529.
15 Zheng J. M. ; Gu M. ; Genc A. ; Xiao J. ; Xu P. H. ; Chen X. L. ; Zhu Z. H. ; Zhao W. B. ; Pullan L. ; Wang C. M. ; Zhang J. G. Nano Lett 2014, 14, 2628.
16 Gu M. ; Belharouak I. ; Genc A. ; Wang Z. G. ; Wang D. P. ; Amine K. ; Gao F. ; Zhou G.W. ; Thevuthasan S. ; Baer D. R. ; Zhang J. G. ; Browning N. D. ; Liu J. ; Wang C. M. Nano Lett 2012, 12, 5186.
17 Gu M. ; Genc A. ; Belharouak I. ; Wang D. P. ; Amine K. ; Thevuthasan S. ; Baer D. R. ; Zhang J. G. ; Browning N. D. ; Liu J. ; Wang C. M. Chem. Mater 2013, 25, 2319.
18 Kim D. ; Kang S. H. ; Balasubramanian M. ; Johnson C. S. Electrochem. Commun 2010, 12, 1618.
19 Yan P. F. ; Zheng J. M. ; Lv D. P. ; Wei Y. ; Zheng J. X. ; Wang Z. G. ; Kuppan S. ; Yu J. G. ; Luo L. L. ; Edwards D. ; Olszta M. ; Amine K. ; Liu J. ; Xiao J. ; Pan F. ; Chen G. Y. ; Zhang J.G. ; Wang C. M. Chem. Mater 2015, 27, 5393.
20 Jarvis K. A. ; Deng Z. Q. ; Allard L. F. ; Manthiram A. ; Ferreira P. J. Chem. Mater 2011, 23, 3614.
21 Yu H. J. ; Ishikawa R. ; So Y. G. ; Shibata N. ; Kudo T. ; Zhou H. S. ; Ikuhara Y. Angew. Chem. Int. Edit 2013, 52, 5969.
22 Jarvis K. A. ; Deng Z. ; Allard L. F. ; Manthiram A. ; Ferreira P.J. J. Mater. Chem 2012, 22, 11550.
23 Yan P. F. ; Zheng J. M. ; Zheng J. X. ; Wang Z. G. ; Teng G. F. ; Kuppan S. ; Xiao J. ; Chen G. Y. ; Pan F. ; Zhang J. G. ; Wang C. M. Adv. Energy Mater 2016, 6, 1502455.
24 Graetz J. ; Ahn C. C. ; Ouyang H. ; Rez P. ; Fultz B. Phys. Rev. B 2004, 69, 235103.
25 Pearson D. H. ; Ahn C. C. ; Fultz B. Phys. Rev. B 1993, 47, 8471.
26 Varela M. ; Oxley M. P. ; Luo W. ; Tao J. ; Watanabe M. ; Lupini A. R. ; Pantelides S. T. ; Pennycook S. J. Phys. Rev. B 2009, 79, 085117.
27 Huang Z. F. ; Du F. ; Wang C. Z. ; Wang D. P. ; Chen G. Phys. Rev. B 2007, 75, 054411.
28 Yamada A. ; Tanaka M. ; Tanaka K. ; Sekai K. J. Power Sources 1999, 81, 73.
[1] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1605-1613.
[2] Dan-Hui LÜ,Dan-Cheng ZHU,Chuan-Hong JIN. Preferential Substitution of Selenium along the Grain Boundaries in Monolayer MoS2(1-x)Se2x Alloy[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1514-1519.
[3] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1189-1196.
[4] Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2261-2267.
[5] Ya-Dong LI,Yu-Feng DENG,Zhi-Yi PAN,Yin-Ping WEI,Shi-Xi ZHAO,Lin GAN. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2293-2300.
[6] Wei-Yan LIU,Ya-Dong LI,Tian LIU,Lin GAN. Investigation of the Growth Mechanism and Compositional Segregations of Monodispersed Ferrite Nanoparticles by Transmission Electron Microscopy[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2106-2112.
[7] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 211-241.
[8] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1999-2006.
[9] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1866-1879.
[10] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1489-1494.
[11] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1056-1061.
[12] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 717-722.
[13] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 573-580.
[14] Shou-Pu ZHU,Tian WU,Hai-Ming SU,Shan-Shan QU,Yong-Juan XIE,Ming CHEN,Guo-Wang DIAO. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2737-2744.
[15] SUN Xiao-Fei, XU You-Long, ZHENG Xiao-Yu, MENG Xiang-Fei, DING Peng, REN Hang, LI Long. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1513-1520.