Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (9): 2293-2300    DOI: 10.3866/PKU.WHXB201605201
ARTICLE     
Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries
Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG*()
Download: HTML     PDF(3038KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nitrile-modified 2, 5-di-tert-butyl-hydroquinones were synthesized and investigated as redox shuttle overcharge additives for LiFePO4/Li cells. The cyanoethylation reaction was utilized to synthesize the target molecules 2, 5-di-tert-butyl-1, 4-di(β-cyanoethoxyl)benzene (RS-DCN) and 2, 5-di-tert-butyl-1-(β-cyanoethoxyl)-4-methoxybenzene (RS-MCN) in high efficiency from 2, 5-di-tert-butyl-hydroquinone and acrylonitrile. The solubility, cyclic voltammetric measurements, 5 V overcharge test, 100% overcharge test, high rate performance under 100% overcharge conditions, and cycle performance under normal conditions were studied in detail for the electrolyte with the addition of RS-DCN or RS-MCN. The RS-MCN compounds with the asymmetric structure delivered better solubility (with max. 0.3 mol·L-1 in 1.0 mol·L-1 LiPF6/EC+DEC+EMC, 1 : 1 : 1, in vol.), higher overcharge protection life (over 1200 h for the 5 V overcharge test), and excellent rate performance under 100% overcharge conditions (specific discharge capacity reached 153.5 mAh·g-1 at 2.5C). The addition of RS-MCN also improved the cycling performance of the LiFePO4/Li cell under the charge-discharge voltage range of 2.5-3.8 V.



Key wordsLithium-ion battery      Electrolyte      Overcharge protection additive      Nitrile      2, 5-Di-tert-butyl-hydroquinone     
Received: 12 April 2016      Published: 20 May 2016
MSC2000:  O646  
Fund:  the Program of Guangdong Provincial Project for Science & Technology, China(2014A050503050/2015B010135008);Guangzhou Municipal Project for Science & Technology, China(2014Y2-00012/201509010018);Dongguan Municipal Project for Science & Technology, China(2013509104210);K. C. Wang Education Foundation, China
Corresponding Authors: Ling-Zhi ZHANG     E-mail: lzzhang@ms.giec.ac.cn
Cite this article:

Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries. Acta Phys. -Chim. Sin., 2016, 32(9): 2293-2300.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605201     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I9/2293

Fig 1 Synthetic route of nitrile-modified redox shuttle molecules
Electrolyte Formulation
E0 1 mol?L-1 LiPF6 EC/DEC/DMC(V/V/V=1:1:1)
E1 1 mol?L-1 LiPF6 EC/DEC/DMC(V/V/V=1:1:1)+0.1 mol?L-1 RS-DCN
E2 1 mol?L-1 LiPF6 EC/DEC/DMC(V/V/V=1:1:1)+0.1 mol?L-1 RS-MCN
E3 1 mol?L-1 LiPF6 EC/DEC/DMC(V/V/V=1:1:1)+0.3 mol?L-1 RS-MCN
Table 1 Formulation of the electrolyte
Name RS-DCNa RS-MCNa DDBb DBBBb
Chemical structure
Solubility/(mol?L-1) 0.1 0.3 0.08 0.3
Table 2 Solubility of redox shuttle molecules
Fig 2 Cyclic voltammogram of E1 and E2 electrolytes at various scanning rates
Fig 3 5 V overcharge curves of E0, E1, and E2 electrolytes for LiFePO4/Li cells 1
Fig 4 Cycling performances and voltage profiles of 100% overcharge abuse tests using LiFePO4/Li cells
Fig 5 Rate performances under 100% overcharge abuse tests of LiFePO4/Li cells and its time-voltage curves
Fig 6 Cycling performance and initial charge-discharge profiles of LiFePO4/Li cells in different electrolytes
1 Etacheri V. ; Marom R. ; Elazari R. ; Salitra G. ; Aurbach D. Energy Environ. Sci 2011, 4, 3243.
2 Jacoby M. Chem. Eng. News 2007, 85 (51), 26.
3 Chen Z. ; Qin Y. ; Amine K. Electrochim. Acta 2009, 54 (24), 5605.
4 Chen L. ; Buhrmester C. ; Dahn J. R. Electrochem. Solid-State Lett 2005, 8, A59.
5 Richardson T. J. ; Ross P. N. J. Electrochem. Soc 1996, 143 (12), 3992.
6 Adachi M. ; Tanaka K. ; Sekai K. J. Electrochem. Soc 1999, 146 (4), 1256.
7 Guo Y. J. ; Chen H. ; Qi L. Acta Phys. -Chim. Sin 2007, 23 (supp.), 80.
7 郭营军; 晨辉; 其鲁. 物理化学学报, 2007, 23 (supp.), 80.
8 Wang B. ; Xia Q. ; Zhang P. ; Li G. C. ; Wu Y. P. ; Luo H. J. ; Zhao S. Y. ; Ree T. Electrochem. Commun 2008, 10, 727.
9 Xiong L. Q. ; Zhang Y. J. ; Dong P. ; Yang R. M. ; Xia S. B. Chem. Ind. Eng. Prog 2011, 30, 1198.
9 熊琳强; 张英杰; 董鹏; 杨瑞明; 夏书标. 化工进展, 2011, 30, 1198.
10 Buhrmester C. ; Moshurchak L. ; Wang R. L. ; Dahn J. R. J. Electrochem. Soc 2006, 153, A288.
11 Wang R. L. ; Buhrmester C. ; Dahn J. R. J. Electrochem. Soc 2006, 153, A445.
12 Chen Z. ; Wang Q. ; Amine K. J. Electrochem. Soc 2006, 153 (12), A2215.
13 Wang R. L. ; Dahn J. R. J. Electrochem. Soc 2006, 153 (10), A1922.
14 Feng J. K. ; Ai X. P. ; Cao Y. L. ; Yang H. X. Electrochem. Commun 2007, 9 (1), 25.
15 Abraham K. M. ; Pasquariello D. M. ; Willstaedt E. B. J. Electrochem. Soc 1990, 137, 1856.
16 Moshurchak L. M. ; Buhrmester C. ; Wang R. L. ; Dahn J. R. Electrochim. Acta 2007, 52, 3779.
17 Odom S. A. ; Ergun S. ; Poudel P. P. ; Parkin S. R. Energy Environ. Sci 2014, 7, 760.
18 Ergun S. ; Elliott C. F. ; Kaur A. P. ; Parkin S. R. ; Odom S. A. Chem. Commun 2014, 50, 5339.
19 Moshurchak L. M. ; Buhrmester C. ; Dahn J. R. J. Electrochem. Soc 2005, 152, A1279.
20 Huang J. ; Shkrob I. A. ; Wang P. ; Cheng L. ; Pan B. ; He M. ; Liao C. ; Zhang Z. ; Curtiss L. A. ; Zhang L. J. Mater. Chem. A 2015, 3, 7332.
21 Buhrmester C. ; Chen J. ; Moshurchak L. ; Jiang J. ; Wang R.L. ; Dahn J. R. J. Electrochem. Soc 2005, 152 (12), A2390.
22 Zhang Z. ; Zhang L. ; Schlueter J. A. ; Redfern P. C. ; Curtiss L. ; Amine K. J. Power Sources 2010, 195 (15), 4957.
23 Dahn J. R. ; Jiang J.W. ; Moshurchak L. M. ; Fleischauer M.D. ; Buhrmester C. ; Krause L. J. J. Electrochem. Soc 2005, 152 (6), A1283.
24 Zhang L. ; Zhang Z. ; Redfern P. C. ; Curtiss L. A. ; Amine K. Energy Environ. Sci 2012, 5, 8204.
25 Weng W. ; Zhang Z. ; Redfern P. C. ; Curtiss L. A. ; Amine K. J. Power Sources 2011, 196, 1530.
26 Ren C. Y. ; Lu H. ; Jia M. ; Zhang Z. A. ; Lai Y. Q. ; Li J. Acta Phys. -Chim. Sin 2012, 28 (9), 2091.
26 任春燕; 卢海; 贾明; 张治安; 赖延清; 李劼.. 物理化学学报, 2012, 28 (9), 2091d.
27 Huang J. ; Azimi N. ; Cheng L. ; Shkrob I. A. ; Xue Z. ; Wang J. ; Dietz Rago N. L. ; Curtiss L. A. ; Amine K. ; Zhang Z. ; Zhang L. J. Mater. Chem. A 2015, 3, 10710.
28 Moshurchak L. M. ; Lamanna W. M. ; Bulinski M. ; Wang R.L. ; Garsuch R. R. ; Jiang J. ; Magnuson D. ; Triemert M. ; Dahn J. R. J. Electrochem. Soc 2009, 156 (4), A309.
29 Kim Y. S. ; Kim T. H. ; Lee H. ; Song H. K. Energy Environ. Sci 2011, 4 (10), 4038.
30 Zhong Y. L. ; Boruta D. T. ; Gauthier D.R., Jr. ; Askin D. Tetrahedron Lett 2011, 52, 4824.
31 He J. R. ; Wang J. L. ; Zhong H. X. ; Ding J. N. ; Zhang L. Z. Electrochim. Acta 2015, 182, 900.
32 Xie B. ; Mai Y. J. ; Wang J. L. ; Luo H. ; Yan X. D. ; Zhang L. Z. Ionics 2015, 21 (1), 909.
33 Khakani E. S. ; Forgie J. C. ; MacNeil D. D. ; Rochefort D. J. Electrochem. Soc 2015, 162 (8), A1432.
34 Kim Y. S. ; Lee H. C. ; Song H. K. ACS Appl. Mater. Interfaces 2014, 6, 8913.
[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[2] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[3] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218.
[4] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[5] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[6] Jiang-Bo ZHENG,Zhi-Ming CHEN,Zhi-Cheng HU,Jie ZHANG,Fei HUANG. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1635-1643.
[7] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547.
[8] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[9] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[10] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[11] Yan-Gong ZHENG,Li-Na ZHU,Han-Yu LI,Jia-Wen JIAN,Hai-Ying DU. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 573-581.
[12] Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499.
[13] Yong-Min XIE,Xiao-Qiang WANG,Jiang LIU,Chang-Lin YU. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 386-392.
[14] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[15] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.