Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (7): 1593-1603    DOI: 10.3866/PKU.WHXB201605231
REVIEW     
Quinones as Electrode Materials for Rechargeable Lithium Batteries
Yong LU1,Qing ZHAO1,Jing LIANG1,Zhan-Liang TAO1,Jun CHEN1,*()
1 Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
2 College of Chemistry and Environmental Science, Key Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, Xinjiang Uygur Autonomous, P. R. China
Download: HTML     PDF(10843KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Owing to advantages such as high theoretical specific capacity, designable structure, low cost and environmental friendliness, organic quinone compounds have been proposed as promising electrode materials for rechargeable lithium batteries. In this review, we first introduce the classification, structural characteristics, electrochemical reaction mechanism and performance of quinone-based electrodes. We then summarize the recent progress, existing problems and strategies for improving the electrochemical performance of quinonebased compounds and polymers. Finally, we also discuss the future development of such materials for use in lithium batteries.



Key wordsRechargeable lithium battery      Organic electrode material      Quinone      Theoretical specific capacity      Electrochemical performance     
Received: 31 March 2016      Published: 23 May 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51231003);Ministry of Education, China(B12015);Ministry of Education, China(IRT13R30);Natural Science Foundation of Xinjiang Uygur Autonomous Region, China(201318101-15)
Corresponding Authors: Jun CHEN     E-mail: chenabc@nankai.edu.cn
Cite this article:

Yong LU,Qing ZHAO,Jing LIANG,Zhan-Liang TAO,Jun CHEN. Quinones as Electrode Materials for Rechargeable Lithium Batteries. Acta Physico-Chimica Sinca, 2016, 32(7): 1593-1603.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605231     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I7/1593

Fig 1 Representative structures and Li-storage mechanism of three kinds of carbonyl-based electrode materials18
Species Typical structure and theoretical specific capacity
(1) simple quinones26, 27
(2) multi-carbonyl quinones28-31
(3) fused heteroaromatic quinones30,32
(4) substituented quinones33-37
(5) oxocarbon salts38-41
(6) carboxylates42
Table 1 Categorization,structures,and theoretical specific capacities of the small molecular quinones
Species Typical structure and theoretical specific capacity
(1) simple conjugate polymers43, 44
(2) alkyl coupling polymers45-47
(3) nitrogen coupling polymers48-50
(4) sulfur coupling polymers51-53
Table 2 Categorization,structures,and theoretical specific capacities of the quinone polymers
Fig 2 Mechanism for reversible redox reaction of quinone compounds(1,4-benzoquinone and poly(1,4-benzoquinone))43
Fig 3 onductivities of four types of composite polymer electrolytes and the electrochemical performance of the all-solid-state cell69 (a)room-temperature ionic conductivity of electrolytes with different content fillers;(b)ionic conductivity with 3%(w,mass fraction)fillers at different temperatures;(c)changes of ionic conductivity after resting different days with 3%(w)fillers at room-temperature;(d)discharge-charge curves of P5Q at 0.2C rate with optimized PMA/PEG-SiO2 electrolyte.PMA: poly(methacrylate),PEG: poly(ethylene glycol)
Fig 4 Electrochemical redox reactions on Li4C8H2O6 and the energy level properties of related substances73 (a)proposed reactions of Li4C8H2O6(Li4DHTPA)electrode in anode side with Li6C8H2O6(Li6DHTPA)and cathode side with Li2C8H2O6(Li2DHTPA);(b)HOMO plots of three anions(C8H2O62-,C8H2O64-,and C8H2O66-);(c)energy level of Li2C8H2O6,Li4C8H2O6,and Li6C8H2O6with respect to to energy in vacuum(Evac).VEA: vertical electron affinity,VIP: vertical ionization potential,Eg: LUMO-HOMO gap
1 Nishide H. ; Oyayzu K. Science 2008, 319 (5864), 737.
2 Tarascon J. M. ; Armand M. Nature 2001, 414 (6861), 359.
3 Rogers J. A. ; Someya T. ; Huang Y. G. Science 2008, 327 (5973), 1603.
4 Zhang K. ; Han X. P. ; Hu Z. ; Zhang X. L. ; Tao Z. L. ; Chen J. Chem. Soc. Rev. 2015, 44 (3), 699.
5 Cheng F. Y. ; Chen J. Chem. Soc. Rev. 2012, 41 (6), 2172.
6 Koo M. ; Park K. I. ; Lee S. H. ; Suh M. ; Jeon D. Y. ; Choi J. W. ; Kang K. ; Lee K. J. Nano Lett. 2012, 12 (9), 4810.
7 Tarascon J. M. ; Armand M. Nature 2001, 414 (6861), 359.
8 Cheng F. Y. ; Liang J. ; Tao Z. L. ; Chen J. Adv. Mater. 2011, 23 (15), 1695.
9 Whittingham M. S. Chem. Rev. 2014, 114 (23), 11414.
10 Obrovac M. N. ; Chevrier V. L. Chem. Rev. 2014, 114 (23), 1444.
11 Zhang K. ; Hu Z. ; Tao Z. L. ; Chen J. Sci. China Mater. 2014, 7 (1), 42.
12 Liang Y. L. ; Tao Z. L. ; Chen J. Adv. Energy Mater. 2012, 2 (7), 42.
13 Wang S.W. ; Tao Z. L. ; Chen J. Chin. Sci. Bull 2013, 31 (58), 132.
13 王诗文; 陶占良;陈军. 科学通报, 2013, 31 (58), 3132.
14 Poizot P. ; Dolhem F. Energy Environ. Sci. 2011, 4 (6), 2003.
15 Janoschka T. ; Hager M. D. ; Schubert U. S. Adv. Mater. 2012, 24 (48), 6397.
16 Gracia R. ; Mecerreyes D. Polym. Chem. 2013, 4 (7), 2206.
17 Novak P. ; Muller K. ; Santhanam K. S. V. ; Haas O. Chem. Rev. 1997, 97 (1), 207.
18 H?upler B. ; Wild A. ; Schubert U. S. Adv. Energy Mater. 2015, 5 (11), 1402034.
19 Zhu Z. Q. ; Chen J. J. Electrochem. Soc. 2015, 162 (14), A2393.
20 Song Z. P. ; Zhou H. S. Energy Environ. Sci. 2013, 6 (8), 2280.
21 Yabuuchi N. ; Kubota K. ; Dahbi M. ; Komaba S. Chem. Rev. 2014, 114 (23), 11636.
22 Xiang X. D. ; Zhang K. ; Chen J. Adv. Mater. 2015, 27 (36), 5343.
23 Yao Y. ; Wu F. Nano Energy 2015, 17, 91.
24 Kim Y. Z. ; Wu W. ; Chun S. E. ; Whitacre J. F. ; Bettinger C. B. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (52), 20912.
25 Chen H. Y. ; Armand M. ; Demailly G. ; Dolhem F. ; Poizot P. ; Tarascon J. M. ChemSusChem 2008, 1 (4), 348.
26 Zhao L. ; Wang W. K. ; Wang A. B. ; Yu Z. B. ; Chen S. ; Yang Y. S. J. Electrochem. Soc 2011, 158 (9), A991.
27 Tobishima S. ; Yamaki J. ; Yamaji A. J. Electrochem. Soc. 1984, 131 (1), 57.
28 Yao M. ; Senoh H. ; Sakai T. ; Kiyobayashi T. Int. J. Electrochem. Sci. 2011, 6 (7), 2905.
29 Boschi T. ; Pappa R. ; Pistoia G. ; Tocci M. J. Electroanal. Chem. 1984, 176, 235.
30 Liang Y. L. ; Zhang P. ; Chen J. Chem. Sci. 2013, 4, 1330.
31 Zhu Z. Q. ; Guo D. S. ; Tao Z. L. ; Chen J. Sci. China-Chem. 2014, 44 (7), 1175.
31 朱智强; 郭东升; 陶占良; 陈军. 中国科学:化学, 2014, 44 (7), 1175.
32 Liang Y. L. ; Zhang P. ; Yang S. Q. ; Tao Z. L. ; Chen J. Adv. Energy Mater. 2013, 3 (5), 600.
33 Hanyu Y. ; Ganbe Y. ; Honma I. J. Power Sources 2013, 221, 186.
34 Reddy A. L. M. ; Nagarajan S. ; Chumyim P. ; Gowda S. R. ; Pradhan P. ; Jadhav S. R. ; Dubey M. ; John G. ; Ajayan P. M. Sci Rep. 2012, 2, 960.
35 Zeng R. H. ; Xing L. D. ; Qiu Y. C. ; Wang Y. T. ; Huang W. N. ; Li W. S. ; Yang S. H. Electrochim. Acta 2014, 146, 447.
36 Yao M. ; Senoh H. ; Araki M. ; Sakai T. ; Yasuda K. ECS Trans. 2010, 28 (8), 3.
37 Yao, M.; Ando, H.; Kiyobayashi, T. Dialkoxybenzoquinone-Type Active Materials for Rechargable Lithium Batteries: The Effect of The Alkoxy Group Length on the Cycle-Stability. In Energy Procedia, 10th Eco-Energy and Material Science and Engineering Symposium, Ubon Rachathani, Thailand, Dec 05-08, 2012; Yupapin, P., PivsaArt, S., Ohgaki, H. Eds.; Elsevier: Amsterdam, 2013. doi: 10.1016/j.egypro.2013.06.825
38 Xiang J. F. ; Chang C. X. ; Li M. ; Wu S. M. ; Yuan L. J. ; Sun J. T. Cryst. Growth Des 2008, 8 (1), 280.
39 Chen H. Y. ; Armand M. ; Demailly G. ; Dolhem F. ; Poizot P. ; Tarascon J. M. ChemSusChem 2008, 1 (3), 348.
40 Chen H. Y. ; Armand M. ; Courty M. ; Jiang M. ; Grey C. P. ; Dolhem F. ; Tarascon J. M. ; Poizot P. J. Am. Chem. Soc. 2009, 131 (25), 8984.
41 Barres A. L. ; Geng J. ; Bonnard G. ; Renault S. ; Gottis S. ; Mentre O. ; Frayret C. ; Dolhem F. ; Poizot P. Chem. Eur. J. 2012, 18 (28), 8800.
42 Shimizu A. ; Kuramoto H. ; Tsujii Y. ; Nokami T. ; Inatomi Y. ; Hojo N. ; Suzuki H. ; Yoshida J. I. J. Power Sources 2014, 260, 211.
43 Foos J. S. ; Erker S. M. ; Rembetsy L. M. J. Electrochem.Soc. 1986, 133 (4), 836.
44 Song Z. P. ; Qian Y. M. ; Gordin M. L. ; Tang D. H. ; Xu T. ; Otani M. ; Zhan H. ; Zhou H. S. ; Wang D. H. Angew. Chem. Int. Ed. 2015, 54 (47), 13947.
45 Choi W. ; Harada D. ; Oyaizu K. ; Nishide H. J. Am. Chem. Soc. 2011, 133 (49), 19839.
46 Nokami T. ; Matsuo T. ; Inatomi Y. ; Hojo N. ; Tsukagoshi T. ; Yoshizawa H. ; Shimizu A. ; Kuramoto H. ; Komae K. ; Tsuyama H. ; Yoshida J. I. J. Am. Chem. Soc. 2012, 134 (48), 19694.
47 Oyaizu K. ; Choi W. ; Nishide H. Polym. Adv. Technol. 2011, 22 (8), 1242.
48 Haringer D. ; Novak P. ; Haas O. ; Piro B. ; Pham M. H. J. Electrochem. Soc. 1999, 146 (7), 2393.
49 Tang Z. Y. ; Xu G. X. Acta Phys. -Chim. Sin. 2003, 19 (4), 307.
49 唐致远徐国祥. 物理化学学报, 2003, 19 (4), 307.
50 Zhao L. ; Wang W. K. ; Wang A. B. ; Yuan K. G. ; Chen S. ; Yang Y. S. J. Power Sources 2013, 233, 23.
51 Liu K. ; Zheng J. M. ; Zhong G. M. ; Yang Y. J. Mater. Chem. 2011, 21 (12), 4125.
52 Song Z. P. ; Qian Y. M. ; Liu X. Z. ; Zhang T. ; Zhu Y. B. ; Yu H. J. ; Otani M. ; Zhou H. S. Energy Environ. Sci. 2014, 7 (12), 4077.
53 Song Z. P. ; Zhan H. ; Zhou Y. H. Chem. Commun. 2009, (No. 4), 448.
54 Bitenc J. ; Pirnat K. ; Bancic T. ; Gaberscek M. ; Genorio B. ; Randon-Vitanova A. ; Dominko R. ChemSusChem 2015, 8 (24), 4128.
55 Wang H. ; Hu P. F. ; Yang J. ; Gong G. M. ; Guo L. ; Chen X. D. Adv. Mater 2015, 27 (14), 2348.
56 Kim H. ; Kwon J. E. ; Lee B. ; Hong J. ; Lee M. ; Park S. Y. ; Kang K. Chem. Mater 2015, 27 (21), 7258.
57 Huskinson B. ; Marshak M. P. ; Suh C. ; Er S. ; Gerhardt M. R. ; Galvin C. G. ; Chen X. D. ; Aspuru-Guzik A. Gordon ; R. G. ; Aziz M. J. Nature 2014, 505 (7482), 195.
58 Lin K. X. ; Chen Q. ; Gerhardt M. R. ; Tong L. C. ; Kim S. B. ; Eisenach L. ; Valle A.W. ; Hardee D. ; Gordon R. G. ; Aziz M. J. ; Marshak M. P. Science 2015, 349 (6255), 1529.
59 Williams D. L. ; Btrene J. J. ; Driscol J. S. J. Electrochem. Soc. 1969, 116 (1), 2.
60 Alt H. ; Binder H. ; K?hling A. ; Sandstede G. Electrochim. Acta 1972, 17 (5), 873.
61 Wang S.W. ; Wang L. J. ; Zhu Z. Q. ; Hu Z. ; Zhao Q. ; Chen J. Angew. Chem. Int. Ed. 2014, 53 (23), 5892.
62 Song Z. P. ; Zhan H. ; Zhou Y. H. Angew. Chem. Int. Ed. 2010, 49 (45), 8444.
63 Han X. Y. ; Qing G. Y. ; Sun J. T. ; Sun T. L. Angew. Chem. Int. Ed. 2012, 51 (21), 5147.
64 Lee M. ; Hong J. ; Kim H. ; Lim H D. ; Cho S. B. ; Kang K. ; Park C. B. Adv. Mater. 2014, 26 (16), 2558.
65 Yao M. ; Senoh H. ; Yamazaki S. I. ; Siroma Z. ; Sakai T. ; Yasuda K. J. Power Sources 2010, 195 (24), 8336.
66 Hanyu Y. ; Honma I. Sci. Rep. 2012, 2, 453.
67 Hanyu Y. ; Sugimoto T. ; Ganbe Y. ; Masuda A. ; Honma I. J. Electrochem. Soc. 2013, 161 (1), A6.
68 Huang W.W. ; Zhu Z. Q. ; Wang L. J. ; Wang S.W. ; Li H. ; Tao Z. L. ; Shi J. F. ; Guan L. H. ; Chen J. Angew. Chem. Int. Ed. 2013, 52 (35), 9162.
69 Zhu Z. Q. ; Hong M. L. ; Guo D. S. ; Shi J. F. ; Tao Z. F. ; Chen J. J. Am. Chem. Soc. 2014, 136 (47), 16461.
70 Yin Y. X. ; Xin S. ; Guo Y. G. ; Wan L. J. Angew. Chem. Int. Ed. 2013, 52 (50), 13186.
71 Zhang K. ; Guo C. Y. ; Zhao Q. ; Niu Z. Q. ; Chen J. Adv. Sci. 2015, 2 (5), 1500018.
72 Kim H. ; Seo D. H. ; Yoon G. ; Goddard W. A. ; Lee Y. S. ; Yoon W. S. ; Kang K. , J. Phys. Chem. Lett. 2014, 5 (17), 3086.
73 Wang S.W. ; Wang L. J. ; Zhang K. ; Zhu Z. Q. ; Tao Z. L. ; Chen J. Nano Lett. 2013, 13 (9), 4404.
74 Zhu Z. Q. ; Li H. ; Liang J. ; Tao Z. L. ; Chen J. Chem. Commun. 2015, 51 (8), 1446.
75 Genorio B. ; Pirnat K. ; Cerc-Korosec R. ; Dominko R. ; Gaberscek M. Angew. Chem. Int. Edit. 2010, 49 (40), 7222.
76 Pirnat K. ; Dominko R. ; Cerc-Korosec R. ; Mali G. ; Genorio B. ; Gaberscek M. J. Power Sources 2012, 199, 308.
[1] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[2] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1944-1959.
[3] Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2293-2300.
[4] Hao CHEN,Tao YANG,Jie-Wei LI,Xin-Wen ZHANG,Yan QIAN,Ling-Hai XIE,Wei HUANG. Synthesis and Optoelectronic Properties of a Solution-Processable Anthraquinone/Fluorene Hybrid Bipolar Fluorescent Material[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2346-2354.
[5] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 969-974.
[6] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 975-982.
[7] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 717-722.
[8] SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1521-1526.
[9] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1527-1534.
[10] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1437-1451.
[11] HAN You, HE Zhi-Yuan, GUAN Yong-Chuan, LI Wei, ZHANG Jin-Li. Catalytic Performance of PdAu/Al2O3 Catalyst with Special Structural and Electronic Properties in the 2-Ethylanthraquinone Hydrogenation Reaction[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 729-737.
[12] ZHU Guang-Lai, WANG Yu, ZHANG Liang-Wei, LIU Yan-Cheng, WU Guo-Zhong. Photochemical Reaction Kinetics of Duroquinone in a Mixture of Ionic Liquid [BPy][BF4] and Acetonitrile[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 419-424.
[13] SU Shuo-Jian, NULI Yan-Na, FEILURE Tuerxun, YANG Jun, WANG Jiu-Lin. Effects of Cathode Current Collectors on the Electrochemical Performance of Rechargeable Magnesium Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(1): 111-120.
[14] FEILURE Tuerxun, ZULIPIYA Shadike, NULI Yan-Na, YANG Jun, WANG Jiu-Lin. Pyrazolyl Magnesium Halide/Tetrahydrofuran Solutions for Rechargeable Magnesium Battery Electrolytes[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1634-1640.
[15] ZHOU Ying, WANG Dao-Long, XIAO Nan, HOU Yu-Chen, QIU Jie-Shan. Influence of Heat Treatment Temperature on the Structure and Electrochemical Performance of Asphaltene-Based B/N Co-Doped Porous Carbons[J]. Acta Physico-Chimica Sinca, 2014, 30(6): 1127-1133.