Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (9): 2146-2158    DOI: 10.3866/PKU.WHXB201605243
REVIEW     
Controlled Assembly of Graphene-Based Aerogels
Guang-Yong LI1,2,Xiao-Han WU2,Wei-Na HE2,Jian-Hui FANG1,*(),Xue-Tong ZHANG2,*()
1 Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
2 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China
Download: HTML     PDF(10239KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene aerogels are obtained from graphene sheets through wet chemical assembly or vaporphase chemical growth. They have a three dimensional graphene architecture that has an interconnected network with a high specific surface area, good electric conductivity and other physicochemical properties and thus has important applications in electrochemical energy storage, adsorption, catalysis and sensing. In this review, we will highlight the assembly strategies and structural designs used to introduce the controlled assembly of the graphene sheets in graphene aerogel materials, such as graphene oxide-, reduced graphene oxide-, CVDgrown graphene and composite graphene aerogels. The current challenges and future development of the grapheme aerogels are also discussed.



Key wordsGraphene      Aerogel      Hydrogel      Composite material      Assemble     
Received: 11 April 2016      Published: 24 May 2016
MSC2000:  O648  
Fund:  the National Natural Science Foundation of China(51572285);the National Natural Science Foundation of China(21373024);the National Natural Science Foundation of China(21404117)
Corresponding Authors: Jian-Hui FANG,Xue-Tong ZHANG     E-mail: jhfang@shu.edu.cn;zhangxtchina@yahoo.com
Cite this article:

Guang-Yong LI,Xiao-Han WU,Wei-Na HE,Jian-Hui FANG,Xue-Tong ZHANG. Controlled Assembly of Graphene-Based Aerogels. Acta Physico-Chimica Sinca, 2016, 32(9): 2146-2158.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605243     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I9/2146

Fig 1 Photograph and the structure module of graphene oxide (GO) aerogel catalytic reactor derived from GO liquid crystal24
Fig 2 Photographs of homogeneous GO aqueous dispersion before and after hydrothermal reduction (a), photographs of a strong self-assembled graphene hydrogel (SGH) (b), and scanning electron microscopy (SEM) images of the SGH interior microstructures (c)25
Fig 3 Schematic illustration of graphene gelation mechanism on metal surface42
Fig 4 Digital photos of the aqueous suspension of GO (a), the graphene hydrogel (b), the supercritical CO2 dried (left) and freeze-dried (right) graphene aerogel (c), and graphene aerogel pillar supporting a counterpoise, more than 14000 times its own weight (d)43
Fig 5 Schematic illustration of the preparation of macroporous graphene monoliths (MGM)49
Fig 6 SEM image of the fracture morphology of reduced graphene porous fiber54
Fig 7 SEM images of CVD graphene aerogel66 (a) low magnification SEM image of CVD graphene aerogel; (b, c) surface and cross-section SEM image of an individual microrod;
(d) high magnification SEM image of an individual microrod
Fig 8 Proposed self-assembly and wrapping mechanism for 3D graphene/nanoparticles architecture formation78
Fig 9 Schematic structure of 3D CdS/TiO2/graphene aerogel network (a), illustration of the proposed reaction mechanism for hydrogen production over the CdS/TiO2/graphene aerogel under irradiation of simulated sunlight (b)79 CB: conduction band; VB: valence band
1 Novoselov K. S. ; Geim A. K. ; Morozov S. ; Jiang D. ; Zhang Y. ; Dubonos S. ; Grigorieva I. ; Firsov A. Science 2004, 306 (5696), 666.
2 Chen D. ; Feng H. ; Li J. Chem. Rev. 2012, 112 (11), 6027.
3 Georgakilas V. ; Otyepka M. ; Bourlinos A. B. ; Chandra V. ; Kim N. ; Kemp K. C. ; Hobza P. ; Zboril R. ; Kim K. S. Chem. Rev. 2012, 112 (11), 6156.
4 Balandin A. A. ; Ghosh S. ; Bao W. ; Calizo I. ; Teweldebrhan D. ; Miao F. ; Lau C. N. Nano Lett. 2008, 8 (3), 902.
5 Stoller M. D. ; Park S. ; Zhu Y. ; An J. ; Ruoff R. S. Nano Lett. 2008, 8 (10), 3498.
6 Bolotin K. I. ; Sikes K. ; Jiang Z. ; Klima M. ; Fudenberg G. ; Hone J. ; Kim P. ; Stormer H. Solid State Commun. 2008, 146 (9), 351.
7 Li C. ; Shi G. Q. Adv. Mater. 2014, 26 (24), 3992.
8 Jiang L. ; Fan Z. Nanoscale 2014, 6 (4), 1922.
9 Zeng M. ; Wang W. L. ; Bai X. D. Chin. Phys. B 2013, 22 (9), 098105.
10 Tang J. J. ; Di F. ; Xu X. ; Xiao Y. H. ; Che J. F. Prog. Chem. 2012, 24 (4), 50.
10 唐晶晶; 第凤; 徐潇; 肖迎红; 车剑飞. 化学进展, 2012, 24 (4), 501.
11 Huang H. Z. ; He Y. Q. ; Li W. Y. ; Chu X. F ; Li Y.M. ; Chen H. M. ; Liu D. Y. Acta Phys. -Chim. Sin. 2014, 35 (2), 457.
11 黄河洲; 贺蕴秋; 李文有; 储晓菲; 李一鸣; 陈慧敏; 刘德宇. 物理化学学报, 2014, 35 (2), 457.
12 Nardecchia S. ; Carriazo D. ; Ferrer M. L. ; Gutierrez M. C. ; delMonte F. Chem. Soc. Rev. 2013, 42 (2), 794.
13 Shi W.W. ; Yan F. ; Zhou G. J. ; Ye Z. K. ; Xi F. N. Chemistry 2013, 76 (11), 988.
13 石微微; 晏菲; 周国珺; 叶志凯; 奚凤娜. 化学通报, 2013, 76 (11), 988.
14 Hummers W. S. Jr. ; Offeman R. E. J. Am. Chem. Soc. 1958, 80 (6), 1339.
15 Li D. ; Müller M. B. ; Gilje S. ; Kaner R. B. ; Wallace G. G. Nat. Nanotechnol. 2008, 3 (2), 101.
16 Tung V. C. ; Allen M. J. ; Yang Y. ; Kaner R. B. Nat. Nanotechnol. 2009, 4 (1), 25.
17 Pei S. ; Zhao J. ; Du J. ; Ren W. ; Cheng H. M. Carbon 2010, 48 (15), 4466.
18 Zhang L. ; Wang Z. ; Xu C. ; Li Y. ; Gao J. ; Wang W. ; Liu Y. J. Mater. Chem. 2011, 21 (28), 10399.
19 Xu Y. ; Wu Q. ; Sun Y. ; Bai H. ; Shi G. ACS Nano 2010, 4 (12), 7358.
20 Huang C. ; Bai H. ; Li C. ; Shi G. Chem. Commun. 2011, 47 (17), 4962.
21 Bai H. ; Li C. ; Wang X. ; Shi G. J. Phys. Chem. C 2011, 115 (13), 5545.
22 Huang H. ; Lü S. ; Zhang X. ; Shao Z. Soft Matter 2012, 8 (17), 4609.
23 Huang H. ; Chen P. ; Zhang X. ; Lu Y. ; Zhan W. Small 2013, 9 (8), 1397.
24 Peng L. ; Zheng Y. ; Li J. ; Jin Y. ; Gao C. ACS Catal. 2015, 5 (6), 3387.
25 Xu Y. ; Sheng K. ; Li C. ; Shi G. ACS Nano 2010, 4 (7), 4324.
26 Zhang L. ; Shi G. J. Phys. Chem. C 2011, 115 (34), 17206.
27 Wang J. D. ; Peng T. J. ; Sun H. J. ; Hou Y. D. Acta Phys. -Chim. Sin. 2014, 30 (11), 2077.
27 汪建德; 彭同江; 孙红娟; 侯云丹. 物理化学学报, 2014, 30 (11), 2077.
28 Hu K. ; Xie X. ; Szkopek T. ; Cerruti M. Chem. Mater. 2016, 28 (6), 1756.
29 Sui Z. ; Zhang X. ; Lei Y. ; Luo Y. Carbon 2011, 49 (13), 4314.
30 Chen W. ; Yan L. Nanoscale 2011, 3 (8), 3132.
31 Sheng K. ; Xu Y. ; Li C. ; Shi G. New Carbon Mater. 2011, 26 (1), 9.
32 Chen M. ; Wang H. ; Li L. ; Zhang Z. ; Wang C. ; Liu Y. ; Wang W. ; Gao J. ACS Appl. Mater. Interfaces 2014, 6 (16), 14327.
33 Cong H. P. ; Ren X. C. ; Wang P. ; Yu S. H. ACS Nano 2012, 6 (3), 2693.
34 Gao H. ; Sun Y. ; Zhou J. ; Xu R. ; Duan H. ACS Appl. Mater. Interfaces 2013, 5 (2), 425.
35 Luan V. H. ; Tien H. N. ; Hoa L. T. ; Nguyen T. M. H. ; Oh E.S. ; Chung J. ; Kim E. J. ; Choi W. M. ; Kong B. S. ; Hur S. H. J. Mater. Chem. A 2013, 1 (2), 208.
36 Zhang L. ; Chen G. ; Hedhili M. N. ; Zhang H. ; Wang P. Nanoscale 2012, 4 (22), 7038.
37 Pham H. D. ; Pham V. H. ; Cuong T. V., Nguyen-Phan T. D., Chung J. S., Shin E.W., Kim, S. Chem. Commun. 2011, 47 (34), 9672.
38 Sheng K. ; Sun Y. ; Li C. ; Yuan W. ; Shi G. Sci. Rep. 2012, 26 (1), 9.
39 Li Y. ; Sheng K. ; Yuan W. ; Shi G. Chem. Commun. 2013, 49 (3), 291.
40 Liu Q. ; He M. ; Xu X. ; Zhang L. ; Yu J. New J. Chem. 2013, 37 (1), 181.
41 Hu C. ; Zhai X. ; Liu L. ; Zhao Y. ; Jiang L. ; Qu L. Sci. Rep. 2013, 3 (6), 2065.
42 Maiti U. N. ; Lim J. ; Lee K. E. ; Lee W. J. ; Kim S. O. Adv. Mater. 2014, 26 (4), 615.
43 Zhang X. ; Sui Z. ; Xu B. ; Yue S. ; Luo Y. ; Zhan W. ; Liu B. J. Mater. Chem. 2011, 21 (18), 6494.
44 Nguyen S. T. ; Nguyen H. T. ; Rinaldi A. ; Nguyen N. P. ; Fan Z. ; Duong H. M. Colloids Surf. Physicochem. Eng. Aspects 2012, 414 (46), 352.
45 Wu X. ; Zhou J. ; Xing W. ; Wang G. ; Cui H. ; Zhuo S. ; Xue Q. ; Yan Z. ; Qiao S. Z. J. Mater. Chem. 2012, 22 (43), 23186.
46 Tang Z. ; Shen S. ; Zhuang J. ; Wang X. Angew. Chem. Int. Edit. 2010, 49 (27), 4603.
47 Jiang X. ; Ma Y. ; Li J. ; Fan Q. ; Huang W. J. Phys. Chem. C 2010, 114 (51), 22462.
48 Chen M. ; Zhang C. ; Li X. ; Zhang L. ; Ma Y. ; Zhang L. ; Xu X. ; Xia F. ; Wang W. ; Gao J. J. Mater. Chem. A 2013, 1 (8), 2869.
49 Li Y. R. ; Chen J. ; Huang L. ; Li C. ; Hong J. D. ; Shi G. Q. Adv. Mater. 2014, 26 (28), 4789.
50 Menzel R. ; Barg S. ; Miranda M. ; Anthony D. B. ; Bawaked S.M. ; Mokhtar M. ; Al-Thabaiti S. A. ; Basahel S. N. ; Saiz E. ; Shaffer M. S. P. Adv. Funct. Mater. 2015, 25 (1), 28.
51 Barg S. ; Perez F. M. ; Ni N. ; do Vale Pereira P. ; Maher R. C. ; Garcia-Tu?on E. ; Eslava S. ; Agnoli S. ; Mattevi C. ; Saiz E. Nature Communications 2014, 5, 4328.
52 Hu H. ; Zhao Z. B. ; Wan W. B. ; Gogotsi Y. ; Qiu J. S. Adv. Mater. 2013, 25 (15), 2219.
53 Qiu L. ; Bulut Coskun M. ; Tang Y. ; Liu J. Z. ; Alan T. ; Ding J. ; Truong V. T. ; Li D. Adv. Mater. 2016, 28 (1), 194.
54 Xu Z. ; Zhang Y. ; Li P. G. ; Gao C. ACS Nano 2012, 6 (8), 7103.
55 Yang H. ; Zhang T. ; Jiang M. ; Duan Y. ; Zhang J. J. Mater. Chem. A 2015, 3 (38), 19268.
56 Coraux J. ; N'Diaye A. T. ; Busse C. ; Michely T. Nano Lett. 2008, 8 (2), 565.
57 De Arco L. G. ; Zhang Y. ; Kumar A. ; Zhou C. IEEE Trans. Nanotechnol. 2009, 8 (2), 135.
58 Reina A. ; Jia X. ; Ho J. ; Nezich D. ; Son H. ; Bulovic V. ; Dresselhaus M. S. ; Kong J. Nano Lett. 2008, 9 (1), 30.
59 Li X. ; Magnuson C.W. ; Venugopal A. ; Tromp R. M. ; Hannon J. B. ; Vogel E. M. ; Colombo L. ; Ruoff R. S. J. Am. Chem. Soc. 2011, 133 (9), 2816.
60 Bae S. ; Kim H. ; Lee Y. ; Xu X. ; Park J. S. ; Zheng Y. ; Balakrishnan J. ; Lei T. ; Kim H. R. ; Song Y. I. Nat. Nanotechnol. 2010, 5 (8), 574.
61 Chen X. L. ; Chen Z. L. ; Sun J. Y. ; Zhang Y. F. ; Liu Z. F. Acta Phys. -Chim. Sin. 2016, 32 (1), 14.
61 陈旭东; 陈召龙; 孙靖宇; 张艳锋; 刘忠范.. 物理化学学报, 2016, 32 (1), 14.
62 Chen Z. ; Ren W. ; Gao L. ; Liu B. ; Pei S. ; Cheng H. M. Nat. Mater. 2011, 10 (6), 424.
63 Dong X. ; Wang X. ; Wang L. ; Song H. ; Zhang H. ; Huang W. ; Chen P. ACS Appl. Mater. Interfaces 2012, 4 (6), 3129.
64 Li W. ; Gao S. ; Wu L. ; Qiu S. ; Guo Y. ; Geng X. ; Chen M. ; Liao S. ; Zhu C. ; Gong Y. ; Long M. ; Xu J. ; Wei X. ; Sun M. ; Liu L. Sci. Rep. 2013, 3 (7), 120.
65 Bi H. ; Chen I.W. ; Lin T. ; Huang F. Adv. Mater. 2015, 27 (39), 5943.
66 Bi H. ; Lin T. ; Xu F. ; Tang Y. ; Liu Z. ; Huang F. Nano Lett. 2015.
67 Li J. ; Wang F. ; Liu C. J. Colloid Interface Sci. 2012, 382 (1), 13.
68 Sun R. ; Chen H. ; Li Q. ; Song Q. ; Zhang X. Nanoscale 2014, 6 (21), 12912.
69 Qiu L. ; Liu D. ; Wang Y. ; Cheng C. ; Zhou K. ; Ding J. ; Truong V. T. ; Li D. Adv. Mater. 2014, 26 (20), 3333.
70 Hu H. ; Zhao Z. ; Wan W. ; Gogotsi Y. ; Qiu J. ACS Appl. Mater. Interfaces 2014, 6 (5), 3242.
71 Wang J. ; Ellsworth M. ECS Transactions 2009, 19 (5), 241.
72 Worsley M. A. ; Pauzauskie P. J. ; Olson T. Y. ; Biener J. ; Satcher J. H. ; Baumann T. F. J. Am. Chem. Soc. 2010, 132 (40), 14067.
73 Meng F. ; Zhang X. ; Xu B. ; Yue S. ; Guo H. ; Luo Y. J. Mater. Chem. 2011, 21 (46), 18537.
74 Lee Y. J. ; Park H.W. ; Kim G. P. ; Yi J. ; Song I. K. Curr. Appl. Phys. 2013, 13 (5), 945.
75 Markovi? Z. M. ; Babi? B. M. ; Drami?anin M. D. ; Antunovi? I. D. H. ; Pavlovi? V. B. ; Peru?ko D. B. ; Markovi? B. M. T. Synth. Met. 2012, 162 (9), 743.
76 Sui Z. Y. ; Meng Q. H. ; Zhang X. T. ; Ma R. ; Cao B. J. Mater. Chem. 2012, 22 (18), 8767.
77 Sun H. ; Xu Z. ; Gao C. Adv. Mater. 2013, 25 (18), 2554.
78 Chen W. F. ; Li S. R. ; Chen C. H. ; Yan L. F. Adv. Mater. 2011, 23 (47), 5679.
79 Han W. ; Ren L. ; Gong L. ; Qi X. ; Liu Y. ; Yang L. ; Wei X.L. ; Zhong J. ACS Sus. Chem. Eng. 2013, 2 (4), 2189.
80 Niu Z. ; Liu L. ; Zhang L. ; Shao Q. ; Zhou W. ; Chen D. ; Xie S. Adv. Mater. 2014, 26 (22), 3681.
81 Chen L. ; Wang X. ; Zhang X. ; Zhang H. J. Mater. Chem. 2012, 22 (41), 22090.
82 Xiao L. ; Wu D. ; Han S. ; Huang Y. ; Li S. ; He M. ; Zhang F. ; Feng X. ACS Appl. Mater. Interfaces 2013, 5 (9), 3764.
83 Yin H. ; Zhao S. ; Wan J. ; Tang H. ; Chang L. ; He L. ; Zhao H. ; Gao Y. ; Tang Z. Adv. Mater. 2013, 25 (43), 6270.
84 Wu S. S. ; Chen W. F. ; Yan L. F. J. Mater. Chem. A 2014, 2 (8), 2765.
85 Liu J. H. ; Liu B. H. ; Li Z. P. Acta Phys. -Chim. Sin. 2014, 30 (9), 1650.
85 刘建华; 刘宾虹; 李洲鹏. 物理化学学报, 2014, 30 (9), 1650.
86 Chen L. ; Wei B. ; Zhang X. T. ; Li C. Small 2013, 9 (13), 2331.
87 Shuvo M. A. I. ; Khan M. A. R. ; Karim H. ; Morton P. ; Wilson T. ; Lin Y. ACS Appl. Mater. Interfaces 2013, 5 (16), 7881.
88 Chen X. ; He D. P. ; Mu S. C. Prog. Chem. 2013, 25 (8), 1292.
88 陈旭; 何大平; 木士春. 化学进展, 2013, 25 (8), 1292.
89 Xue Y. ; Liu J. ; Chen H. ; Wang R. ; Li D. ; Qu J. ; Dai L. Angew. Chem. Int. Edit. 2012, 51 (48), 12124.
90 Zhao Y. ; Hu C. ; Hu Y. ; Cheng H. ; Shi G. ; Qu L. Angew. Chem. Int. Edit. 2012, 51 (45), 11371.
91 Moon I. K. ; Yoon S. ; Chun K. Y. ; Oh J. Adv. Funct. Mater. 2015, 25 (45), 6976.
92 Chen S. ; Duan J. ; Jaroniec M. ; Qiao S. Z. Angew. Chem. Int. Edit. 2013, 52 (51), 13567.
93 Su P. ; Guo H. L. ; Peng S. ; Ning S. K. Acta Phys. -Chim. Sin. 2012, 28 (11), 2745.
93 苏鹏; 郭慧林; 彭三; 宁生科. 物理化学学报, 2012, 28 (11), 2745.
94 Wu Z. S. ; Yang S. B. ; Sun Y. ; Parvez K. ; Feng X. L. ; Mullen K. J. Am. Chem. Soc. 2012, 134 (22), 9082.
95 Chen L. ; Cui X. ; Wang Y. ; Wang M. ; Qiu R. ; Shu Z. ; Zhang L. ; Hua Z. ; Cui F. ; Weia C. ; Shi J. Dalton Trans. 2014, 43 (9), 3420.
96 Wu Z. S. ; Winter A. ; Chen L. ; Sun Y. ; Turchanin A. ; Feng X. ; Müllen K. Adv. Mater. 2012, 24 (37), 5130.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[3] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[4] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[5] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[6] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[7] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1421-1428.
[8] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[9] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[10] Andrew SCHLERETH,Panae NOOMUNA,Pei GAO. Mesoscale Protein Patterning on a Self-Assembled Monolayer Coated Silicon Surface through Nanosphere Lithography[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 810-815.
[11] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.
[12] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.
[13] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[14] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.
[15] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2404-2423.