Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (9): 2146-2158    DOI: 10.3866/PKU.WHXB201605243
REVIEW     
Controlled Assembly of Graphene-Based Aerogels
LI Guang-Yong1,2, WU Xiao-Han2, HE Wei-Na2, FANG Jian-Hui1, ZHANG Xue-Tong2
1 Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China;
2 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China
Download:   PDF(10239KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene aerogels are obtained from graphene sheets through wet chemical assembly or vaporphase chemical growth. They have a three dimensional graphene architecture that has an interconnected network with a high specific surface area, good electric conductivity and other physicochemical properties and thus has important applications in electrochemical energy storage, adsorption, catalysis and sensing. In this review, we will highlight the assembly strategies and structural designs used to introduce the controlled assembly of the graphene sheets in graphene aerogel materials, such as graphene oxide-, reduced graphene oxide-, CVDgrown graphene and composite graphene aerogels. The current challenges and future development of the grapheme aerogels are also discussed.



Key wordsGraphene      Aerogel      Hydrogel      Composite material      Assemble     
Received: 11 April 2016      Published: 24 May 2016
MSC2000:  O648  
Fund:  

The project was supported by the National Natural Science Foundation of China (51572285, 21373024, 21404117).

Corresponding Authors: FANG Jian-Hui, ZHANG Xue-Tong     E-mail: jhfang@shu.edu.cn;zhangxtchina@yahoo.com
Cite this article:

LI Guang-Yong, WU Xiao-Han, HE Wei-Na, FANG Jian-Hui, ZHANG Xue-Tong. Controlled Assembly of Graphene-Based Aerogels. Acta Phys. -Chim. Sin., 2016, 32(9): 2146-2158.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201605243     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2016/V32/I9/2146

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896
(2) Chen, D.; Feng, H.; Li, J. Chem. Rev. 2012, 112 (11), 6027.doi: 10.1021/cr300115g
(3) Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Chem. Rev. 2012, 112 (11), 6156. doi: 10.1021/cr3000412
(4) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3), 902.doi: 10.1021/nl0731872
(5) Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y
(6) Bolotin, K. I.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Solid State Commun. 2008, 146 (9), 351. doi: 10.1016/j.ssc.2008.02.024
(7) Li, C.; Shi, G. Q. Adv. Mater. 2014, 26 (24), 3992. doi: 10.1002/adma.201306104
(8) Jiang, L.; Fan, Z. Nanoscale 2014, 6 (4), 1922. doi: 10.1039/c3nr04555b
(9) Zeng, M.; Wang, W. L.; Bai, X. D. Chin. Phys. B 2013, 22 (9), 098105. doi: 10.1088/1674-1056/22/9/098105
(10) Tang, J. J.; Di, F.; Xu, X.; Xiao, Y. H.; Che, J. F. Prog. Chem. 2012, 24 (4), 50. [唐晶晶, 第凤, 徐潇, 肖迎红, 车剑飞. 化学进展, 2012, 24 (4), 501.]
(11) Huang, H. Z.; He, Y. Q.; Li, W. Y.; Chu, X. F; Li, Y. M.; Chen, H. M.; Liu, D. Y. Acta Phys. -Chim. Sin. 2014, 35 (2), 457. [黄河洲, 贺蕴秋, 李文有, 储晓菲, 李一鸣, 陈慧敏, 刘德宇. 物理化学学报, 2014, 35 (2), 457.] doi: 10.3866/PKU.WHXB201501093
(12) Nardecchia, S.; Carriazo, D.; Ferrer, M. L.; Gutierrez, M. C.; delMonte, F. Chem. Soc. Rev. 2013, 42 (2), 794. doi: 10.1039/c2cs35353a
(13) Shi, W.W.; Yan, F.; Zhou, G. J.; Ye, Z. K.; Xi, F. N. Chemistry 2013, 76 (11), 988. [石微微, 晏菲, 周国珺, 叶志凯, 奚凤娜.化学通报, 2013, 76 (11), 988.]
(14) Hummers, W. S., Jr.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80 (6), 1339. doi: 10.1021/ja01539a017
(15) Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G.Nat. Nanotechnol. 2008, 3 (2), 101. doi: 10.1038/nnano.2007.451
(16) Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Nat. Nanotechnol. 2009, 4 (1), 25. doi: 10.1038/NNANO.2008.329
(17) Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M. Carbon 2010, 48 (15), 4466. doi: 10.1016/j.carbon.2010.08.006
(18) Zhang, L.; Wang, Z.; Xu, C.; Li, Y.; Gao, J.; Wang, W.; Liu, Y. J. Mater. Chem. 2011, 21 (28), 10399. doi: 10.1039/c0jm04043f
(19) Xu, Y.; Wu, Q.; Sun, Y.; Bai, H.; Shi, G. ACS Nano 2010, 4 (12), 7358. doi: 10.1021/nn1027104
(20) Huang, C.; Bai, H.; Li, C.; Shi, G. Chem. Commun. 2011, 47 (17), 4962. doi: 10.1039/c1cc10412h
(21) Bai, H.; Li, C.; Wang, X.; Shi, G. J. Phys. Chem. C 2011, 115 (13), 5545. doi: 10.1021/jp1120299
(22) Huang, H.; Lü, S.; Zhang, X.; Shao, Z. Soft Matter 2012, 8 (17), 4609. doi: 10.1039/c2sm25090j
(23) Huang, H.; Chen, P.; Zhang, X.; Lu, Y.; Zhan, W. Small 2013, 9 (8), 1397. doi: 10.1002/small.201202965
(24) Peng, L.; Zheng, Y.; Li, J.; Jin, Y.; Gao, C. ACS Catal. 2015, 5 (6), 3387. doi: 10.1021/acscatal.5b00233
(25) Xu, Y.; Sheng, K.; Li, C.; Shi, G. ACS Nano 2010, 4 (7), 4324.doi: 10.1021/nn101187z
(26) Zhang, L.; Shi, G. J. Phys. Chem. C 2011, 115 (34), 17206.doi: 10.1021/jp204036a
(27) Wang, J. D.; Peng, T. J.; Sun, H. J.; Hou, Y. D. Acta Phys. -Chim. Sin. 2014, 30 (11), 2077. [汪建德, 彭同江, 孙红娟, 侯云丹. 物理化学学报, 2014, 30 (11), 2077.]doi: 10.3866/PKU.WHXB201409152
(28) Hu, K.; Xie, X.; Szkopek, T.; Cerruti, M. Chem. Mater. 2016, 28 (6), 1756. doi: 10.1021/acs.chemmater.5b04713
(29) Sui, Z.; Zhang, X.; Lei, Y.; Luo, Y. Carbon 2011, 49 (13), 4314.doi: 10.1016/j.carbon.2011.06.006
(30) Chen, W.; Yan, L. Nanoscale 2011, 3 (8), 3132. doi: 10.1039/c1nr10355e
(31) Sheng, K.; Xu, Y.; Li, C.; Shi, G. New Carbon Mater. 2011, 26 (1), 9. doi: 10.1016/S1872-5805(11)60062-0
(32) Chen, M.; Wang, H.; Li, L.; Zhang, Z.; Wang, C.; Liu, Y.; Wang, W.; Gao, J. ACS Appl. Mater. Interfaces 2014, 6 (16), 14327.doi: 10.1021/am5036169
(33) Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. ACS Nano 2012, 6 (3), 2693. doi: 10.1021/nn300082k
(34) Gao, H.; Sun, Y.; Zhou, J.; Xu, R.; Duan, H. ACS Appl. Mater. Interfaces 2013, 5 (2), 425. doi: 10.1021/am302500v
(35) Luan, V. H.; Tien, H. N.; Hoa, L. T.; Nguyen, T. M. H.; Oh, E.S.; Chung, J.; Kim, E. J.; Choi, W. M.; Kong, B. S.; Hur, S. H.J. Mater. Chem. A 2013, 1 (2), 208. doi: 10.1039/c2ta00444e
(36) Zhang, L.; Chen, G.; Hedhili, M. N.; Zhang, H.; Wang, P.Nanoscale 2012, 4 (22), 7038. doi: 10.1039/c2nr32157b
(37) Pham, H. D.; Pham, V. H.; Cuong, T. V.; Nguyen-Phan, T. D.; Chung, J. S.; Shin, E.W.; Kim, S. Chem. Commun. 2011, 47 (34), 9672. doi: 10.1039/c1cc13329b
(38) Sheng, K.; Sun, Y.; Li, C.; Yuan, W.; Shi, G. Sci. Rep. 2012, 26 (1), 9. doi: 10.1038/srep00247
(39) Li, Y.; Sheng, K.; Yuan, W.; Shi, G. Chem. Commun. 2013, 49 (3), 291. doi: 10.1039c2cc37396c
(40) Liu, Q.; He, M.; Xu, X.; Zhang, L.; Yu, J. New J. Chem. 2013, 37 (1), 181. doi: 10.1039/c2nj40493a
(41) Hu, C.; Zhai, X.; Liu, L.; Zhao, Y.; Jiang, L.; Qu, L. Sci. Rep. 2013, 3 (6), 2065. doi: 10.1038/srep02065
(42) Maiti, U. N.; Lim, J.; Lee, K. E.; Lee, W. J.; Kim, S. O. Adv. Mater. 2014, 26 (4), 615. doi: 10.1002/adma.201303503
(43) Zhang, X.; Sui, Z.; Xu, B.; Yue, S.; Luo, Y.; Zhan, W.; Liu, B. J. Mater. Chem. 2011, 21 (18), 6494. doi: 10.1039/c1jm10239g
(44) Nguyen, S. T.; Nguyen, H. T.; Rinaldi, A.; Nguyen, N. P.; Fan, Z.; Duong, H. M. Colloids Surf. Physicochem. Eng. Aspects 2012, 414 (46), 352. doi: 10.1016/j.colsurfa.2012.08.048
(45) Wu, X.; Zhou, J.; Xing, W.; Wang, G.; Cui, H.; Zhuo, S.; Xue, Q.; Yan, Z.; Qiao, S. Z. J. Mater. Chem. 2012, 22 (43), 23186.doi: 10.1039/c2jm35278h
(46) Tang, Z.; Shen, S.; Zhuang, J.; Wang, X. Angew. Chem. Int. Edit. 2010, 49 (27), 4603. doi: 10.1002/anie.201000270
(47) Jiang, X.; Ma, Y.; Li, J.; Fan, Q.; Huang, W. J. Phys. Chem. C 2010, 114 (51), 22462. doi: 10.1021/jp108081g
(48) Chen, M.; Zhang, C.; Li, X.; Zhang, L.; Ma, Y.; Zhang, L.; Xu, X.; Xia, F.; Wang, W.; Gao, J. J. Mater. Chem. A 2013, 1 (8), 2869. doi: 10.1039/c2ta00820c
(49) Li, Y. R.; Chen, J.; Huang, L.; Li, C.; Hong, J. D.; Shi, G. Q.Adv. Mater. 2014, 26 (28), 4789. doi: 10.1002/adma.201400657
(50) Menzel, R.; Barg, S.; Miranda, M.; Anthony, D. B.; Bawaked, S.M.; Mokhtar, M.; Al-Thabaiti, S. A.; Basahel, S. N.; Saiz, E.; Shaffer, M. S. P. Adv. Funct. Mater. 2015, 25 (1), 28.doi: 10.1002/adfm.201401807
(51) Barg, S.; Perez, F. M.; Ni, N.; do Vale Pereira, P.; Maher, R. C.; Garcia-Tuñon, E.; Eslava, S.; Agnoli, S.; Mattevi, C.; Saiz, E.Nature Communications 2014, 5, 4328. doi: 10.1038/ncomms5328
(52) Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Adv. Mater. 2013, 25 (15), 2219. doi: 10.1002/adma.201204530
(53) Qiu, L.; Bulut Coskun, M.; Tang, Y.; Liu, J. Z.; Alan, T.; Ding, J.; Truong, V. T.; Li, D. Adv. Mater. 2016, 28 (1), 194.doi: 10.1002/adma.201503957
(54) Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. ACS Nano 2012, 6 (8), 7103. doi: 10.1021/nn200069w
(55) Yang, H.; Zhang, T.; Jiang, M.; Duan, Y.; Zhang, J. J. Mater. Chem. A 2015, 3 (38), 19268. doi: 10.1039/c5ta06452j
(56) Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Nano Lett. 2008, 8 (2), 565. doi: 10.1021/nl0728874
(57) De Arco, L. G.; Zhang, Y.; Kumar, A.; Zhou, C. IEEE Trans. Nanotechnol. 2009, 8 (2), 135. doi: 10.1109/TNANO.2009.2013620
(58) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2008, 9 (1), 30.doi: 10.1021/nl801827v
(59) Li, X.; Magnuson, C.W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. J. Am. Chem. Soc. 2011, 133 (9), 2816. doi: 10.1021/ja109793s
(60) Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. Nat. Nanotechnol. 2010, 5 (8), 574. doi: 10.1038/NNANO.2010.132
(61) Chen, X. L.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Acta Phys. -Chim. Sin. 2016, 32 (1), 14. [陈旭东, 陈召龙, 孙靖宇, 张艳锋, 刘忠范. 物理化学学报, 2016, 32 (1), 14.] doi: 10.3866/PKU.WHXB201511133
(62) Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M. Nat. Mater. 2011, 10 (6), 424. doi: 10.1038/NMAT3001
(63) Dong, X.; Wang, X.; Wang, L.; Song, H.; Zhang, H.; Huang, W.; Chen, P. ACS Appl. Mater. Interfaces 2012, 4 (6), 3129.doi: 10.1021/am300459m
(64) Li, W.; Gao, S.; Wu, L.; Qiu, S.; Guo, Y.; Geng, X.; Chen, M.; Liao, S.; Zhu, C.; Gong, Y.; Long, M.; Xu, J.; Wei, X.; Sun, M.; Liu, L. Sci. Rep. 2013, 3 (7), 120. doi: 10.1038/srep02125
(65) Bi, H.; Chen, I.W.; Lin, T.; Huang, F. Adv. Mater. 2015, 27 (39), 5943. doi: 10.1002/adma.201502682
(66) Bi, H.; Lin, T.; Xu, F.; Tang, Y.; Liu, Z.; Huang, F. Nano Lett. 2015. doi: 10.1021/acs.nanolett.5b03923
(67) Li, J.; Wang, F.; Liu, C. J. Colloid Interface Sci. 2012, 382 (1), 13. doi: 10.1016/j.jcis.2012.05.040
(68) Sun, R.; Chen, H.; Li, Q.; Song, Q.; Zhang, X. Nanoscale 2014, 6 (21), 12912. doi: 10.1039/c4nr03322a
(69) Qiu, L.; Liu, D.; Wang, Y.; Cheng, C.; Zhou, K.; Ding, J.; Truong, V. T.; Li, D. Adv. Mater. 2014, 26 (20), 3333.doi: 10.1002/adma.201305359
(70) Hu, H.; Zhao, Z.; Wan, W.; Gogotsi, Y.; Qiu, J. ACS Appl. Mater. Interfaces 2014, 6 (5), 3242. doi: 10.1021/am4050647
(71) Wang, J.; Ellsworth, M. ECS Transactions 2009, 19 (5), 241.doi: 10.1149/1.3119548
(72) Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F. J. Am. Chem. Soc. 2010, 132 (40), 14067. doi: 10.1021/ja1072299
(73) Meng, F.; Zhang, X.; Xu, B.; Yue, S.; Guo, H.; Luo, Y. J. Mater. Chem. 2011, 21 (46), 18537. doi: 10.1039/c1jm13960f
(74) Lee, Y. J.; Park, H.W.; Kim, G. P.; Yi, J.; Song, I. K. Curr. Appl. Phys. 2013, 13 (5), 945. doi: 10.1016/j.cap.2013.02.005
(75) Markovi?, Z. M.; Babi?, B. M.; Drami?anin, M. D.; Antunovi?, I. D. H.; Pavlovi?, V. B.; Peruško, D. B.; Markovi?, B. M. T.Synth. Met. 2012, 162 (9), 743. doi: 10.1016/j.synthmet.2012.03.019
(76) Sui, Z. Y.; Meng, Q. H.; Zhang, X. T.; Ma, R.; Cao, B. J. Mater. Chem. 2012, 22 (18), 8767. doi: 10.1039/c2jm00055e
(77) Sun, H.; Xu, Z.; Gao, C. Adv. Mater. 2013, 25 (18), 2554.doi: 10.1002/adma.201204576
(78) Chen, W. F.; Li, S. R.; Chen, C. H.; Yan, L. F. Adv. Mater. 2011, 23 (47), 5679. doi: 10.1002/adma.201102838
(79) Han, W.; Ren, L.; Gong, L.; Qi, X.; Liu, Y.; Yang, L.; Wei, X.L.; Zhong, J. ACS Sus. Chem. Eng. 2013, 2 (4), 2189.doi: 10.1021/sc400417u
(80) Niu, Z.; Liu, L.; Zhang, L.; Shao, Q.; Zhou, W.; Chen, D.; Xie, S. Adv. Mater. 2014, 26 (22), 3681. doi: 10.1002/adma.201400143
(81) Chen, L.; Wang, X.; Zhang, X.; Zhang, H. J. Mater. Chem. 2012, 22 (41), 22090. doi: 10.1039/c2jm34541b
(82) Xiao, L.; Wu, D.; Han, S.; Huang, Y.; Li, S.; He, M.; Zhang, F.; Feng, X. ACS Appl. Mater. Interfaces 2013, 5 (9), 3764.doi: 10.1021/am400387t
(83) Yin, H.; Zhao, S.; Wan, J.; Tang, H.; Chang, L.; He, L.; Zhao, H.; Gao, Y.; Tang, Z. Adv. Mater. 2013, 25 (43), 6270.doi: 10.1002/adma.201302223
(84) Wu, S. S.; Chen, W. F.; Yan, L. F. J. Mater. Chem. A 2014, 2 (8), 2765. doi: 10.1039/c3ta14387b
(85) Liu, J. H.; Liu, B. H.; Li, Z. P. Acta Phys. -Chim. Sin. 2014, 30 (9), 1650. [刘建华, 刘宾虹, 李洲鹏. 物理化学学报, 2014, 30 (9), 1650.] doi: 10.3866/PKU.WHXB201406181
(86) Chen, L.; Wei, B.; Zhang, X. T.; Li, C. Small 2013, 9 (13), 2331.doi: 10.1002/small.201202923
(87) Shuvo, M. A. I.; Khan, M. A. R.; Karim, H.; Morton, P.; Wilson, T.; Lin, Y. ACS Appl. Mater. Interfaces 2013, 5 (16), 7881.doi: 10.1021/am401978t
(88) Chen, X.; He, D. P.; Mu, S. C. Prog. Chem. 2013, 25 (8), 1292.[陈旭, 何大平, 木士春. 化学进展, 2013, 25 (8), 1292.]
(89) Xue, Y.; Liu, J.; Chen, H.; Wang, R.; Li, D.; Qu, J.; Dai, L.Angew. Chem. Int. Edit. 2012, 51 (48), 12124. doi: 10.1002/anie.201207277
(90) Zhao, Y.; Hu, C.; Hu, Y.; Cheng, H.; Shi, G.; Qu, L. Angew. Chem. Int. Edit. 2012, 51 (45), 11371. doi: 10.1002/anie.201206554
(91) Moon, I. K.; Yoon, S.; Chun, K. Y.; Oh, J. Adv. Funct. Mater. 2015, 25 (45), 6976. doi: 10.1002/adfm.201502395
(92) Chen, S.; Duan, J.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Edit. 2013, 52 (51), 13567. doi: 10.1002/anie.201306166
(93) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28 (11), 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28 (11), 2745.] doi: 10.3866/PKU.WHXB201208221
(94) Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez K.; Feng, X. L.; Mullen, K. J. Am. Chem. Soc. 2012, 134 (22), 9082. doi: 10.1021/ja3030565
(95) Chen, L.; Cui, X.; Wang, Y.; Wang, M.; Qiu, R.; Shu, Z.; Zhang, L.; Hua, Z.; Cui, F.; Weia, C.; Shi, J. Dalton Trans. 2014, 43 (9), 3420. doi: 10.1039/c3dt52253a
(96) Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X.; Müllen, K. Adv. Mater. 2012, 24 (37), 5130. doi: 10.1002/adma.201201948

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[6] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[7] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[8] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[9] SCHLERETH, Andrew NOOMUNA Panae, GAO Pei. Mesoscale Protein Patterning on a Self-Assembled Monolayer Coated Silicon Surface through Nanosphere Lithography[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 810-815.
[10] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[11] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[12] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[13] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[14] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.
[15] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2284-2292.