Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (9): 2185-2196    DOI: 10.3866/PKU.WHXB201605255
REVIEW     
Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts
Yang LU*()
Download: HTML     PDF(18313KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The crystal facet effect of photocatalysts has aroused increasing attention owing to its importance for the synthesis of novel photocatalysts, understanding photocatalytic mechanisms, and enhancing photocatalytic efficiency. In this paper, the research approaches, recently discovered phenomena, and the application of the facet effect of TiO2 are reviewed. The prospects and challenges of using the crystal facet effect of TiO2 photocatalysts are discussed.



Key wordsTiO2      Crystal facet      Photocatalysis      Structure-activity relationship      Anisotropy     
Received: 12 April 2016      Published: 25 May 2016
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(51372248);the National Natural Science Foundation of China(51432009)
Corresponding Authors: Yang LU     E-mail: ylucas@126.com; yanglu@issp.ac.cn
Cite this article:

Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605255     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I9/2185

Fig 1 Facet-dependent electron transfer of TiO2 studied by theoretical calculation22 (a) nonstoichiometric model Ti97O186 with build-up (001) boundary surface: (●) titanium, (〇) oxygen; (b) Titanium atoms in the Ti97O186(OH)16 center gain electrons, whereas oxygen atoms on the (001) surface lose electrons.
Fig 2 Scanning electron microscope (SEM) images of TiO2 particles with facet-selective deposition of Pt or PbO2 by photochemical deposition method14 (a) a rutile particle and (c) an anatase particle showing PbO2 deposits, which were loaded on the particles by UV-irradiation of the Pt-deposited TiO2 powder in a solution of 0.1 mol?L-1 Pb(NO3)2; (b) a rutile particle and (d) an anatase particle on which Pt fine particles were deposited by UV-irradiation in a solution containing 1.0 mmol?L-1 H2PtCl6.
Fig 3 Facet-dependent properties of photoelectron transfer of TiO2 characterized by single-molecule fluorescence imaging method30 (A) illustration of the remote photocatalytic reaction on the {101} facets with DN-BONIPY (probe molecule) during photoirradiation onto the {001} facets. The irradiated area was limited by a pinhole (the spot diameter is 2 μm on the crystal surface). (B, C) location of fluorescence bursts on the {001} (inner) and {101} (side) facets. The UV irradiation areas are inside the black circles (diameter 2 μm).
Fig 4 Effective adsorption sites of probe molecules on the anatase {001} and {101} facets determined by single-molecule fluorescence imaging method69 (a) fluorescence images of a TiO2 microcrystal with dominant {001} facets in acetonitrile solution under 488 nm laser irradiation. The average fluorescence intensities are (3.0±0.2) × 104 and (2.2±0.3) × 104 counts for {001} and {101} surfaces, respectively. (b) locations of the reactive sites on a TiO2 microcrystal with dominant {001} facets in neutral water.
Fig 5 Role of facets in electron transfer and photocatalytic processes probed by electron spin resonance method27
Fig 6 SEM images of TiO2 particles dominantly exposed with different facets29
Fig 7 Facet-dependent electrical conductivity of anatase TiO2 particle36 detection between (101) and (101) facets (〇), (101) and (001) facets (□), and (001)-(001) facets (△)
Fig 8 Comparison of photocatalytic activities of anatase {001} and {101} facets via photoelectrochemical method74 (a) voltammograms of anatase TiO2 photoanode fabricated from TiO2 microspheres with exposed {001} facets at different UV light intensities; (b) voltammograms of anatase TiO2 photoanode fabricated from TiO2 microspheres with {101} facets at different UV light intensities; (c) relationships of saturation photocurrents (Isph) for two anatase TiO2 microsphere photoanodes and UV light intensities. The saturation photocurrents for two anatase TiO2 microsphere photoanodes measured at +0.40 V and derived from Fig. 8(a, b).
Fig 9 Bulk resistivity anisotropy of a TiO2(110) crystal along various azimuths parallel to the surface79
Fig 10 Anatase TiO2 nanosheets array with dominant {001} facets directly grown on fluorine-doped tin oxide (FTO) conductive substrate77 (A, B) low and high magnification surface SEM images of {001} faceted anatase TiO2 films before calcinations; (C) surface SEM image of {001} faceted anatase TiO2 film after calcination; (D) cross-sectional SEM image of {001} faceted anatase TiO2 film after calcination. (E, F) transmission electron microscopy (TEM) images of {001} facet exposed anatase nanosheets before and after calcination; the insets of corresponding selected-area electron diffraction (SAED) patterns
Fig 11 (a) Density of states (DOS) plots for {101} and {001} surfaces of anatase TiO2; (b) {001} and {101} surface heterojunction81
Fig 12 TiO2 nanocrystals (NCs) with facet-selective Pt deposition and their hydrogen production34 (a) TEM images of anatase TiO2 NCs with selective Pt deposition, the top right inset is high-magnification TEM image and the bottom right inset is corresponding model; (b) hydrogen production of naked TiO2 NCs, TiO2 NCs with selective deposition of Pt on {101} facets (TiO2-Pt(S)-0.5%), and TiO2 NCs with nonselective deposition of Pt (TiO2-Pt(NS)-0.5%), respectively
Fig 13 SEM images of BiVO4 with and without single metal/oxide deposited41 (a) BiVO4; (b) Au/BiVO4; (c) Pt/BiVO4; (d) Ag/BiVO4; (e) MnOx/BiVO4; (f) PbO2/BiVO4
1 Linsebigler A. L. ; Lu G. Q. ; Yates J. T. Chem. Rev. 1995, 95, 735.
2 Gratzel M. Nature 2001, 414, 338.
3 Diebold U. Surf. Sci. Rep. 2003, 48, 53.
4 Chen X. ; Mao S. S. Chem. Rev. 2007, 107, 2891.
5 Bourikas K. ; Kordulis C. ; Lycourghiotis A. Chem. Rev. 2014, 114, 9754.
6 Ma Y. ; Wang X. L. ; Jia Y. S. ; Chen X. B. ; Han H. X. ; Li C. Chem. Rev. 2014, 114, 9987.
7 Liu G. ; Yang H. G. ; Pan J. ; Yang Y. Q. ; Lu G. Q. ; Cheng H. M. Chem. Rev. 2014, 114, 9559.
8 Vittadini A. ; Selloni A. ; Rotzinger F. P. ; Gr?zel M. Phys. Rev. Lett. 1998, 81, 2954.
9 Lazzeri M. ; Vittadini A. ; Selloni A. Phys. Rev. B 2001, 63, 155409.
10 Gong X. Q. ; Selloni A. J. Phys. Chem. B 2005, 109, 19560.
11 Gong X. Q. ; Selloni A. ; Vittadini A. J. Phys. Chem. B 2006, 110, 2804.
12 Kuang Q. ; Wang X. ; Jiang Z. Y. ; Xie Z. X. ; Zheng L. S. Accounts Chem. Res. 2014, 47, 308.
13 Zhou Z. Y. ; Tian N. ; Li J. T. ; Broadwell I. ; Sun S. G. Chem. Soc. Rev. 2011, 40, 4167.
14 Ohno T. ; Sarukawa K. ; Matsumura M. New J. Chem. 2002, 26, 1167.
15 Selloni A. Nature Mater. 2008, 7, 613.
16 Yang H. G. ; Sun C. H. ; Qiao S. Z. ; Zou J. ; Liu G. ; Smith S.C. ; Cheng H. M. ; Lu G. Q. Nature 2008, 453, 638.
17 Ong W. J. ; Tan L. L. ; Chai S. P. ; Yong S. T. ; Mohamed A. R. Nanoscale 2014, 6, 1946.
18 Ong W. J. ; Tan L. L. ; Chai S. P. ; Yong S. T. ; Mohamed A. R. ChemSusChem 2014, 7, 690.
19 Guo S. ; Wang E. Nano Today 2011, 6, 240.
20 Koper M. T. M. Nanoscale 2011, 3, 2054.
21 Wu B. ; Zheng N. Nano Today 2013, 8, 168.
22 Bredow T. ; Jug K. J. Phys. Chem. 1995, 99, 285.
23 Hengerer R. ; Kavan L. ; Krtil P. ; Gr?zel M. J. Electrochem. Soc. 2000, 147, 1467.
24 Murakami N. ; Kurihara Y. ; Tsubota T. ; Ohno T. J. Phys. Chem. C 2009, 113, 3062.
25 Tachikawa T. ; Wang N. ; Yamashita S. ; Cui S. C. ; Majima T. Angew. Chem. Int. Edit. 2010, 49, 8593.
26 Ahmed A. Y. ; Kandiel T. A. ; Oekermann T. ; Bahnemann D. J. Phys. Chem. Lett. 2011, 2, 2461.
27 D'Arienzo M. ; Carbajo J. ; Bahamonde A. ; Crippa M. ; Polizzi S. ; Scotti R. ; Wahba L. ; Morazzoni F. J. Am. Chem. Soc. 2011, 133, 17652.
28 Maitani M. M. ; Tanaka K. ; Mochizuki D. ; Wada Y. J. Phys. Chem. Lett. 2011, 2, 2655.
29 Pan J. ; Liu G. ; Lu G. M. ; Cheng H. M. Angew. Chem. Int. Edit. 2011, 50, 2133.
30 Tachikawa T. ; Yamashita S. ; Majima T. J. Am. Chem. Soc. 2011, 133, 7197.
31 Tachikawa T. ; Majima T. Chem. Commun. 2012, 48, 3300.
32 Wu Q. ; Liu M. ; Wu Z. ; Li Y. ; Piao L. J. Phys. Chem. C 2012, 116, 26800.
33 Zhao Y. B. ; Ma W. H. ; Li Y. ; Ji H.W. ; Chen C. C. ; Zhu H.Y. ; Zhao J. C. Angew. Chem. Int. Edit. 2012, 51, 3188.
34 Liu C. ; Han X. ; Xie S. ; Kuang Q. ; Wang X. ; Jin M. ; Xie Z. ; Zheng L. Chem. -Asian J. 2013, 8, 282.
35 Liu L. C. ; Gu X. R. ; Ji Z. Y. ; Zou W. X. ; Tang C. J. ; Gao F. ; Dong L. J. Phys. Chem. C 2013, 117, 18578.
36 Kim C.W. ; Yeob S. J. ; Cheng H. M. ; Kang Y. S. Energy Environ. Sci. 2015, 8, 3646.
37 Li C. H. ; Li C. H. ; koenigsmann C. ; Ding W. D. ; Rudshteyn B. ; Yang K. r. ; Regan K. P. ; Konezny S. J. ; Batista V. S. ; Brudvig G.W. ; Schmuttenmaer C. A. ; Kim J. H. J. Am. Chem. Soc. 2015, 137, 1520.
38 Wang M. J. ; Zhang F. ; Zhu X. D. ; Qi Z. M. ; Hong B. ; Ding J. J. ; Bao J. ; Sun S. ; Gao C. Langmuir 2015, 31, 1730.
39 Zhuang M. ; Zheng Y. F. ; Liu Z. J. ; Huang W. Z. ; Hu X. C. RSC Adv. 2015, 5, 13200.
40 Li C. J. ; Zhang P. ; Lv R. ; Lu J.W. ; Wang T. ; Wang S. P. ; Wang H. F. ; Gong J. L. Small 2013, 9, 3951.
41 Li R. ; Zhang F. ; Wang D. ; Yang J. ; Li M. ; Zhu J. ; Zhou X. ; Han H. ; Li C. Nature Commun. 2013, 4, 1432.
42 Li R. ; Han H. ; Zhang F. ; Wang D. ; Li C. Energy Environ. Sci. 2014, 7, 1369.
43 Hardcastle T. P. ; Brydson R. M. D. ; Livi K. J. T. ; Seabourne C. R. ; Scott A. J. J. Phys.: Conf. Ser. 2012, 371, 012059.
44 Amano F. ; Yasumoto T. ; Prieto-Mahaney O. O. ; Uchida S. ; Shibayama T. ; Ohtani B. Chem. Commun. 2009, 2311
45 Bae E. ; Murakami N. ; Ohno T. J. Mol. Catal. A-Chem. 2009, 300, 72.
46 Han X. G. ; Kuang Q. ; Jin M. S. ; Xie Z. X. ; Zheng L. S. J. Am. Chem. Soc. 2009, 131, 3152.
47 Liu M. ; Piao L. ; Zhao L. ; Ju S. ; Yan Z. ; He T. ; Zhou C. ; Wang W. Chem. Commun. 2010, 46, 1664- 6.
48 Chen J. S. ; Lou X. W. Chem. Sci. 2011, 2, 2219.
49 Sun L. ; Qin Y. ; Cao Q. ; Hu B. ; Huang Z. ; Ye L. ; Tang X. Chem. Commun. 2011, 47, 12628.
50 Han X. G. ; Wang X. ; Xie S. F. ; Kuang Q. ; Ouyang J. J. ; Xie Z. X. ; Zheng L. S. RSC Adv. 2012, 2, 3251.
51 Liu X. L. ; Zhang H. M. ; Yao X. D. ; An T. C. ; Liu P. R. ; Wang Y. ; Peng F. ; Carroll A. R. ; Zhao H. J. Nano Res. 2012, 5, 762.
52 Cheng X. L. ; Hu M. ; Huang R. ; Jiang J. S. ACS Appl. Mater. Inter. 2014, 6, 19176.
53 Shi Q. ; Li Y. ; Zhan E. ; Ta N. ; Shen W. CrystEngComm 2015, 17, 3376.
54 Yang H. G. ; Liu G. ; Qiao S. Z. ; Sun C. H. ; Jin Y. G. ; Smith S. C. ; Zou J. ; Cheng H. M. ; Lu G. Q. J. Am. Chem. Soc. 2009, 131, 4078.
55 Liu P. R. ; Wang Y. ; Zhang H. M. ; An T. C. ; Yang H. G. ; Tang Z. Y. ; Cai W. P. ; Zhao H. J. Small 2012, 8, 3664.
56 Lee W. J. ; Sung Y. M. Cryst. Growth Des. 2012, 12, 5792.
57 Amano F. ; Prieto-Mahaney O. O. ; Terada Y. ; Yasumoto T. ; Shibayama T. ; Ohtani B. Chem. Mater. 2009, 21, 2601.
58 Jiang H. B. ; Cuan Q. A. ; Wen C. Z. ; Xing J. ; Wu D. ; Gong X. Q. ; Li C. Z. ; Yang H. G. Angew. Chem. Int. Edit. 2011, 50, 3764.
59 Liu L. ; Qian J. S. ; Li B. ; Cui Y. M. ; Zhou X. F. ; Guo X. F. ; Ding W. P. Chem. Commun. 2010, 46, 2402.
60 Wu N. ; Wang J. ; Tafen D. N. ; Wang H. ; Zheng J. G. ; Lewis J. P. ; Liu X. ; Leonard S. S. ; Manivannan A. J. Am. Chem. Soc. 2010, 132, 6679.
61 Bian Z. F. ; Tachikawa T. ; Majima T. J. Phys. Chem. Lett. 2012, 3, 1422.
62 Xu H. ; Reunchan P. ; Ouyang S. ; Tong H. ; Umezawa N. ; Kako T. ; Ye J. Chem. Mater. 2013, 25, 405.
63 Zhang A. Y. ; Long L. L. ; Li W.W. ; Wang W. K. ; Yu H. Q. Chem. Commun. 2013, 49, 6075.
64 Sosnowchik B. D. ; Chiamori H. C. ; Ding Y. ; Ha J. Y. ; Wang Z. L. ; Lin L. W. Nanotechnology 2010, 21, 485601.
65 Wang X. ; Li R. G. ; Xu Q. ; Han H. X. ; Li C. Acta Phys. -Chim. Sin. 2013, 29, 1566.
65 王翔; 李仁贵; 徐倩; 韩洪宪; 李灿. 物理化学学报, 2013, 29, 1566.
66 Hirakawa T. ; Nosaka Y. Langmuir 2002, 18, 3247.
67 Liu G. ; Sun C. H. ; Yang H. G. ; Smith S. C. ; Wang L. Z. ; Lu G. Q. ; Cheng H. M. Chem. Commun. 2010, 46, 755.
68 Tachikawa T. ; Majima T. Chem. Soc. Rev. 2010, 39, 4802.
69 Tachikawa T. ; Ohsaka T. ; Bian Z. F. ; Majima T. J. Phys. Chem. C 2013, 117, 11219.
70 Jiang D. L. ; Zhao H. J. ; Zhang S. Q. ; John R. J. Catal. 2004, 223, 212.
71 Zhao H. J. ; Jiang D. L. ; Zhang S. L. ; Wen W. J. Catal. 2007, 250, 102.
72 Sun T. ; Wang Y. ; Al-Mamun M. ; Zhang H. M. ; Liu P. R. ; Zhao H. J. RSC Adv. 2015, 5, 12860.
73 Zhao H. J. ; Shen Y. M. ; Zhang S. Q. ; Zhang H. M. Langmuir 2009, 25, 11032.
74 Zhang H. M. ; Liu P. R. ; Li F. ; Liu H.W. ; Wang Y. ; Zhang S.Q. ; Guo M. X. ; Cheng H. M. ; Zhao H. J. Chem. Eur. J. 2011, 17, 5949.
75 Jiang D. L. ; Zhao H. J. ; Zhang S. Q. ; John R. J. Phys. Chem. B 2003, 107, 12774.
76 Jiang D. L. ; Zhao H. J. ; Zhang S. Q. ; John R. ; Will G. D. J. Photochem. Photobiol. A 2003, 156, 201.
77 Lu Y. ; Wang G. Z. ; Zhang H. M. ; Zhang Y. X. ; Kang S. H. ; Zhao H. J. RSC Adv. 2015, 5, 55438.
78 Sun T. ; Wang Y. ; Al-Mamun M. ; Zhang H. M. ; Liu P. R. ; Zhao H. J. J. Phys. Chem. C 2015, 119, 17680.
79 Byl O. ; Yates J. T. J. Phys. Chem. B 2006, 110, 22966.
80 Luttrell T. ; Halpegamage S. ; Tao J. ; Kramer A. ; Sutter E. ; Batzill M. Sci. Rep. 2014, 4, 4043.
81 Yu J. G. ; Low J. X. ; Xiao W. ; Zhou P. ; Jaroniec M. J. Am. Chem. Soc. 2014, 136, 8839.
82 Sumita M. ; Hu C. P. ; Tateyama Y. J. Phys. Chem. C 2010, 114, 18529.
83 Batzill M. Energy Environ. Sci. 2011, 4, 3275.
84 Li Y. F. ; Liu Z. P. J. Am. Chem. Soc. 2011, 133, 15743.
85 Zheng Z. ; Huang B. ; Lu J. ; Qin X. ; Zhang X. ; Dai Y. Chem. Eur. J. 2011, 17, 15032.
86 Roy N. ; Sohn Y. ; Pradhan D. ACS Nano 2013, 7, 2532.
87 Jiang J. ; Zhao K. ; Xiao X. ; Zhang L. J. Am. Chem. Soc. 2012, 134, 4473.
88 Martin D. J. ; Umezawa N. ; Chen X. ; Ye J. ; Tang J. Energy Environ. Sci. 2013, 6, 3380.
89 Jiang M.W. ; Liu W. ; Yang X. L. ; Jiang Z. ; Yao T. ; Wei S.Q. ; Peng X. G. ACS Nano 2015, 9, 10950.
90 Li P. ; Zhou Y. ; Zhao Z. Y. ; Xu Q. F. ; Wang X. Y. ; Xiao M. ; Zou Z. G. J. Am. Chem. Soc. 2015, 137, 9547.
91 Mankin M. N. ; Day R.W. ; Gao R. X. ; No Y. S. ; Kim S. K. ; McClelland A. A. ; Bell D. C. ; Park H. G. ; Lieber C. M. Nano Lett. 2015, 15, 4776.
92 Huang X. P. ; Hou X. J. ; Song F. H. ; Zhao J. C. ; Zhang L. Z. Environ. Sci. & Technol. 2016, 50, 1964.
93 Liu L. ; Sun M. Q. ; Zhang H. J. ; Yu Q. L. ; Li M. C. ; Qi Y. ; Zhang C. D. ; Gao G. D. ; Yuan Y. J. ; Zhai H. H. ; Chen W. ; Alvarez P. J. J. Nano Lett. 2016, 16, 688.
94 Wang H. ; Lang X. F. ; Hao R. ; Guo L. ; Li J. H. ; Wang L. H. ; Han X. D. Nano Energy 2016, 19, 8.
95 Chang X. X. ; Gong J. L. Acta Phys.-Chim. Sin. 2016, 32, 2.
95 常晓侠; 巩金龙. 物理化学学报, 2016, 32, 2.
96 Li H. F. ; Yu H. T. ; Quan X. ; Chen S. ; Zhao H. M. Adv. Funct. Mater. 2015, 25, 3074.
97 Munprom R. ; Salvador P. A. ; Rohrer G. S. J. Mater. Chem. A 2015, 3, 2370.
98 Gordon T. R. ; Cargnello M. ; Paik T. ; Mangolini F. ; Weber R.T. ; Fornasiero P. ; Murray C. B. J. Am. Chem. Soc. 2012, 134, 6751.
[1] Ganxing DONG,Chuanhong JIN. Probing the Controlled Oxidative Etching of Palladium Nanorods by Liquid Cell Transmission Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 15-21.
[2] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[3] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 414-423.
[4] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[5] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[6] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[7] Hassan GOLMOHAMMADI,Zahra DASHTBOZORGI,Sajad KHOOSHECHIN. Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1160-1170.
[8] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[9] Ting-Ting ZHOU,Hua-Jie SONG,Feng-Lei HUANG. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 949-959.
[10] Meng-Fang CHANG,Lei LI,Xiao-Dan CAO,Meng-Hui JIA,Jia-Sheng ZHOU,Jin-Quan CHEN,Jian-Hua XU. Fluorescence Dynamics of LicT Protein by Time-Resolved Spectroscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1065-1070.
[11] Xiao-Ping GAO,Zhang-Long GUO,Ya-Nan ZHOU,Fang-Li JING,Wei CHU. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 602-610.
[12] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[13] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[14] Xiu-Mei WAN,Li WANG,Xiao-Qing GONG,Dan-Feng LU,Zhi-Mei QI. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2523-2531.
[15] Hai LAN,Xi XIAO,Shan-Liang YUAN,Biao ZHANG,Gui-Lin ZHOU,Yi JIANG. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2301-2309.