Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (8): 1866-1879    DOI: 10.3866/PKU.WHXB201605261
REVIEW     
Recent Progress in Non-Aqueous Lithium-Air Batteries
Ai-Ming WU1,Guo-Feng XIA1,Shui-Yun SHEN1,Jie-Wei YIN1,Ya MAO2,Qing-You BAI2,Jing-Ying XIE2,Jun-Liang ZHANG1,*()
1 Institute of Fuel Cells, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
2 Shanghai Institute of Space Power-Sources, Shanghai Academy of Spaceflight Technology, Shanghai 200233, P. R. China
Download: HTML     PDF(5636KB) Export: BibTeX | EndNote (RIS)      

Abstract  

As a secondary battery, the Li-air battery has the highest theoretical specific energy and has been considered as one of the most promising power sources for electric vehicles. The Li-air battery based on organic electrolyte has become a topic of interest owing to its excellent theoretical energy density, environmental friendliness and low cost. During the past 20 years, much progress has been made in the development of the reaction mechanism, cathode structure, catalyst and electrolyte materials. But there are still many obstacles to overcome before its practical applications. In this paper, we review some of the latest progress in the research on the reaction mechanism, cathode materials, catalysts, electrolytes, as well as the lithium anode. Future research and development prospects are also discussed.



Key wordsLi-air battery      Reaction mechanism      Cathode material      Lithium anode      Electrolyte     
Received: 28 March 2016      Published: 26 May 2016
MSC2000:  O646  
Fund:  The project was supported by the New Faculty Startup Fund of Shanghai Jiao Tong University, China(14X10040061);National Key Basic Research Program of China (973)(2014CB932303);SJTU-UM Project(15X120010002)
Corresponding Authors: Jun-Liang ZHANG     E-mail: junliang.zhang@sjtu.edu.cn
Cite this article:

Ai-Ming WU,Guo-Feng XIA,Shui-Yun SHEN,Jie-Wei YIN,Ya MAO,Qing-You BAI,Jing-Ying XIE,Jun-Liang ZHANG. Recent Progress in Non-Aqueous Lithium-Air Batteries. Acta Phys. -Chim. Sin., 2016, 32(8): 1866-1879.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605261     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I8/1866

Fig 1 SEM images of the hierarchically porous graphene23 (a) large interconnected tunnels; (b) small nanoscale pores contiguous with the large tunnels
Fig 2 Cycling performance of the nanoporous gold electrodes34
Fig 3 Cycling performance of the TiC electrodes35 DMSO: dimethyl sulfoxide
Fig 4 Background and IR-corrected specific oxygen reduction reaction (ORR) polarization curves of polycrystalline Pd, Pt, Ru, Au, and GC (glassy carbon) surfaces at an electrode speed of 100 r?min-1 and a sweep speed of 20 mV?s-1; (b) initial discharge profiles of Li-O2 cells of Pd/C, Pt/C, Ru/C, Au/C, and VC (vulcan carbon) at a current density of 100 mA?g-1; (c) Li+-ORR potentials at a current density of 2 μA?cm-2 as a function of calculated oxygen adsorption energy (ΔEO), relative to that of Pt (the electrolyte is 0.1 mol?L-1 LiClO4/DME (1,2-dimethoxyethane))37 ΔEO: per oxygen atom relative to an atom in the gas phase; DME: 1,2-dimethoxyethane
Fig 5 (a) STEM and schematic image of CNT@RuO2; (b) discharge/charge profiles of pristine CNT and CNT@RuO2 at a current density of 385 mA?g-1 38 Eo: theoretical open circuit voltage; CNT: carbon nanotube
Fig 6 (a) Structure of the pyrochlore Pb2Ru2O6.5 showing electron conduction paths; (b) schematic framework of oxygen vacancies in the mesoporous Pb2Ru2O6.5; (c) discharge/charge profiles of the first three cycles for carbon and Pb2Ru2O6.5 electrode48
Fig 7 (a) First discharge/charge profiles of the Li-O2 with CNT, Mo2C, and Mo2C/CNT electrodes at a discharge capacity of 500 mAh?g-1 and a current density of 100 mA?g-1; (b) cycling performance of Li-O2 with Mo2C/CNT electrodes at a discharge capacity of 500 mAh?g-1 and a current density of 100 mA?g-1 66
Fig 8 Fourier transform infrared (FTIR) (a) and surface enhanced Raman scattering (SERS) (b) spectra of a NPG cathode acquired on 1, 20, and 100 cycles for 1 mol?L-1 LiClO4/DMSO electrolyte containing 0.01 mol?L-1 TTF68 NPG: nanoporous gold; DMSO: dimethylsulfoxide; TTF: tetrathiafulvalene
Catalytic material Electrode Specific capacity Current density Normalized by the mass of material Reference
(mAh?g-1)
carbon CNT fibrils 3000 2000 mA?g-1 CNT 22
hierarchically porous graphene 15000 0.1 mA?cm-2 carbon 23
mesoporous carbon nanocube 22390 400 mA?g-1 carbon 26
bicontinuous nanoporous graphene 10400 300 mA?g-1 carbon 27
mesocellular carbon foam 2500 0.1 mA?cm-2 carbon 29
precious metal nanoporous gold 300 500 mA?g-1 Au 34
PtAu/C 1500 500 mA?g-1 carbon 36
CNT@RuO2 4350 100 mA?g-1 total cathode 38
Ru@porous graphene 17710 200 mA?g-1 graphene 39
porous AgPd-Pd composite 2650 0.2 mA?g-1 total cathode 42
Pd-modified hollow sphericalcarbon 12254 200 mA?g-1 carbon 43
transition metal oxide carbon/α-MnO2 nanowires 3000 70 mA?g-1 carbon 46
Fe2O3@C@MnO2 10200 100 mA?g-1 Fe2O3@C@MnO2 47
Pb2Ru2O6.5 10400 70 mA?g-1 carbon 48
MnCo2O4-graphene 3784 100 mA?g-1 MnCo2O4-graphene 52
CoFe2O4/rGO 12235 50 mA?g-1 rGO 53
La0.5Sr0.5CoO2.91 porous nanowires 11059 50 mA?g-1 total cathode 58
porous La0.75Sr0.25MnO3 nanotubes 11000 0.025 mA?cm-2 carbon 59
TiC 500 0.5 mA?cm-2 TiC 35
metal carbide/nitride nanoparticles TiN/Vulcan XC-72 6407 500 mA?g-1 carbon 60
bimodal mesoporous TiN/carbon 19100 100 mA?g-1 carbon 61
MoN/N-C 1400 0.1 mA?cm-2 total cathode 63
Mo2C/CNT 10000 100 mA?g-1 total cathode 66
Table 1 Commonly used catalyst on the specific discharge capacity of the lithium-air batteries
Fig 9 Relation between O2 and CO2 evolution and charge capacity during charging of cells76 (a) 1:1 (V:V) PC/DME-based, DME-based (b); PC: propylene carbonate
Fig 10 Decomposition mechanism of DMSO in Li-air batteries80
Fig 11 SEM images (a, b) and XPS spectra (c, d) of the Li anodes after 80 cycles91 (a) without CPL (composite protective layer), (b) with CPL; (c) C 1 s and (d) S 2p XPS spectra
1 Littauer E. L. ; Tsai K. C. J. Electrochem. Soc. 1976, 123, 771.
2 Abraham K. M. ; Jiang Z. J. Electrochem. Soc. 1996, 143, 1.
3 Ogasawara T. ; Debart A. ; Holzapfel M. ; Novak P. ; Bruce P.G. J. Am. Chem. Soc. 2006, 128, 1390.
4 Wang Y. G. ; Zhou H. S. J. Power Sources 2010, 195, 358.
5 Kumar B. ; Kumar J. ; Leese R. ; Fellner J. P. ; Rodrigues S. J. ; Abraham K. M. J. Electrochem. Soc. 2010, 157, A50.
6 Ren X. M. ; Zhang S. S. ; Tran D. T. ; Read J. J. Mater. Chem 2011, 21, 10118.
7 McCloskey B. D. ; Scheffler R. ; Speidel A. ; Girishkumar G. ; Luntz A. C. J. Phys. Chem. C. 2012, 116, 23897.
8 Laoire C. O. ; Mukerjee S. ; Abraham K. M. ; Plichta E. J. ; Hendrickson M. A. J. Phys. Chem. C. 2009, 113, 20127.
9 Laoire C. O. ; Mukerjee S. ; Abraham K. M. ; Plichta E. J. ; Hendrickson M. A. J. Phys. Chem. C. 2010, 114, 9178.
10 Peng Z. Q. ; Freunberger S. A. ; Hardwick L. J. ; Chen Y. H. ; Giordani V. ; Barde F. ; Novak P. ; Graham D. ; Tarascon J. M. ; Bruce P. G Angew. Chem. Int. Edit. 2011, 50, 6351.
11 Hummelshoj J. S. ; Luntz A. C. ; Norskov J. K. J. Chem. Phys. 2013, 138, 034703.
12 Zhai D. Y. ; Wang H. H. ; Yang J. B. ; Lau K. C. ; Li K. X. ; Amine K. ; Curtiss L. A. J. Am. Chem. Soc. 2013, 135, 15364.
13 Lu J. ; Lee Y. J. ; Luo X. Y. ; Lau K. C. ; Asadi M. ; Wang H.H. ; Brombosz S. ; Wen J. G. ; Zhai D. Y. ; Chen Z. H. ; Miller D. J. ; Jeong Y. S. ; Park J. B. ; Fang Z. Z. ; Kumar B. ; Salehi-Khojin A. ; Sun Y. K. ; Curtiss L. A. ; Amine K. Nature 2016, 529, 377.
14 Aetukuri1 N. B. ; McCloskey B. D. ; García1 J. M. ; Krupp L.E. ; Viswanathan V. ; Luntz. A. C. Nat. Chem. 2015, 7, 50.
15 Liu T. ; Leskes M. ; Yu W. J. ; Moore A. J. ; Zhou L. N. ; Bayley P. M. ; Kim G. ; Grey C. P. Science 2015, 350, 530.
16 Girishkumar G. ; McCloskey B. ; Luntz A. C. ; Swanson S. ; Wilcke W. J. Phys. Chem. Lett. 2010, 1, 2193.
17 Xiao J. ; Wang D. H. ; Xu W. ; Wang D. Y. ; Williford R. E. ; Liu J. ; Zhang J. G. J. Electrochem. Soc. 2010, 157, A487.
18 Tran C. ; Yang X. Q. ; Qu D. Y. J. Power Sources 2010, 195, 2057.
19 Hayashi M. ; Minowa H. ; Takahashi M. ; Shodai T. Electrochemistry 2010, 78, 325.
20 Mirzaeian M. ; Hall P. J. Electrochim. Acta. 2009, 54, 7444.
21 Yang X. H. ; He P. ; Xia Y. Y. Electrochem. Commun. 2009, 11, 1127.
22 Lim H. D. ; Park K. Y. ; Song H. ; Jang E. Y. ; Gwon H. ; Kim J. ; Kim Y. H. ; Lima M. D. ; Robles R. O. ; Lepro X. ; Baughman R. H. ; Kang K. Adv. Mater. 2013, 25, 1348.
23 Xiao J. ; Mei D. H. ; Li X. L. ; Xu W. ; Wang D. Y. ; Graff G.L. ; Bennett W. D. ; Nie Z. M. ; Saraf L. V. ; Aksay I. A. ; Liu J. ; Zhang J. G. Nano Lett. 2011, 11, 5071.
24 Xia G. F. ; Shen S. Y. ; Zhu F. J. ; Xie J. Y. ; Hu Y. F. ; Zhu K. ; Zhang J. L. Electrochem. Commun. 2015, 60, 26.
25 Tong S. F. ; Zheng M. B. ; Lu Y. ; Lin Z. X. ; Zhang X. P. ; He P. ; Zhou H. S. Chem. Commun. 2015, 51, 7302.
26 Sun B. ; Chen S. Q. ; Liu H. ; Wang G. X. Adv. Funct. Mater. 2015, 25, 4436.
27 Han J. H. ; Guo X.W. ; Ito Y. ; Liu P. ; Hojo D. ; Aida T. ; Hirata A. ; Fujita T. ; Adschiri T. ; Zhou H. S. ; Chen M. W. Adv. Energy Mater. 2016, 6
28 Li Q. ; Xu P. ; Gao W. ; Ma S. G. ; Zhang G. Q. ; Cao R. G. ; Cho J. ; Wang H. L. ; Wu G. Adv. Mater. 2014, 26, 1378.
29 Yang X. H. ; He P. ; Xia Y. Y. Electrochem. Commun. 2009, 11, 1127.
30 Gowda S. R. ; Brunet A. ; Wallraff G. M. ; McCloskey B. D. J. Phys. Chem. Lett. 2013, 4, 276.
31 McCloskey B. D. ; Speidel A. ; Scheffler R. ; Miller D. C. ; Viswanathan V. ; Hummelshoj J. S. ; Norskov J. K. ; Luntz A.C. J. Phys. Chem. Lett. 2012, 3, 997.
32 Liu Q. C. ; Xu J. J. ; Xu D. ; Zhang X. B. Nat. Commun. 2015, 6, 7892.
33 Xu S. M. ; Zhu Q. C. ; Du F. H. ; Li X. H. ; Wei X. ; Wang K.X. ; Chen J. S. Dalton Trans. 2015, 44, 8678.
34 Peng Z. Q. ; Freunberger S. A. ; Chen Y. H. ; Bruce P. G. Science 2012, 337, 563.
35 Thotiyl M. M. O. ; Freunberger S. A. ; Peng Z. Q. ; Chen Y. H. ; Liu Z. ; Bruce P. G. Nat. Mater. 2013, 12, 1050.
36 Lu Y. C. ; Xu Z. C. ; Gasteiger H. A. ; Chen S. ; Hamad-Schifferli K. ; Shao-Horn Y. J. Am. Chem. Soc. 2010, 132, 12170.
37 Lu Y. C. ; Gasteiger H. A. ; Shao-Horn Y. J. Am. Chem. Soc. 2011, 133, 19048.
38 Jian Z. L. ; Liu P. ; Li F. J. ; He P. ; Guo X.W. ; Chen M.W. ; Zhou H. S. Angew. Chem. Int. Edit. 2014, 53, 442.
39 Sun B. ; Huang X. D. ; Chen S. Q. ; Munroe P. ; Wang G. X. Nano Lett. 2014, 14, 3145.
40 Zhou W. ; Cheng Y. ; Yang X. F. ; Wu B. S. ; Nie H. J. ; Zhang H. Z. ; Zhang H. M. J. Mater. Chem. A. 2015, 3, 14556.
41 Kim S. T. ; Choi N. S. ; Park S. ; Cho J. Adv. Energy Mater. 2015, 5
42 Luo W. B. ; Gao X.W. ; Chou S. L. ; Wang J. Z. ; Liu H. K. Adv. Mater. 2015, 27, 6862.
43 Xu J. J. ; Wang Z. L. ; Xu D. ; Zhang L. L. ; Zhang X. B. Nat.Commun. 2013, 4, 2438.
44 Liu Q. C. ; Li L. ; Xu J. J. ; Chang Z.W. ; Xu D. ; Yin Y. B. ; Yang X. Y. ; Liu T. ; Jiang Y. S. ; Yan J. M. ; Zhang X. B. Adv.Mater. 2015, 27, 8095.
45 Debart A. ; Bao J. ; Armstrong G. ; Bruce P. G. J. PowerSources 2007, 174, 1177.
46 Débart A. ; Paterson A. J. ; Bao J. ; Bruce P. G. Angew. Chem. 2008, 120, 4597.
47 Hu X. ; Cheng F. ; Zhang N. ; Han X. ; Chen J. Small 2015, 11, 5545.
48 Oh S. H. ; Black R. ; Pomerantseva E. ; Lee J. H. ; Nazar L. F. Nat. Chem. 2012, 4, 1004.
49 Xiong W. ; Gao Y. S. ; Wu X. ; Hu X. ; Lan D. N. ; Chen Y. Y. ; Pu X. L. ; Zeng Y. ; Su J. ; Zhu Z. H. ACS Appl. Mater. Inter. 2014, 6, 19416.
50 Sun B. ; Zhang J. Q. ; Munroe P. ; Ahn H. J. ; Wang G. Electrochem. Commun. 2013, 31, 88.
51 Zhang L. ; Zhang S. ; Zhang K. ; Xu G. ; He X. ; Dong S. ; Liu Z. ; Huang C. ; Gu L. ; Cui G. Chem. Commun. 2013, 49, 3540.
52 Wang H. L. ; Yang Y. ; Liang Y. Y. ; Zheng G. Y. ; Li Y. G. ; Cui Y. ; Dai H. J. Energ Environ. Sci. 2012, 5, 7931.
53 Cao Y. ; Cai S. R. ; Fan S. C. ; Hu W. Q. ; Zheng M. S. ; Dong Q. F. Faraday Discuss. 2014, 172, 215.
54 Liu Y. ; Cao L. J. ; Cao C.W. ; Wang M. ; Leung K. L. ; Zeng S. S. ; Hung T. F. ; Chung C. Y. ; Lu Z. G. Chem. Commun. 2014, 50, 14635.
55 Han X. P. ; Hu Y. X. ; Yang J. G. ; Cheng F. Y. ; Chen J. Chem.Commun. 2014, 50, 1497.
56 Ma Z. ; Yuan X. X. ; Li L. ; Ma Z. F. Chem. Commun. 2014, 50, 14855.
57 Wei Z. H. ; Zhao T. S. ; Zhu X. B. ; An L. ; Tan P. EnergyTechnol. 2015, 3, 1093.
58 Zhao Y. L. ; Xu L. ; Mai L. Q. ; Han C. H. ; An Q. Y. ; Xu X. ; Liu X. ; Zhang Q. J. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 19569.
59 Xu J. J. ; Xu D. ; Wang Z. L. ; Wang H. G. ; Zhang L. L. ; Zhang X. B. Angew. Chem. Int. Edit. 2013, 52, 3887.
60 Li F. J. ; Ohnishi R. ; Yamada Y. ; Kubota J. ; Domen K. ; Yamada A. ; Zhou H. S. Chem. Commun. 2013, 49, 1175.
61 Park J. ; Jun Y. S. ; Lee W. R. ; Gerbec J. A. ; See K. A. ; Stucky G. D. Chem. Mater. 2013, 25, 3779.
62 Yang B. J. ; Wang H. ; Li L. ; Huang B.W. ; Liao X. Z. ; He Y.S. ; Ma Z. F. Acta Phys.-Chim. Sin. 2014, 30, 150.
62 阳炳检; 王红; 李磊; 黄博文; 廖小珍; 何雨石; 马紫峰. 物理化学学报, 2014, 30, 150.
63 Zhang K. J. ; Zhang L. X. ; Chen X. ; He X. ; Wang X. G. ; Dong S. M. ; Gu L. ; Liu Z. H. ; Huang C. S. ; Cui G. L. ACSAppl. Mater. Inter. 2013, 5, 3677.
64 Zhang K. J. ; Zhang L. X. ; Chen X. ; He X. ; Wang X. G. ; Dong S. M. ; Han P. X. ; Zhang C. J. ; Wang S. ; Gu L. ; Cui G.L. J. Phys. Chem. C. 2013, 117, 858.
65 Dong S. M. ; Chen X. ; Zhang K. J. ; Gu L. ; Zhang L. X. ; Zhou X. H. ; Li L. F. ; Liu Z. H. ; Han P. X. ; Xu H. X. ; Yao J.H. ; Zhang C. J. ; Zhang X. Y. ; Shang C. Q. ; Cui G. L. ; Chen L. Q. Chem. Commun. 2011, 47, 11291.
66 Kwak W. J. ; Lau K. C. ; Shin C. D. ; Amine K. ; Curtiss L. A. ; Sun Y. K. ACS Nano 2015, 9, 4129.
67 Yu M. Z. ; Ren X. D. ; Ma L. ; Wu Y. Y. Nat. Commun. 2014, 5
68 Chen Y. H. ; Freunberger S. A. ; Peng Z. Q. ; Fontaine O. ; Bruce P. G. Nat. Chem. 2013, 5, 489.
69 Lim H. D. ; Song H. ; Kim J. ; Gwon H. ; Bae Y. ; Park K. Y. ; Hong J. ; Kim H. ; Kim T. ; Kim Y. H. ; Lepro X. ; Ovalle-Robles R. ; Baughman R. H. ; Kang K. Angew. Chem. Int. Edit. 2014, 53, 3926.
70 Trahan M. J. ; Gunasekara I. ; Mukerjee S. ; Plichta E. J. ; Hendrickson M. A. ; Abraham K. M. J. Electrochem. Soc. 2014, 161, A1706.
71 Sun D. ; Shen Y. ; Zhang W. ; Yu L. ; Yi Z. Q. ; Yin W. ; Wang D. ; Huang Y. H. ; Wang J. ; Wang D. L. ; Goodenough J. B. J. Am. Chem. Soc. 2014, 136, 8941.
72 Bergner B. J. ; Schurmann A. ; Peppler K. ; Garsuch A. ; Janek J. J. Am. Chem. Soc. 2014, 136, 15054.
73 Kundu D. ; Black R. ; Adams B. ; Nazar L. F. ACS Cent. Sci. 2015, 1, 510.
74 Freunberger S. A. ; Chen Y. H. ; Peng Z. Q. ; Griffin J. M. ; Hardwick L. J. ; Barde F. ; Novak P. ; Bruce P. G. J. Am. Chem.Soc. 2011, 133, 8040.
75 McCloskey B. D. ; Bethune D. S. ; Shelby R. M. ; Girishkumar G. ; Luntz A. C. J. Phys. Chem. Lett. 2011, 2, 1161.
76 McCloskey B. D. ; Scheffler R. ; Speidel A. ; Bethune D. S. ; Shelby R. M. ; Luntz A. C. J. Am. Chem. Soc. 2011, 133, 18038.
77 Freunberger S. A. ; Chen Y. H. ; Drewett N. E. ; Hardwick L. J. ; Barde F. ; Bruce P. G. Angew. Chem. Int. Edit. 2011, 50, 8609.
78 Takechi K. ; Higashi S. ; Mizuno F. ; Nishikoori H. ; Iba H. ; Shiga T. ECS Electrochem. Lett. 2012, 1, A27.
79 Xu D. ; Wang Z. L. ; Xu J. J. ; Zhang L. L. ; Zhang X. B. Chem.Commun. 2012, 48, 6948.
80 Sharon D. ; Afri M. ; Noked M. ; Garsuch A. ; Frimer A. A. ; Aurbach D. J. Phys. Chem. Lett. 2013, 4, 3115.
81 Xu D. ; Wang Z. L. ; Xu J. J. ; Zhang L. L. ; Wang L. M. ; Zhang X. B. Chem. Commun. 2012, 48, 11674.
82 Chen Y. ; Freunberger S. A. ; Peng Z. ; Barde F. ; Bruce P. G. J. Am. Chem. Soc. 2012, 134, 7952.
83 Walker W. ; Giordani V. ; Uddin J. ; Bryantsev V. S. ; Chase G.V. ; Addison D. J. Am. Chem. Soc. 2013, 135, 2076.
84 Allen C. J. ; Mukerjee S. ; Plichta E. J. ; Hendrickson M. A. ; Abraham K. M. J. Phys. Chem. Lett. 2011, 2, 2420.
85 Zhang T. ; Zhou H. S. Angew. Chem. Int. Edit. 2012, 51, 11062.
86 Elia G. A. ; Hassoun J. ; Kwak W. J. ; Sun Y. K. ; Scrosati B. ; Mueller F. ; Bresser D. ; Passerini S. ; Oberhumer P. ; Tsiouvaras N. ; Reiter J. Nano Lett. 2014, 14, 6572.
87 Soavi F. ; Monaco S. ; Mastragostino M. J. Power Sources 2013, 224, 115.
88 Ara M. ; Meng T. J. ; Nazri G. A. ; Salley S. O. ; Ng K. Y. S. J. Electrochem. Soc. 2014, 161, A1969.
89 Liu Q. C. ; Xu J. J. ; Yuan S. ; Chang Z.W. ; Xu D. ; Yin Y. B. ; Li L. ; Zhong H. X. ; Jiang Y. S. ; Yan J. M. ; Zhang X. B. Adv.Mater. 2015, 27, 5241.
90 Jang I. C. ; Ida S. ; Ishihara T. J. Electrochem. Soc. 2014, 161, A821.
91 Lee D. J. ; Lee H. ; Song J. ; Ryou M. H. ; Lee Y. M. ; Kim H.T. ; Park J. K. Electrochem. Commun. 2014, 40, 45.
92 Shui J. L. ; Okasinski J. S. ; Kenesei P. ; Dobbs H. A. ; Zhao D. ; Almer J. D. ; Liu D. J. Nat. Commun. 2013, 4
93 Hassoun J. ; Jung H. G. ; Lee D. J. ; Park J. B. ; Amine K. ; Sun Y. K. ; Scrosati B. Nano Lett. 2012, 12, 5775.
[1] Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958.
[2] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[3] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218.
[4] Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162.
[5] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[6] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[7] Zi-Min WANG,Mo ZHENG,Yong-Bing XIE,Xiao-Xia LI,Ming ZENG,Hong-Bin CAO,Li GUO. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1399-1410.
[8] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[9] Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107.
[10] Yan-Gong ZHENG,Li-Na ZHU,Han-Yu LI,Jia-Wen JIAN,Hai-Ying DU. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 573-581.
[11] Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499.
[12] Shen-Hui LI,Jing LI,An-Min ZHENG,Feng DENG. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282.
[13] Yong-Min XIE,Xiao-Qiang WANG,Jiang LIU,Chang-Lin YU. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 386-392.
[14] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[15] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.