Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (10): 2518-2522    DOI: 10.3866/PKU.WHXB201605272
ARTICLE     
Monte-Carlo Simulations of the Effect of Surfactant on the Growth of Silver Dendritic Nanostructures
Yuan-Yuan WANG,Qun-Xing XU,Hua-Qing XIE*(),Zi-Hua WU,Jiao-Jiao XING
Download: HTML     PDF(14478KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The bias diffusion-limited aggregation model is used to study the growth of silver dendritic nanostructures in solution. In the simulation, right-angled isosceles triangle particles are introduced in twodimensional square grids and the sticking possibilities of different particle sides are introduced to describe the effect of the surfactant. Our simulation results show that the dendritic nanostructures become denser with increasing bias voltage. It is also found that the dendritic nanostructures become much more symmetrical and regular when the surfactant is applied. Furthermore, if the effect of the surfactant is strong enough and the bias voltage is small, the branches of the nanostructures are assembled into silver plates. Our simulation results are helpful to explain the experimental results qualitatively.



Key wordsMonte-Carlo simulation      Silver dendritic nanostructure      Surfactant     
Received: 30 March 2016      Published: 27 May 2016
MSC2000:  O647.1  
Fund:  The project was supported by the National Natural Science Foundation of China(51406111);Shanghai Natural Science Foundation, China(14ZR1417000);Scientific Innovation Project of Shanghai Education Committee, China(15ZZ100);and Young Eastern Scholar of Shanghai, China(QD2015052)
Corresponding Authors: Hua-Qing XIE     E-mail: hqxie@sspu.edu.cn
Cite this article:

Yuan-Yuan WANG,Qun-Xing XU,Hua-Qing XIE,Zi-Hua WU,Jiao-Jiao XING. Monte-Carlo Simulations of the Effect of Surfactant on the Growth of Silver Dendritic Nanostructures. Acta Phys. -Chim. Sin., 2016, 32(10): 2518-2522.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201605272     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2518

Fig 1 Scematic diagram of biased DLA model (a) Ag+ walking within the diffusion layer; (b) In the 2D square grids, square particle and four types of triangle particles are applied.
Fig 2 Siulation images with the square particles applied (a) p = 0.25, (b) p = 1, (c) p = 4. In the simulation, the surfactant is excluded (pe = 1).
Fig 3 Siulation images with the triangle particles applied (a) p = 0.25, (b) p = 1, (c) p = 4. In the simulation, the surfactant is excluded (pa = pc = 1).
Fig 4 Siulation images with the square particles applied (a) pe = 0.8, (b) pe = 0.6, (c) pe = 0.4, (d) pe = 0.2. In the simulation, p = 0.25.
Fig 5 Siulation images with the triangle particles applied for the equivalent sticking possibilities of the right-angle sides and the hypotenuse (a) pa = ph = 0.8, (b) pa = ph = 0.6, (c) pa = ph = 0.4, (d) pa = ph = 0.2. In the simulation, p = 1.
Fig 6 Simulation images with the triangle particles applied when the surfactant only affects the hypotenuse of the triangle (a) ph = 0.8, (b) ph = 0.6, (c) ph = 0.4, (d) ph = 0.2. In the simulation, the sticking possibilities of the hypotenuse pa = 1 and p = 1.
Fig 7 Siulation images with the triangle particles applied when the surfactant only affects the right angle sides (a) pa = 0.8, (b) pa = 0.6, (c) pa = 0.4, (d) pa = 0.2. In the simulation, the sticking possibilities of the hypotenuse ph = 1 and p = 1.
1 Tarascon J. M. ; Armand M Nature 2001, 414, 359.
2 Shi F. ; Song Y. ; Niu J. ; Xia X. ; Wang Z. ; Zhang X Chem. Mater. 2006, 18, 1365.
3 Vicsek T Fractal Growth Phenomena; World Scientific:Singapore 1992.
4 Fang J. X. ; Ding B. J. ; Song X. P. ; Han Y Appl. Phys. Lett. 2008, 92, 173120.
5 Xiao J. P. ; Xie Y. ; Tang R. ; Chen M. ; Tian X. B Adv. Mater. 2001, 13, 1887.
6 Zheng X. J. ; Jiang Z. Y. ; Xie Z. X. ; Zhang S. H. ; Mao B.W. ; Zheng L. S Electrochem. Commun. 2007, 9, 629.
7 Gutés A. ; Carraro C. ; Maboudian R J. Am. Chem. Soc. 2010, 132, 1476.
8 Wang M. ; Zhong S. ; Yin X. B. ; Zhu J. M. ; Peng R.W. ; Wang Y. ; Zhang K. Q. ; Ming N. B Phys. Rev. Lett. 2001, 86, 3827.
9 Sun B. ; Zou X.W. ; Jin Z. Z Phys. Rev. E 2004, 69, 067202.
10 Cronemberger C. M. ; Sampaio L. C Phys. Rev. E 2006, 73, 041403.
11 Wu X. Z. ; Pei M. S. ; Wang L. Y. ; Li X. N. ; Tao X. T Acta Phys. -Chim. Sin. 2010, 26, 3095.
11 吴馨洲; 裴梅山; 王庐岩; 李肖男; 陶绪堂. 物理化学学报, 2010, 26, 3095.
12 Chazalviel J. N Phys. Rev. A 1990, 42, 7355.
13 Elezgaray J. ; Léger C. ; Argoul F J. Electrochem. Soc. 1998, 145, 2016.
14 Monroe C. ; Newman J J. Electrochem. Soc. 2003, 150, A1377.
15 Léger C. ; Elezgaray J. ; Argoul F J. Electroanal. Chem. 2000, 486, 204.
16 Wang M. ; van Enckevort W. J. P. ; Ming N. B. ; Bennema P Nature 1994, 367, 438.
17 Nahal A. ; Mostafavi-Amjad J. ; Ghods A. ; Khajehpour M. R.H. ; Reihani S. N. S. ; Kolahchi M. R J. Appl. Phys. 2006, 100, 053503.
18 You H. J. ; Fang J. X. ; Chen F. ; Shi M. ; Song X. P. ; Ding B J. J. Phys. Chem. C 2008, 112, 16301.
19 Sawada Y. ; Dougherty A. ; Gollub J. P Phys. Rev. Lett. 1986, 56, 1260.
20 Lee G. J. ; Shin S. I. ; Oh S. G Chem. Lett. 2004, 33, 118.
21 Rashid M. H. ; Mandal T. K J. Phys. Chem. C 2007, 111, 16750.
22 Sun X. ; Hagner M Langmuir 2007, 23, 9147.
23 Zhou Y. ; Yu S. H. ; Wang C. Y. ; Li X. G. ; Zhu Y. R. ; Chen Z Y. Adv. Mater. 1999, 11, 850.
24 Kang Z. ; Wang E. ; Lian S. ; Mao B. ; Chen L. ; Xu L Mater. Lett. 2005, 59, 2289.
25 Witten T. A. ; Sander L. M Phys. Rev. Lett. 1981, 47, 1400.
26 Witten T. A. ; Sander L. M Phys. Rev. B 1983, 27, 5686.
27 Nagatani T. ; Sagués F Phys. Rev. A 1991, 43, 2970.
28 Sander L. M. ; Cheng Z. M. ; Richter R Phys. Rev. B 1983, 28, 6394.
29 Xiong H. L. ; Yang Z. M. ; Li H Acta Phys. -Chim. Sin. 2014, 30, 413.
29 熊海灵; 杨志敏; 李航. 物理化学学报, 2014, 30, 413.
30 Meakin P Phy. Rev. A 1983, 27, 1495.
31 Qin Y. ; Song Y. ; Sun N. ; Zhao N. ; Li M. ; Qi L Chem. Mater. 2008, 20, 3965.
32 Hong X. ; Wang G. Z. ; Wang Y. ; Zhu W. ; Shen X. S Chin. J. Chem. Phys. 2010, 23, 596.
33 Ye W. ; Shen C. ; Tian J. ; Wang C. ; Bao L. ; Gao H Electrochem. Commun. 2008, 10, 625.
34 Liao F. ; Wang Z. F. ; Hu X. Q Colloid J. 2011, 73, 504.
35 Zhang L. ; Ai Z. ; Jia F. ; Liu L. ; Hu X. ; Yu J. C Chemistry 2006, 12, 4185.
[1] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[2] Wen-Rong ZHAO,Jing-Cheng HAO. Vesicle Gels of Magnetic Asymmetric Surfactants[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1655-1664.
[3] Mao-Zhang TIAN,Fan ZHANG,Cheng MA,De-Sheng MA,Ling-Xiang JIANG,Rong-Rong XUE,Ka-Er-Dun LIU,Jian-Bin HUANG. Viscosity Reduction of Heavy Oils of Different Viscosities Based on General Cationic/Anionic Surfactant Systems[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1665-1671.
[4] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[5] Wei-Wei KONG,Shuang GUO,Yong-Min ZHANG,Xue-Feng LIU. Redox-Responsive Interfacial Properties of Se-Containing Sulfobetaine Surfactant[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1205-1213.
[6] Guang-Yue BAI,Jun-Ling LIU,Jiu-Xia WANG,Yu-Jie WANG,Yan-Na LI,Yang ZHAO,Mei-Huan YAO. Enzymatic Superactivity and Conformational Change of α-CT Induced by Cationic Gemini Surfactant[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 976-983.
[7] Ting ZHANG,Jie SHEN. Aggregation Properties and Thermodynamics of Micellization of Gemini Surfactants with Diester and Rigid Spacers in Organic Alcohol-Water Mixed Media[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 795-802.
[8] Hong YUAN,Jing ZHANG,Xue-Hong WEI,Hui-Min FANG,Shi-Fang YUAN,Li-Xin WU. Chiral Luminescent Liquid Crystal Material Based on Europium-Substituted Polyoxometalate[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 407-412.
[9] Ping-Ping ZHOU,Xi XI,Bing-Lei SONG,Xiao-Mei PEI,Zheng-Gang CUI. Rheological Behavior of Trimeric Anionic Surfactant/Cationic Additive Mixed Systems[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2309-2317.
[10] Xiao-Xiang SUN,Yu CHEN,Jian-Xi ZHAO. Foams Stabilized by Fumed Silica Particles with a Quaternary Ammonium Gemini Surfactant[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2045-2051.
[11] Wei WU,Dan-Dan LIU,Zhi-Cheng XU,Qing-Tao GONG,Jian-Bin HUANG,Lei ZHANG,Lu ZHANG. Adsorption and Wettability of Branched Betaine and Cationic Surfactants on a Poly(methyl methacrylate) Surface[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1214-1220.
[12] Zi-Yu LIU,Qi LIAO,Zhi-Qiang JIN,Lei ZHANG,Lu ZHANG. Effect of Electrolytes on the Interfacial Behavior of Nonionic-Anionic Surfactant Solutions Using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1168-1174.
[13] Chuan-Hong HAN,Pei-Pei GENG,Yan GUO,Xiao-Xiao CHEN,Xiao-Dong GUO,Jun-Hong ZHANG,Jie LIU,Xi-Lian WEI. Thermoresponsive Properties of a Mixed Aqueous Solution of Cationic Surfactant and Organic Acid[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 863-871.
[14] Hu-Jun XIE,Cheng-Cheng LIU,Qiang SUN,Qing GU,Qun-Fang LEI,Wen-Jun FANG. The Interactions between Quaternary Ammonium Cationic Surfactants and Bovine Serum Albumin[J]. Acta Phys. -Chim. Sin., 2016, 32(12): 2951-2960.
[15] Peng-Cheng BIAN,Da-Peng ZHANG,Hong-Ze GANG,Jin-Feng LIU,Bo-Zhong MU,Shi-Zhong YANG. Synthesis and Properties of a Novel Bio-Based Branched Heptadecylbenzene Sulfonate Derived from Oleic Acid[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2753-2760.