Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (9): 2159-2170    DOI: 10.3866/PKU.WHXB201606072
REVIEW     
Advances and Developments in Perovskite Materials for Solar Cell Applications
Xu-Xia SHAI,Dan LI,Shuang-Shuang LIU,Hao LI,Ming-Kui WANG*()
Download: HTML     PDF(7620KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, significant breakthroughs have been achieved in the development of organicinorganic halide lead perovskite solar cells, with reported power conversion efficiency (PCE) values of up to 22.1%. This value is comparable to the efficiencies obtained using CdTe (22.1%) and CuInGaSn (CIGS) (22.3%) solar cells, and close to the value associated with crystalline silicon solar cells (approximately 25%). However, the limited long-term output efficiency stability and lead toxicity issues associated with organic-inorgan lead halide perovskite cells have limited their commercial applications. This review focuses on these issues and corresponding solutions for halide lead hybrid perovskite solar cells, and discusses advances and developments in Pb-free inorganic perovskite solar cells. We also examine the current body of knowledge regarding perovskite solar cells and discuss critical points and expectations regarding further performance improvements.



Key wordsPerovskite      Stability      Pb substitution      Solar cell      Pb-free inorganic perovskite     
Received: 12 April 2016      Published: 07 June 2016
MSC2000:  O649  
Fund:  The project was supported by the Natural Science Foundation of Hubei Province, China(ZRZ2015000203);Technology Creative Project of Excellent Middle & Young Team of Hubei Province, China(T201511)
Corresponding Authors: Ming-Kui WANG     E-mail: mingkui.wang@mail.hust.edu.cn
Cite this article:

Xu-Xia SHAI,Dan LI,Shuang-Shuang LIU,Hao LI,Ming-Kui WANG. Advances and Developments in Perovskite Materials for Solar Cell Applications. Acta Phys. -Chim. Sin., 2016, 32(9): 2159-2170.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201606072     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I9/2159

Fig 1 One-step and two-step spin-coating procedures for CH3NH3PbI3 formation
Fig 2 (a) Schematic representation of the TiO2/Al2O3/NiO/carbon (MAPbI3) based device; (b) energy band diagram of the fabricated device configuration FTO: fluorine-doped tin oxide conductive glass; CB: conduction band; VB: valence band
Fig 3 (a) Electronic absorption spectra of CH3NH3SnxPb1-xI3 perovskite coated on porous TiO2 and(b) structure of CH3NH3SnxPb1-xI3 perovskite solar cells46 P3HT: polymer poly(3-hexylthiophene), color online
Fig 4 Substitution process of Sr for Pb illustrating in CH3NH3PbI3 61
Fig 5 Schematic of crystal structure of perovskite (AMX3)
Fig 6 Current density-voltage (I-V) curves and structural schematics of the two kinds of photoelectric devices90 (a) BiFeO3 (BFO)-CH3NH3PbI3; (b) BFO. Isc: short circuit current density, Voc: open circuit voltage, η: efficiency
Fig 7 Illustrations showing fabrication procedure for Cs2SnI6-based dye-sensitised solar cells (DSSCs)113
1 Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
2 Kim H. ; Lee C. ; Im J. ; Lee K. ; Moehl T. ; Marchioro A. ; Moon S. ; Humphry-Baker R. ; Yum J. ; Moser J. ; Gr?tzel M. Park, N. Sci. Rep 2012, 2, 591.
3 Lee M. M. ; Teuscher J. ; Miyasaka T. ; Murakami T. ; Snaith H. J. Science 2012, 338, 643.
4 Green M. A. ; Ho-Baillie A. ; Snaith H. J. Nat. Photon. 2014, 8, 506.
5 Etgar L. ; Gao P. ; Xue Z. ; Peng Q. ; Chandiran A. ; Liu B. ; Nazeeruddin M. K. ; Gr?tzel M. J. Am. Chem. Soc. 2012, 134, 17396.
6 Zhang C. ; Sun D. ; Sheng C. ; Zhai Y. X. ; Mielczarek K. ; Zakhidov A. ; Vardeny Z. V. Nat. Phys. 2015, 11, 427.
7 Jeon N. J. ; Noh J. H. ; Yang W. S. ; Kim Y. C. ; Ryu S. ; Seo J. ; Seok S. I. Nature 2015, 517, 476.
8 Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
9 Im J. ; Lee C. ; Lee J. ; Park S. ; Park N. Nanoscale 2011, 3, 4088.
10 http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
11 Chen W. ; Wu Y. ; Yue Y. ; Liu J. ; Zhang W. ; Yang X. ; Chen H. ; Bi E. ; Ashraful I. ; Gr?tzel M. ; Han L. Science 2015, 350, 944.
12 Liang P.W. ; Liao C. Y. ; Chueh C. C. ; Zuo F. ; Williams S.T. ; Xin X. K. ; Lin J. ; Jen A. K. Y. Adv. Mater. 2014, 26, 3748.
13 Burschka J. ; Pellet N. ; Moon S. ; Humphry-Baker R. ; Gao P. ; Nazeeruddin M. K. ; Gr?tzel M. Nature 2013, 499, 316.
14 Xie F. X. ; Zhang D. ; Su H. ; Ren X. ; Wong K. S. ; Gr?tzel M. ; Choy W. C. ACS Nano 2015, 9, 639.
15 Eames C. ; Frost J. M. ; Barnes P. R. ; O'Regen B. C. ; Walsh A. ; Islam M. S. Nat. Commun. 2015, 6, 7497.
16 Yang W. S. ; Noh J. H. ; Jeon N. J. ; Kim Y. C. ; Ryu S. ; Seo J. ; Seok S. I. Science 2015, 348, 1234.
17 Lee J.W. ; Kim D. H. ; Kim H. S. ; Seo S.W. ; Cho S. M. ; Park N. G. Adv. Energy Mater. 2015, 5, 150310.
18 Chen Y. ; Zhao Y. ; Liang Z. Chem. Mater. 2015, 27, 1448.
19 Liu C. ; Fan J. ; Zhang X. ; Shen Y. ; Yang L. ; Mai Y. ACS Appl. Mater. Interface 2015, 7, 9066.
20 Zhou Z. ; Wang Z. ; Zhou Y. ; Pang S. ; Wang D. ; Xu H. ; Liu Z. ; Padture N. P. ; Cui G. Angew. Chem. Int. Edit. 2015, 54, 9705.
21 Yang D. ; Yang Z. ; Qin W. ; Zhang Y. ; Liu S. ; Li C. J. Mater. Chem. A 2015, 3, 9401.
22 Zhang T. ; Yang M. ; Zhao Y. ; Zhu K. Nano Lett. 2015, 15, 3959.
23 Xu X. ; Zhang H. ; Cao K. ; Cui J. ; Lu J. F. ; Zeng X. ; Shen Y. ; Wang M. ChemSusChem 2014, 7, 3088.
24 Xu X. ; Chen Q. ; Hong Z. ; Zhou H. ; Liu Z. ; Chang W. ; Sun P. ; Chen H. ; Marco N. ; Wang M. ; Yang Y. Nano Lett. 2015, 15, 6514.
25 Xu X. ; Liu Z. ; Zuo Z. ; Zhang M. ; Zhao Z. ; Shen Y. ; Zhou H. ; Chen Q. ; Yang Y. ; Wang M. Nano Lett. 2015, 15, 2402.
26 Cao K. ; Zuo Z. ; Cui J. ; Shen Y. ; Moehl T. ; Zakeeruddin S.M. ; Gr?tzel M. ; Wang M. Nano Energy 2015, 17, 171.
27 Liu Z. ; Zhang M. ; Xu X. ; Bu L. ; Zhang W. ; Li W. ; Zhao Z. ; Wang M. ; Cheng Y. ; He H. Dalton Trans. 2015, 44, 3967.
28 Liu Z. ; Zhang M. ; Xu X. ; Cai F. ; Yuan H. ; Bu L. ; Li W. ; Zhu A. ; Zhao Z. ; Wang M. ; Cheng Y. ; He H. J. Mater. Chem. A 2015, 3, 24121.
29 Li H. ; Cao K. ; Cui J. ; Liu S. ; Qiao X. ; Shen Y. ; Wang M. Nanoscale 2016, 8, 6379.
30 Cui J. ; Meng F. ; Zhang H. ; Cao K. ; Yuan H. Cheng Y. B. ; Cheng Y. B. ; Huang F. ; Wang M. ACS Appl. Mater. Interfaces 2014, 6, 22862.
31 Cao K. ; Cui J. ; Zhang H. ; Li H. ; Song J. ; Shen Y. ; Cheng Y. ; Wang M. J. Mater. Chem. A 2015, 3, 1500312.9116.
32 Cui J. ; Wang Z. ; Chen C. ; Han J. ; Cao K. ; Zhang W. ; Shen Y. ; Wang M. Adv. Sci. 2016, 3, 1500312.
33 Zhang H. ; Qiao X. ; Shen Y. ; Moehl T. ; Zakeeruddin S. ; Gr?tzel M. ; Wang M. J. Mater. Chem. A 2015, 3, 11762.
34 Zhang H. ; Qiao X. ; Shen Y. ; Wang M. J. Energy Chem. 2015, 24, 729.
35 Ma S. ; Zhang H. ; Zhao N. ; Cheng Y. ; Wang M. ; Shen Y. ; Tu G. J. Mater. Chem. A 2015, 3, 12139.
36 Xu X. ; Li S. ; Zhang H. ; Shen Y. ; Zakeeruddin S. ; Gr?tzel M. ; Cheng Y. ; Wang M. ACS Nano 2015, 9, 1782.
37 Niu G. ; Guo X. ; Wang L. J. Mater. Chem. A 2015, 3, 8970.
38 Conings B. ; Drijkoningen J. ; Gauquenlin N. ; Babayigit A. ; D'Haen J. ; D'Olieslaeger L. ; Ethirajan A. ; Verbeeck J. ; Manca J. ; Mosconi E. ; Angelis F. ; Boyen H. Adv. Energy Mater. 2015, 5, 1500477.
39 Yuan Y. ; Chae J. ; Shao Y. ; Wang Q. ; Xiao Z. ; Centrone A. Huang, J. Adv. Energy Mater 2015, 5, 1500615.
40 Yin W. J. ; Shi T. ; Yan Y. Adv. Mater. 2014, 26, 4653.
41 Yin W. ; Shi T. ; Yan Y. Appl. Phys. Lett. 2014, 104, 063903.
42 Shannon R. D. Acta Cryst. A 1976, 32, 751.
43 Amat A. ; Mosconi E. ; Ronca E. ; Quarti C. ; Umari P. ; Nazeeruddin M. K. ; G?tzel M. Nano Lett. 2014, 14, 3608.
44 Eperon G. E. ; Stranks S. D. ; Menelaous C. ; Johnston M. B. ; Herz L. M. ; Snaith H. J. Energy Environ. Sic. 2014, 7, 982.
45 Smith I. C. ; Hoke E. T. ; Solis-Ibarra D. ; McGehee M. D. ; Karunadasa H. I. Angew. Chem. Int. Edit. 2014, 53, 11232.
46 Ogomi Y. ; Morita A. ; Tsukamoto S. ; Saitho T. ; Fujikawa N. ; Shen Q. ; Toyoda T. ; Yoshino K. ; Pandey S. S. ; Ma T. ; Hayase S. J. Phys. Chem. Lett. 2014, 5, 1004.
47 Buin A. ; Comin R. ; Xu J. ; Ip A. H. ; Sargent E. H. Chem. Mater. 2015, 27, 4405.
48 Noh J. H. ; Im S. H. ; Heo J. H. ; Mandal T. N. ; Seok S. I. Nano Lett. 2013, 13, 1764.
49 Park B. ; Jain S. M. ; Zhang X. ; Hagfeldt A. ; Boschloo G. ; Edvinsson T. ACS Nano 2015, 9, 2088.
50 Takahashi Y. ; Hasegawa H. ; Takahashi Y. ; Inabe T. J. Solid State Chem. 2013, 205, 39.
51 Stoumpos C. C. ; Malliakas C. D. ; Kanatzidis M. G. Inorg. Chem. 2013, 52, 9019.
52 Feng J. APL Mater. 2014, 2, 081801.
53 Hao F. ; Stoumpos C.C. ; Chang R. P. ; Kanatzidis M. G. J. Am. Chem. Soc. 2014, 136, 8094.
54 Im J. ; Stoumpos C. C. ; Jin H. ; Freeman A. J. ; Kanatzidis M. G. J. Phys. Chem. Lett. 2015, 6, 3503.
55 Feng J. ; Xiao B. J. Phys. Chem. C 2014, 118, 19655.
56 Hao F. ; Stoumpos C. C. ; Cao D. H. ; Chang R. P. ; Kanatzidis M. G. Nat. Photon. 2014, 8, 489.
57 Lee S. J. ; Shin S. S. ; Kim Y. C. ; Kim D. ; Ahn T. K. ; Noh J.H. ; Seo J. ; Seok S. I. J. Am. Chem. Soc. 2016, 138, 3974.
58 Feng H. ; Paudel T. R. ; Tsymbal E. Y. ; Zeng X. C. J. Am. Chem. Soc. 2015, 137, 8227.
59 Stoumpos C. C. ; Fraser L. ; Clark D. J. ; Kim Y. S. ; Rhim S.H. ; Freeman A. J. ; Ketterson J. B. ; Jang J. I. ; Kanatzidis M. G. J. Am. Chem. Soc. 2015, 137, 6804.
60 Krishnamoorthy T. ; Ding H. ; Yan C. ; Leong W. L. ; Baikie T. ; Zhang Z. ; Sherburne M. ; Li S. ; Asta M. ; Mathews N. ; Mhaisalkarac S. G. J. Mater. Chem. A 2015, 3, 23829.
61 Jacobsson T. J. ; Pazoki M. ; Hagfeldt A. ; Edvinsson T. J. Phys. Chem. C 2015, 119, 25673.
62 Chen F. S. J. Appl. Phys. 1969, 40, 3389.
63 Choi T. ; Lee S. ; Choi Y. J. ; Kiryukhin V. ; Cheong S. Science 2009, 324, 63.
64 Yang S. Y. ; Seidel J. ; Byrnes S. J. ; Shafer P. ; Yang C. ; Rossell M. D. ; Yu P. ; Chu Y. ; Scott J. F. ; Ager J.W. ; Martin L.W. ; Ramesh R. Nat. Nanotechnol. 2010, 5, 143.
65 Yi H. T. ; Choi T. ; Choi S. G. ; Oh Y. S. ; Cheong S. W. Adv. Mater. 2011, 23, 3403.
66 Lee D. ; Baek S. H. ; Kim T. H. ; Yoon J. ; Folkman C. M. ; Eom C. B. ; Noh T. W. Phys. Rev. B 2011, 84, 125305.
67 Park C. S. ; Shon Y. ; Yoon I. T. ; Son J. Y. Current Appl. Phys. 2013, 13, 386.
68 Raghavan C. M. ; Kim J.W. ; Kim S. S. J. Am. Ceram. Soc. 2014, 97, 235.
69 Dong G. ; Tan G. ; Liu W. ; Xia A. ; Ren H. Ceram. Int. 2014, 40, 1919.
70 Dong G. ; Tan G. ; Liu W. ; Xia A. ; Ren H. J. Mater. Sci. Technol. 2014, 4, 365.
71 Chang H.W. ; Shen C. Y. ; Yuan F. T. ; Tien S. H. ; Lin S. Y. ; Chen W. A. ; Wang C. R. ; Tu C. S. ; Jen S. U. J. Magn. Magn. Mater. 2016, 401, 673.
72 Chang H.W. ; Yuan F. T. ; Tu K. T. ; Lo Y. C. ; Tu S. Y. ; Wang C. R. ; Yang A. B. ; Tu C. S. ; Jen S. U. ; Chang W. C. J. Appl. Phys. 2015, 117, 17C734.
73 Das R. ; Sharma S. ; Mandal K. J. Magn. Magn. Mater. 2016, 401, 129.
74 Hu G. D. ; Cheng X. ; Wu W. B. Appl. Phys. Lett. 2007, 91, 2909.
75 Yan F. ; Zhu T. J. ; Lai M. O. ; Lu L. Scripta Mater. 2010, 63, 780.
76 Chen X. ; Hu G. ; Wu W. ; Yang C. ; Wang X. ; Fan S. J. Am. Ceram. Soc. 2010, 93, 948.
77 Kan D. ; Long C. J. ; Steinmetz C. ; Lofland S. E. ; Takeuchi I. J. Mater. Res. 2012, 27, 2691.
78 Zhang D. ; Shi P. ; Wu X. ; Ren W. Ceram. Int. 2013, 39, 461.
79 Fakhrul T. ; Mahbub R. ; Chowdhury N. ; Khosru Q. D. M. ; Sharif A. J. Alloy. Compd. 2015, 622, 471.
80 Liu W. ; Tan G. ; Dong G. ; Yan X. ; Ye W. ; Ren H. ; Xia A. J. Mater. Sci. -Mater. Electron. 2014, 25, 723.
81 Yin L. ; Liu W. ; Tan G. ; Ren H. J. Supercond. Nov. Magn. 2014, 27, 2765.
82 Yun Q. ; Xing W. ; Chen J. ; Gao W. ; Bai Y. ; Zhao S. Thin Solid Films 2015, 584, 103.
83 Raghavan C. M. ; Kim J.W. ; Kim S. S. Ceram. Int. 2014, 40, 2281.
84 Choi T. ; Lee S. ; Choi Y. J. ; Kiryukhin V. ; Cheong S. Science 2009, 324, 63.
85 Yang S. Y. ; Martin L.W. ; Byrnes S. J. ; Conry T. E. ; Basu S.R. ; Paran D. ; Reichertz L. ; Ihlefeld J. ; Adamo C. ; Melville A. ; Chu Y. H. ; Yang C. H. ; Musfeldt J. L. ; Schlom D. G. ; Ager J.W. ; Ramesh R. Appl. Phys. Lett. 2009, 95, 062909.
86 Qu T. L. ; Zhao Y. G. ; Xie D. ; Shi J. P. ; Chen Q. P. ; Ren T. L. Appl. Phys. Lett. 2011, 98, 173507.
87 Guo Y. ; Guo B. ; Dong W. ; Li H. ; Liu H. Nanotechnology 2013, 24, 275201.
88 Bhatnagar A. ; Chaudhuri A. R. ; Kim Y. H. ; Hesse D. ; Alexe M. Nat. Commun. 2013, 4, 2835.
89 Puli V. S. ; Pradhan D. K. ; Katiyar R. K. ; Coondoo I. ; Panwar N. ; Misra P. ; Chrisey D. B. ; Scott J. F. ; Katiyar R. S. J. Phys. D: Appl. Phys. 2014, 47, 075502.
90 Zhao P. ; Bian L. ; Wang L. ; Xu J. ; Chang A. Appl. Phys. Lett. 2014, 105, 013901.
91 Kamba S. ; Nuzhnyy D. ; Nechache R. ; Závěta K. ; Ni?ňansky D. ; ?antavá E. ; Harnagea C. ; Pignolet A. Phys. Rev. B 2008, 77, 104111.
92 Nechache R. ; Cojocaru C. V. ; Harnagea C. ; Nauenheim C. ; Nicklaus M. ; Ruediger A. ; Rosei F. ; Pignolet A. Adv. Mater. 2011, 23, 1724.
93 Nechache R. ; Harnagea C. ; Li S. ; Cardenas L. ; Huang W. ; Chakrabartty J. ; Rosei F. Nat. Photon. 2015, 9, 61.
94 Scaife D. E. ; Weller P. F. ; Fisher W. G. J. Solid State Chem. 1974, 9, 308.
95 Chung I. ; Lee B. ; He J. ; Chang R. P. ; Kanatzidis M. G. Nature 2012, 485, 486.
96 Yamada K. ; Funabiki S. ; Horimoto H. ; Matsui T. ; Okuda T. ; Ichiba S. Chem. Lett. 1991, 801
97 Yamada K. ; Matsui T. ; Tsuritani T. ; Okuda T. ; Ichiba S. Z. Naturforschung A 1990, 45, 307.
98 Yu C. ; Chen Z. ; Wang J. J. ; Pfenninger W. ; Vockic N. ; Kenney J. T. ; Shum K. J. Appl. Phys. 2011, 110, 063526.
99 Shum K. ; Chen Z. ; Qureshi J. ; Yu C. ; Wang J. J. ; Pfenninger W. ; Vockic N. ; Midgley J. ; Kenney J. T. Appl. Phys. Lett. 2010, 96, 221903.
100 Chen Z. ; Yu C. ; Shum K. ; Wang J. J. ; Pfenninger W. ; Vockic N. ; Midgley J. ; Kenney J. T. J. Lumin. 2012, 132, 345.
101 Chung I. ; Song J. ; Im J. ; Androulakis J. ; Malliakas C. D. ; Li H. ; Freeman A. J. ; Kenney J. T. ; Kanatzidis M. G. J. Am. Chem. Soc. 2012, 134, 8579.
102 Kumar M. H. ; Dharani S. ; Leong W. L. ; Boix P. P. ; Prabhakar R. R. ; Baikie T. ; Shi C. ; Ding H. ; Ramesh R. ; Asta M. ; Gr?tzel M. ; Mhaisalkar S. G. ; Mathews N. Adv. Mater. 2014, 26, 7122.
103 Huang L. Y. ; Lambrecht W. R. Phys. Rev. B 2013, 88, 165203.
104 Xu P. ; Chen S. ; Xiang H. ; Gong X. ; Wei S. Chem. Mater. 2014, 26, 6068.
105 Zhou Y. ; Garces H. F. ; Senturk B. S. ; Ortiz A. L. ; Padture N. P. Mater. Lett. 2013, 110, 127.
106 Zhang Q. ; Liu X. Small 2012, 8, 3711.
107 Deb A. K. ; Kumar V. AIP Advances 2015, 5, 077158.
108 Sabba D. ; Mulmudi H. K. ; Prabhakar R. R. ; Krishnamoorthy T. ; Baikie T. ; Boix P. P. ; Mhaisalkar S. ; Mathews N. J. Phys. Chem. C 2015, 119, 1763.
109 Seo D. ; Gupta N. ; Whangbo M. ; Hillebrecht H. ; Thiele G. Inorg. Chem. 1998, 37, 407.
110 Thiele G. ; Rotter H.W. ; Schmidt K. D. Z. Anorg. Allg. Chem. 1987, 545, 148.
111 Saparov B. ; Hong F. ; Sun J. ; Duan H. ; Meng W. ; Cameron S. ; Hill I. G. ; Yan Y. ; Mitzi D. B. Chem. Mater. 2015, 27, 5622.
112 Xiao Z. ; Lei H. ; Zhang X. ; Zhou Y. ; Hosono H. ; Kamiya T. Bull. Chem. Soc. Jpn. 2015, 88, 1250.
113 Lee B. ; Stoumpos C. C. ; Zhou N. ; Hao F. ; Malliakas C. ; Yeh C. ; Marks T. J. ; Kanatzidis M. G. ; Chang R. P. J. Am. Chem. Soc. 2014, 136, 15379.
114 McClure E. T. ; Ball M. R. ; Windl W. ; Woodward P. M. Chem. Mater. 2016, 28, 1348.
115 Slavney A. H. ; Hu T. ; Lindenberg A. M. ; Karunadasa H. I. J. Am. Chem. Soc. 2016, 138, 2138.
[1] Wenjun CHEN,Zhimin XUE,Jinfang WANG,Jingyun JIANG,Xinhui ZHAO,Tiancheng MU. Investigation on the Thermal Stability of Deep Eutectic Solvents[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 904-911.
[2] Marco FRANCO-PÉREZ,José L. GÁZQUEZ,W. AYERS Paul,Alberto VELA. Thermodynamic Dual Descriptor[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 683-391.
[3] Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 699-707.
[4] Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 424-436.
[5] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 344-347.
[6] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 391-406.
[7] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[8] Jing ZHANG,Youjun HE,Jie MIN. Recent Progress in Hybrid Perovskite Solar Cells Based on p-Type Small Molecules as Hole Transporting Materials[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1221-1238.
[9] Jun YUAN,Ye LIU,Can ZHU,Ping SHEN,Meixiu WAN,Liuliu FENG,Yingping ZOU. Asymmetric Quinoxaline-Based Polymer for High Efficiency Non-Fullerene Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1272-1278.
[10] Xia GUO,Qunping FAN,Chaohua CUI,Zhiguo ZHANG,Maojie ZHANG. Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1279-1285.
[11] Ping HE,Fanglong YUAN,Zifei WANG,Zhanao TAN,Louzhen FAN. Growing Carbon Quantum Dots for Optoelectronic Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1250-1263.
[12] Chunhe YANG,Aiwei TANG,Feng TENG,Kejian JIANG. Electrochemistry of Perovskite CH3NH3PbI3 Crystals[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1197-1201.
[13] Peng HUANG,Ligang YUAN,Yaowen LI,Yi ZHOU,Bo SONG. L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar p-i-n Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1264-1271.
[14] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[15] Yang HUANG,Qing-De SUN,Wen XU,Yao HE,Wan-Jian YIN. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1730-1751.