Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (9): 2171-2184    DOI: 10.3866/PKU.WHXB201606131
REVIEW     
Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells
Han XU,Ye-Xiang TONG,Gao-Ren LI*()
Download: HTML     PDF(18476KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The properties of Pd nanocrystals (NCs) intended for use in electrocatalytic applications greatly depend on their surface structures and morphologies. Recent developments in the shape-controlled synthesis of polyhedral Pd NCs represent a promising means of precisely tuning their electrocatalytic properties, and thus may enable the performance enhancement of electrocatalytic Pd NCs. In this comprehensive review, we concentrate on the most important current research concerning the shape-controlled synthesis of polyhedral Pd NCs and their electrocatalytic applications in fuel cells. After a brief introduction to the general NC growth mechanisms and the relationship between their surface structures and shapes, we focus on a variety of shapecontrolled synthesis strategies that have been explored to control the fabrication of polyhedral Pd NCs. This review also examines the applications of Pd NCs to the electrocatalytic oxidation of formic acid, methanol, and ethanol as well as the reduction of O2, with an emphasis on their use in fuel cells. Finally, we outline our personal perspectives on future research directions that are underway with regard to catalytic uses of polyhedral Pd NCs.



Key wordsPd nanocrystal      Polyhedron      Electrocatalyst      Controllable synthesis      Fuel cell     
Received: 25 April 2016      Published: 13 June 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51173212);the National Natural Science Foundation of China(21476271);National Key Basic Research Programof China (973)(2015CB932304);Natural Science Foundation of Guangdong Province, China(S2013020012833);Project of High Level Talents in Higher School of Guangdong Province, China
Corresponding Authors: Gao-Ren LI     E-mail: ligaoren@mail.sysu.edu.cn
Cite this article:

Han XU,Ye-Xiang TONG,Gao-Ren LI. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells. Acta Physico-Chimica Sinca, 2016, 32(9): 2171-2184.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201606131     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I9/2171

 
 
 
 
 
 
 
 
 
 
 
1 Zhu C. ; Du D. ; Eychmuller A. ; Lin Y. Chem. Rev. 2015, 115, 8896.
2 Scofield M. E. ; Liu H. Q. ; Wong S. S. Chem. Soc. Rev. 2015, 44, 5836.
3 Wang Y. J. ; Zhao N. ; Fang B. ; Li H. ; Bi X. T. ; Wang H. Chem. Rev. 2015, 115, 3433.
4 Ding L. X. ; Wang A. L. ; Li G. R. ; Liu Z. Q. ; Zhao W. X. ; Su C. Y. ; Tong Y. X. J. Am. Chem. Soc. 2012, 134, 5730.
5 Ding L. X. ; Li G. R. ; Wang Z. L. ; Liu Z. Q. ; Liu H. ; Tong Y. X. Chem. Eur. J. 2012, 18, 8386.
6 Wang A. L. ; Xu H. ; Feng J. X. ; Ding L. X. ; Tong Y. X. ; Li G. R. J. Am. Chem. Soc. 2013, 135, 10703.
7 Xu H. ; Ding L. X. ; Liang C. L. ; Tong Y. X. ; Li G. R. Npg Asia Mater. 2013, 5, e69.
8 Chen A. ; Ostrom C. Chem. Rev. 2015, 115, 11999.
9 Xu H. ; Ding L. X. ; Feng J. X. ; Li G. R. Chem. Sci. 2015, 6, 6991.
10 Ding L. X. ; Wang S. R. ; Zheng X. L. ; Chen Y. ; Lu T. H. ; Cao D. X. ; Tang Y. W. Acta Phys. -Chim. Sin. 2010, 26, 1311.
10 丁良鑫; 王士瑞; 郑小龙; 陈煜; 陆天虹; 曹殿学; 唐亚文. 物理化学学报, 2010, 26, 1311.
11 Rabis A. ; Rodriguez P. ; Schmidt T. J. ACS Catal. 2012, 2, 864.
12 Guo S. ; Zhang S. ; Sun S. Angew. Chem. Int. Edit. 2013, 52, 8526.
13 Antolini E. Energy Environ. Sci. 2009, 2, 915.
14 Lee H. ; Habas S. E. ; Somorjai G. A. ; Yang P. J. Am. Chem. Soc. 2008, 130, 5406.
15 Wang L. ; Nemoto Y. ; Yamauchi Y. J. Am. Chem. Soc. 2011, 133, 9674.
16 Tao A. R. ; Habas S. ; Yang P. Small 2008, 4, 310.
17 Tian N. ; Zhou Z. Y. ; Sun S. G. J. Phys. Chem. C 2008, 112, 19801.
18 Zhou Z. Y. ; Tian N. ; Li J. T. ; Broadwell I. ; Sun S. G. Chem. Soc. Rev. 2011, 40, 4167.
19 Chen T. ; Chen S. ; Zhang Y. ; Qi Y. ; Zhao Y. ; Xu W. ; Zeng J. Angew. Chem. Int. Edit. 2016, 55, 1839.
20 Jin M. ; Zhang H. ; Xie Z. ; Xia Y. Energy Environ. Sci. 2012, 5, 6352.
21 Kondo S. ; Nakamura M. ; Maki N. ; Hoshi N. J. Phys. Chem. C 2009, 113, 12625.
22 Chen M. ; Wu B. ; Yang J. ; Zheng N. Adv. Mater. 2012, 24, 862.
23 Lim B. ; Jiang M. ; Tao J. ; Camargo P. H. C. ; Zhu Y. ; Xia Y. Adv. Funct. Mater. 2009, 19, 189.
24 Lebedeva N. P. ; Koper M. T. M. ; Feliu J. M. ; van Santen R. A. J. Phys. Chem. B 2002, 106, 12938.
25 Lee S.W. ; Chen S. ; Sheng W. ; Yabuuchi N. ; Kim Y. T. ; Mitani T. ; Vescovo E. ; Shao-Horn Y. J. Am. Chem. Soc. 2009, 131, 15669.
26 Huang X. ; Zhao Z. ; Fan J. ; Tan Y. ; Zheng N. J. Am. Chem. Soc. 2011, 133, 4718.
27 Yu T. ; Kim D. Y. ; Zhang H. ; Xia Y. Angew. Chem. Int. Edit. 2011, 50, 2773.
28 Li X. L. ; Ouyang G. ; Yang G. W. Phys. Rev. B 2007, 75
29 You H. ; Yang S. ; Ding B. ; Yang H. Chem. Soc. Rev. 2013, 42, 2880.
30 Zhang H. ; Jin M. ; Xia Y. Angew. Chem. Int. Edit. 2012, 51, 7656.
31 LaMer V. K. ; Dinegar R. H. J. Am. Chem. Soc. 1950, 72, 4847.
32 Xiong Y. ; Xia Y. Adv. Mater. 2007, 19, 3385.
33 Burda C. ; Chen X. ; Narayanan R. ; El-Sayed M. A. Chem. Rev. 2005, 105, 1025.
34 Konuk M. ; Durukanoglu S. Phys. Chem. Chem. Phys. 2016, 18, 1876.
35 Xia Y. ; Xiong Y. ; Lim B. ; Skrabalak S. E. Angew. Chem. Int. Edit. 2009, 48, 60.
36 Kim F. ; Connor S. ; Song H. ; Kuykendall T. ; Yang P. Angew. Chem. Int. Edit. 2004, 43, 3673.
37 Tao A. ; Sinsermsuksakul P. ; Yang P. Angew. Chem. Int. Edit. 2006, 45, 4597.
38 Zhou Z. Y. ; Tian N. ; Huang Z. Z. ; Chen D. J. ; Sun S.G. Faraday Discuss. 2008, 140, 81.
39 Kim Y. R. ; Lai S. C. S. ; McKelvey K. ; Zhang G. ; Perry D. ; Miller T. S. ; Unwin P. R. J. Phys. Chem. C 2015, 119, 17389.
40 Chen J. ; Herricks T. ; Xia Y. Angew. Chem. Int. Edit. 2005, 44, 2589.
41 Xiong Y. J. ; McLellan J. M. ; Chen J. Y. ; Yin Y. D. ; Li Z. Y. ; Xia Y. N. J. Am. Chem. Soc. 2005, 127, 17118.
42 Cheong S. ; Watt J. ; Ingham B. ; Toney M. F. ; Tilley R. D. J. Am. Chem. Soc. 2009, 131, 14590.
43 Wei Z. ; Matsui H. Nat. Commun. 2014, 5, 3870.
44 Wang F. ; Cheng S. ; Bao Z. ; Wang J. Angew. Chem. Int. Edit. 2013, 52, 10344.
45 Chen Y. H. ; Hung H. H. ; Huang M. H. J. Am. Chem. Soc. 2009, 131, 9114.
46 Xiong Y. ; Wiley B. ; Chen J. ; Li Z. Y. ; Yin Y. ; Xia Y. Angew. Chem. Int. Edit. 2005, 44, 7913.
47 Li C. ; Jiang B. ; Imura M. ; Umezawa N. ; Malgras V. ; Yamauchi Y. Chem. Eur. J. 2015, 21, 18671.
48 Long R. ; Zhou S. ; Wiley B. J. ; Xiong Y. Chem. Soc. Rev. 2014, 43, 6288.
49 Zhang H. X. ; Wang H. ; Re Y. S. ; Cai W. B. Chem. Commun. 2012, 48, 8362.
50 Niu W. ; Zhang L. ; Xu G. ACS Nano 2010, 4, 1987.
51 Sneed B. T. ; Golden M. C. ; Liu Y. ; Lee H. K. ; Andoni I. ; Young A. P. ; McMahon G. ; Erdman N. ; Shibata M. ; Ling X.Y. ; Tsung C. K. Surf. Sci. 2016, 648, 307.
52 Xiong Y. ; McLellan J. M. ; Yin Y. ; Xia Y. Angew. Chem. Int. Edit. 2007, 46, 790.
53 Lim B. ; Xiong Y. ; Xia Y. Angew. Chem. Int. Edit. 2007, 46, 9279.
54 Huang X. ; Tang S. ; Mu X. ; Dai Y. ; Chen G. ; Zhou Z. ; Ruan F. ; Yang Z. ; Zheng N. Nat. Nanotechnol. 2011, 6, 28.
55 Huang X. ; Tang S. ; Zhang H. ; Zhou Z. ; Zheng N. J. Am. Chem. Soc. 2009, 131, 13916.
56 Niu Z. ; Peng Q. ; Gong M. ; Rong H. ; Li Y. Angew. Chem. Int. Edit. 2011, 50, 6315.
57 Zhang J. ; Zhang L. ; Xie S. ; Kuang Q. ; Han X. ; Xie Z. ; Zheng L. Chem. Eur. J. 2011, 17, 9915.
58 Wang Y. ; Peng H. C. ; Liu J. ; Huang C. Z. ; Xia Y. Nano Lett. 2015, 15, 1445.
59 Guo X. L. ; Tan Y. W. Phys. Chem. Chem. Phys. 2015, 17, 31956.
60 Zhang Y. ; Wang M. ; Zhu E. ; Zheng Y. ; Huang Y. ; Huang X. Nano Lett. 2015, 15, 7519.
61 Graham L. ; Collins G. ; Holmes J. D. ; Tilley R. D. Nanoscale 2016, 8, 2867.
62 Jin M. ; Zhang H. ; Xie Z. ; Xia Y. Angew. Chem. Int. Edit. 2011, 50, 7850.
63 Yang F. Z. ; Huang L. ; Xu S. K. ; Zhou S. M. Acta Phys. -Chim. Sin. 2004, 20, 463.
63 杨防祖; 黄令; 许书楷; 周邵民. 物理化学学报, 2004, 20, 463.
64 Tian N. ; Zhou Z. Y. ; Sun S. G. Chem. Commun. 2009, 1502
65 Yu Y. ; Zhang Q. B. ; Liu B. ; Lee J. Y. J. Am. Chem. Soc. 2010, 132, 18258.
66 Habas S. E. ; Lee H. ; Radmilovic V. ; Somorjai G. A. ; Yang P. Nat. Mater. 2007, 6, 692.
67 Fan F. R. ; Liu D. Y. ; Wu Y. F. ; Duan S. ; Xie Z. X. ; Jiang Z.Y. ; Tian Z. Q. J. Am. Chem. Soc. 2008, 130, 6949.
68 Yoo Y. ; Yoon I. ; Lee H. ; Ahn J. ; Ahn J. P. ; Kim B. ACS Nano 2010, 4, 2919.
69 Sundar A. ; Farzinpour P. ; Gilroy K. D. ; Tan T. ; Hughes R.A. ; Neretina S. Cryst. Growth Des. 2013, 13, 3847.
70 Li G. R. ; Xu H. ; Lu X. F. ; Feng J. X. ; Tong Y. X. ; Su C. Y. Nanoscale 2013, 5, 4056.
71 Meng H. ; Wang C. ; Shen P. K. ; Wu G. Energy Environ. Sci. 2011, 4, 1522.
72 Tian N. ; Zhou Z. Y. ; Yu N. F. ; Wang L. Y. ; Sun S. G. J. Am. Chem. Soc. 2010, 132, 7580.
73 Zhao X. ; Yin M. ; Ma L. ; Liang L. ; Liu C. ; Liao J. ; Lu T. ; Xing W. Energy Environ. Sci. 2011, 4, 2736.
74 He G. ; Li Z. ; Zhao J. ; Wang S. ; Wu H. ; Guiver M. D. ; Jiang Z. Adv. Mater. 2015, 27, 5280.
75 Kakati N. ; Maiti J. ; Lee S. H. ; Jee S. H. ; Viswanathan B. ; Yoon Y. S. Chem. Rev. 2014, 114, 12397.
76 Chen A. ; Holt-Hindle P. Chem. Rev. 2010, 110, 3767.
77 Wang Y. J. ; Wilkinson D. P. ; Zhang J. Chem. Rev. 2011, 111, 7625.
78 Bianchini C. ; Shen P. K Chem. Rev. 2009, 109, 4183.
79 Liu C. Y. ; Xu B. ; Tang Y.W. ; Cao G. P. ; Yang Y. S. ; Lu T.H. H. Acta Phys. -Chim. Sin. 2011, 27, 604.
79 刘春艳; 徐斌; 唐亚文; 曹高萍; 杨裕生; 陆天虹. 物理化学学报, 2011, 27, 604.
80 Jiang G. M. ; Zhu H. Y. ; Zhang X. ; Shen B. ; Wu L. H. ; Zhang S. ; Lu G. ; Wu Z. B. ; Sun S. H. ACS Nano 2015, 9, 11014.
81 Jiang K. ; Zhang H. X. ; Zou S. ; Cai W. B. Phys. Chem. Chem. Phys. 2014, 16, 20360.
82 Babu P. K. ; Kim H. S. ; Chung J. H. ; Oldfield E. ; Wieckowski A. J. J. Phys. Chem. B 2004, 108, 20228.
83 Hoshi N. ; Kida K. ; Nakamura M. ; Nakada M. ; Osada K.J. J. Phys. Chem. B 2006, 110, 12480.
84 Choi S. I. ; Herron J. A. ; Scaranto J. ; Huang H.W. ; Wang Y. ; Xia X. H. ; Lv T. ; Park J. H. ; Peng H. C. ; Mavrikakis M. ; Xia Y. N. ChemCatChem 2015, 7, 2077.
85 Zhou W. ; Lee J. Y. J. Phys. Chem. C 2008, 112, 3789.
86 Koenigsmann C. ; Wong S. S. Energy Environ. Sci. 2011, 4, 1161.
87 Lamy C. ; Lima A. ; LeRhun V. ; Delime F. ; Coutanceau C. ; Léger J. M. J. Power Sources 2002, 105, 283.
88 Pandey R. K. ; Lakshminarayanan V.J. J. Phys. Chem. C 2009, 113, 21596.
89 Hu G. ; Nitze F. ; Sharifi T. ; Barzegar H. R. ; W?gberg T. J. Mater. Chem. 2012, 22, 8541.
90 Xu J. X. ; Jiang Y. X. ; Liao H. G. ; Chen S. P. ; Sun S. G. Acta Phys. -Chim. Sin. 2010, 26, 2139.
90 许加欣; 姜艳霞; 廖洪钢; 陈声培; 孙世刚. 物理化学学报, 2010, 26, 2139.
91 Xie X. ; Gao G. ; Pan Z. ; Wang T. ; Meng X. ; Cai L. Sci. Rep. 2015, 5, 8515.
92 Tian, N.; Zhou, Z. Y.; Sun, S. G. Chem. Commun. 2009, No.12, 1502. doi: 10.1039/b819751b
93 Wu J. ; Qi L. ; You H. ; Gross A. ; Li J. ; Yang H. J. Am. Chem. Soc. 2012, 134, 11880.
94 Wu J. ; Gross A. ; Yang H. Nano Lett. 2011, 11, 798.
95 Sanchez-Sanchez C. M. ; Solla-Gullon J. ; Vidal-Iglesias F. J. ; Aldaz A. ; Montiel V. ; Herrero E. J. Am. Chem. Soc. 2010, 132, 5622.
96 Xie S. ; Choi S. I. ; Lu N. ; Roling L. T. ; Herron J. A. ; Zhang L. ; Park J. ; Wang J. ; Kim M. J. ; Xie Z. ; Mavrikakis M. ; Xia Y. Nano Lett. 2014, 14, 3570.
97 Dai L. ; Xue Y. ; Qu L. ; Choi H. J. ; Baek J. B. Chem. Rev. 2015, 115, 4823.
98 Xiong L. ; Chen J. J. ; Huang Y. X. ; Li W.W. ; Xie J. F. ; Yu H. Q. Nano Energy 2015, 12, 33.
99 Koenigsmann C. ; Santulli A. C. ; Sutter E. ; Wong S. S. ACS Nano 2011, 5, 7471.
100 Shao M. ; Odell J. ; Humbert M. ; Yu T. ; Xia Y. J. Phys. Chem. C 2013, 117, 4172.
101 Shao M. ; He G. ; Peles A. ; Odell J. H. ; Zeng J. ; Su D. ; Tao J. ; Yu T. ; Zhu Y. ; Xia Y. Chem. Commun. 2013, 49, 9030.
102 Shao M. ; Chang Q. ; Dodelet J. P. ; Chenitz R. Chem. Rev. 2016, 116, 3594.
103 Shao M. ; Yu T. ; Odell J. H. ; Jin M. ; Xia Y. Chem. Commun. 2011, 47, 6566.
104 Xiao L. ; Zhuang L. ; Liu Y. ; Lu J. ; Abruna H. D. J. Am. Chem. Soc. 2009, 131, 602.
105 Erikson H. ; Sarapuu A. ; Tammeveski K. ; Solla-Gullón J. ; Feliu J. M. Electrochem. Commun. 2011, 13, 734.
106 Erikson H. ; Sarapuu A. ; Alexeyeva N. ; Tammeveski K. ; Solla-Gullón J. ; Feliu J. M. Electrochim. Acta 2012, 59, 329.
107 Lee C. L. ; Chiou H. P. ; Liu C. R. Int. J. Hydrog. Energy 2012, 37, 3993.
108 Zhou W. ; Li M. ; Ding O. L. ; Chan S. H. ; Zhang L. ; Xue Y. Int. J. Hydrog. Energy 2014, 39, 6433.
[1] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 361-376.
[2] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[3] Xiao-Qiang. WANG,Jiang. LIU,Yong-Min. XIE,Wei-Zi. CAI,Ya-Peng. ZHANG,Qian. ZHOU,Fang-Yong. YU,Mei-Lin. LIU. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1614-1620.
[4] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1366-1378.
[5] Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 886-902.
[6] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 283-294.
[7] Yong-Min XIE,Xiao-Qiang WANG,Jiang LIU,Chang-Lin YU. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 386-392.
[8] Jin-Ling YIN,Jia LIU,Qing WEN,Gui-Ling WANG,Dian-Xue CAO. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 370-376.
[9] Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2388-2403.
[10] Qiao-Wan CHANG,Fei XIAO,Yuan XU,Min-Hua SHAO. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 9-17.
[11] LU Shan-Fu, PENG Si-Kan, XIANG Yan. Perspectives on the Research Progress of Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1859-1865.
[12] Jun-Lin MAI,De-Lin SUN,Xue-Bo QUAN,Li-Bo LI,Jian ZHOU. Mesoscopic Structure of Nafion-Ionic Liquid Membrane Using Dissipative Particle Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1649-1657.
[13] YANG Yi, LUO Lai-Ming, DU Juan-Juan, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 834-847.
[14] YU Liang, YU Fang-Yong, YUAN Li-Li, CAI Wei-Zi, LIU Jiang, YANG Cheng-Hao, LIU Mei-Lin. Electrical Performance of Ag-Based Ceramic Composite Electrodes and Their Application in Solid Oxide Fuel Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 503-509.
[15] Cheng-Xian WANG,Fei YU,Jie MA. Applications of Graphene-Based Hybrid Material as Electrodes in Microbial Fuel Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2411-2426.