Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (10): 2545-2554    DOI: 10.3866/PKU.WHXB201606161
ARTICLE     
Controlled Synthesis and Supercapacitive Performance of Heterostructured MnO2/H-TiO2 Nanotube Arrays
Juan XU1,3,Jia-Qin LIU2,3,*(),Jing-Wei LI2,Yan WANG3,4,Jun Lü3,4,Yu-Cheng WU3,4,*()
1 School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
2 Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China
3 Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, P. R. China
4 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
Download: HTML     PDF(9664KB) Export: BibTeX | EndNote (RIS)      

Abstract  

This study used the target-controlled anodizing process for the controllable fabrication of TiO2 nanotube arrays (TiO2 NTAs) film substrate with large specific surface area and well-separated nanotubes. After annealing crystallization, TiO2 NTAs were successively functional modified by electrochemical hydrogenation and sequential chemical bath deposition of high specific capacitance MnO2 nanoparticles onto both the outer and inner surfaces of the nanotubes, thus constructing the heterostructured MnO2/H-TiO2 NTAs electrode. The as-prepared samples were fully characterized by field emission scanning electron microscopy (FESEM), highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy. The supercapacitive performance and stability of the resulting samples were systematically evaluated using electrochemical workstation. The results from the current study revealed that conductivity and electrochemical properties of H-TiO2 NTAs were dramatically enhanced through electrochemical hydrogenation and the specific capacitance of H-TiO2 NTAs could achieve 7.5 mF·cm-2 at current density of 0.2 mA·cm-2, which is almost 75 times the performance of TiO2 NTAs (0.1 mF·cm-2). Furthermore, the specific capacitance of MnO2/H-TiO2 NTAs-2 could achieve 481.26 F·g-1 at a current density of 3 mA·mg-1 as well as outstanding long-term cycling stability with only 11% reduction of initial specific capacitance at a current density of 5 mA·mg-1 after 1000 cycles.



Key wordsTiO2 nanotube array      Hydrogenation      MnO2      Electrochemistry      Supercapacitive performance     
Received: 12 April 2016      Published: 16 June 2016
MSC2000:  O646  
Fund:  The project was supported by the National Natural Science Foundation of China(51402078);Natural Science Foundation of Anhui Province, China(1408085QE85);and Young Scholar Enhancement Foundation (Plan B) of HFUT, China(JZ2016HGTB0711)
Corresponding Authors: Jia-Qin LIU,Yu-Cheng WU     E-mail: jqliu@hfut.edu.cn;ycwu@hfut.edu.cn
Cite this article:

Juan XU,Jia-Qin LIU,Jing-Wei LI,Yan WANG,Jun Lü,Yu-Cheng WU. Controlled Synthesis and Supercapacitive Performance of Heterostructured MnO2/H-TiO2 Nanotube Arrays. Acta Physico-Chimica Sinca, 2016, 32(10): 2545-2554.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201606161     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2545

Fig 1 Fabrication process of the Mn02/H-TiO2 NTAs composite color online
Fig 2 FESEM morphology of TiO2 NTAs (a) and H-TiO2 NTAs (b) Insets in (a,b) show the FESEM images of the corresponding cross-section of samples.
Fig 3 FESEM morphology of MnO2/H-TiO2 NTAs-1, 2, 3 (a-c) and enlarged side-view of MnO2/H-TiO2 NTAs-2 (d) Insets in (a-c) show the FESEM images of the corresponding cross-sections of samples.
Fig 4 TEM and HRTEM morphology (a, b) and energy dispersive X-ray spectroscopy (EDS) mapping (c-f) of MnO2/H-TiO2 NTAs-2
Fig 5 XRD patterns of TiO2 NTAs (a), H-TiO2 NTAs (b) and MnO2/H-TiO2 NTAs-1, 2, 3 (c-e)
Fig 6 Raman spectra of TiO2 NTAs and H-TiO2 NTAs (a) and TiO2 NTAs and MnO2/H-TiO2 NTAs-2 (b)
Fig 7 XPS survey spectra of the MnO2/H-TiO2 NTAs-2 (a) and XPS spectra of O 1s (b), Ti 2p (c), Mn 2p (d)
Fig 8 Cyclic voltammetry (CV) curves of TiO2 NTAs (a) and H-TiO2NTAs (c) at different scan rates; charge-discharge (CD) curves of TiO2 NTAs (b) and H-TiO2 NTAs (d) at different current densities color online
Fig 9 (a) CV curves of TiO2 NTAs and H-TiO2 NTAs at a scan rate of 100 mV·s-1, (b) CD curves of TiO2 NTAs and H-TiO2 NTAs at a current density of 0.2 mA·cm-2
Fig 10 (a) CV curves of MnO2/H-TiO2 NTAs-X (X = 1, 2, 3) at a scan rate of 100 mV·s-1, (b) CD curves of MnO2/H-TiO2 NTAs-X (X = 1, 2, 3) at a current density of 1 mA·mg-1 color online
Immersion cycle Loaded Mn02 mass/mg Mn02 areal mass Specific capacitance
(mg ? cm-2)(F·g-1)
1 0.7 0.14 276.1
2 1.0 0.2 481.3
3 1.7 0.425 381.7
Table 1 Relationship of immersion cycles with corresponding loaded MnO2 mass, areal mass, and specific capacitance of MnO2/H-TiO2 NTAs-X (X = 1, 2, 3)
Fig 11 (a) CV curves of MnO2/H-TiO2 NTAs-2 at different scan rates, (b) CD curves of MnO2/H-TiO2 NTAs-2 at different current densities
Fig 12 Nyquist plots of the TiO2 NTAs and H-TiO2NTAs (a), H-TiO2NTAs and MnO2/H-TiO2 NTAs-2 (b) Insets in (a, b) show the high frequency regions of the Nyquist plots.
Fig 13 Cycling stability of the MnO2/H-TiO2 NTAs-2 at a current density of 5 mA·mg-1 for 1000 cycles
1 Luo Y. ; Kong D. ; Luo J. ; Chen S. ; Zhang D. ; Qiu K. ; Qi X. ; Zhang H. ; Li C. M. ; Yu T RSC Adv. 2013, 3 (34), 14413.
2 Kim B. C. ; Hong J. Y. ; Wallace G. G. ; Park H. S Adv. Energy Mater. 2015, 5, 1500959.
3 Kim J. H. ; Lee S. ; Choi J. ; Song T. ; Paik U J. Mater. Chem. A 2015, 3 (41), 20459.
4 Ma Y. ; Chang H. ; Zhang M. ; Chen Y Adv. Mater. 2015, 27 (36), 5296.
5 Wang G. ; Zhang L. ; Zhang J Chem. Soc. Rev. 2012, 41 (2), 797.
6 Zhi M. ; Xiang C. ; Li J. ; Li M. ; Wu N Nanoscale 2013, 5 (1), 72.
7 Titirici M. M. ; White R. J. ; Brun N. ; Budarin V. L. ; Su D. S. ; Monte F. D. ; Clarkd J. H. ; MacLachlan M. J Chem. Soc. Rev. 2014, 25, 250.
8 Dong L. ; Xu C. ; Li Y. ; Huang Z. H. ; Kang F. ; Yang Q. H. ; Zhao X J. Mater. Chem. A 2016, 4, 4659.
9 Yuan C. ; Wu H. B. ; Xie Y. ; Lou X W. Angew. Chem. Int. Ed. 2013, 52 (6), 1488.
10 Achilleos D. S. ; Hatton T. A J. Colloid Interface Sci. 2015, 447, 282.
11 Cao X. Y. ; Xing X. ; Zhang N. ; Gao H. ; Zhang M. Y. ; Shang Y. C. ; Zhang X. T J. Mater. Chem. A 2015, 3, 3785.
12 Ning X. ; Wang X. ; Yu X. ; Li J. ; Zhao J J. Alloy Compd. 2016, 658, 177.
13 Zhi J. ; Deng S. ; Wang Y. ; Hu A J. Mater. Chem. C 2015, 119 (16), 8530.
14 Zhu Q. ; Hu H. ; Li G. ; Zhu C. ; Yu Y Electrochim. Acta 2015, 156, 252.
15 Li Y. ; Wang H. ; Jian J. ; Fan Y. ; Yu L. ; Cheng G. ; Zhou J. ; Sun M RSC Adv. 2016, 6, 13957.
16 Sun S. ; Wang P. ; Wang S. ; Wu Q. ; Fang S Mater. Lett. 2015, 145, 141.
17 Deng D. ; Kim B. S. ; Gopiraman M. ; Kim I. S RSC Adv. 2015, 5 (99), 81492.
18 Tan D. Z.W. ; Cheng H. ; Nguyen S. T. ; Duong H. M Mater. Technol. 2014, 29 (A2), A107.
19 Mor G. K. ; Varghese O. K. ; Wilke R. H. T. ; Sharma S. ; Shankar K. ; Latempa T. J.. ; Choi K. S. ; Grimes C. A Nano Lett 2008, 8 (7), 1906.
20 Lu X. ; Wang G. ; Zhai T. ; Yu M. ; Gan J. ; Tong Y. ; Li Y Nano Lett. 2012, 12 (3), 1690.
21 Lu X. ; Yu M. ; Wang G. ; Zhai T. ; Xie S. ; Ling Y. ; Tong Y. ; Li Y Adv. Mater. 2013, 25 (2), 267.
22 Li Z. ; Ding Y. ; Kang W. ; Li C. ; Lin D. ; Wang X. ; Chen Z. ; Wu M. ; Pan D Electrochim. Acta 2014, 161, 40.
23 Liu N. ; Schneider C. ; Freitag D. ; Hartmann M. ; Venkatesan U. ; Muller J. ; Spiecker E. ; Schmuki P Nano Lett. 2014, 14 (6), 3309.
24 Di J. ; Fu X. ; Zheng H. ; Jia Y J. Nanopart Res. 2015, 17 (6)
25 Zhou H. ; Zhang Y J. Power Sources 2014, 272, 866.
26 Zhou H. ; Zhang Y J. Power Sources 2013, 239, 128.
27 Wu H. ; Xu C. ; Xu J. ; Lu L. ; Fan Z. ; Chen X. ; Song Y. ; Li D Nanotechnology 2013, 24 (45), 455401.
28 Salari M. ; Konstantinov K. ; Liu H. K J. Mater. Chem. 2011, 21 (13), 5128.
29 Wu H. ; Li D. ; Zhu X. ; Yang C. ; Liu D. ; Chen X. ; Song Y. ; Lu L Electrochim. Acta 2014, 116 (129)
30 Ramadoss A. ; Kim S. J Int. J. Hydrog. Energy 2014, 39 (23), 12201.
31 Zhou D. ; Lin H. ; Zhang F. ; Niu H. ; Cui L. ; Wang Q. ; Qu F Electrochim. Acta 2015, 161, 427.
32 Li H. ; Jiang L. ; Cheng Q. ; He Y. ; Pavlinek V. ; Saha P. ; Li C Electrochim. Acta 2015, 164, 252.
33 Liao J. Y. ; Higgins D. ; Lui G. ; Chabot V. ; Xiao X. ; Chen Z Nano Lett. 2013, 13 (11), 5467.
34 Pan D. ; Huang H. ; Wang X. ; Wang L. ; Liao H. ; Li Z. ; Wu M J. Mater. Chem. A 2014, 2 (29), 11454.
35 Sainan Y. ; Cheng K. ; Huang J. ; Ye K. ; Xu Y. ; Cao D. ; Wang X. Z. G Electrochim. Acta 2014, 120, 416.
[1] Hong-Yan NING,Qi-Lei YANG,Xiao YANG,Ying-Xia LI,Zhao-Yu SONG,Yi-Ren LU,Li-Hong ZHANG,Yuan LIU. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1865-1874.
[2] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1421-1428.
[3] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1310-1323.
[4] Chao LIAN,Kai ZHANG,Yuan WANG. Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 984-992.
[5] Xiao-Ping GAO,Zhang-Long GUO,Ya-Nan ZHOU,Fang-Li JING,Wei CHU. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 602-610.
[6] Yi-Fan RUAN,Nan ZHANG,Yuan-Cheng ZHU,Wei-Wei ZHAO,Jing-Juan XU,Hong-Yuan CHEN. New Developments in Photoelectrochemical Bioanalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 476-485.
[7] Ya-Yu HUANG,Qiu-Yan FANG,Jian-Zhang ZHOU,Dong-Ping ZHAN,Kang SHI,Zhong-Qun TIAN. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2042-2051.
[8] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1944-1959.
[9] Wei-Xin SONG,Hong-Shuai HOU,Xiao-Bo JI. Progress in the Investigation and Application of Na3V2(PO4)3 for Electrochemical Energy Storage[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 103-129.
[10] BI Hui-Zi, DOU Rong-Fei, WANG Hao, PEI Yan, QIAO Ming-Hua, SUN Bin, ZONG Bao-Ning. Effect of the Support on Partial Hydrogenation of Toluene over Ru/Oxide Catalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1765-1774.
[11] Meng-Ting SUN,Bi-Chun HUANG,Jie-Wen MA,Shi-Hui LI,Li-Fu DONG. Morphological Effects of Manganese Dioxide on Catalytic Reactions for Low-Temperature NH3-SCR[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1501-1510.
[12] . Preparation of Highly Dispersed Co/SiO2 Catalyst Using Ethylene Glycol and Its Application in Vapor-Phase Hydrogenolysis of Ethyl Lactate to 1,2-Propanediol[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1511-1518.
[13] LIU Lin, LI Zhi-Sheng, HU Hui-Dong, SONG Wei-Li. Insight into Macroscopic Metal-Assisted Chemical Etching for Silicon Nanowires[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 1019-1028.
[14] Lü Jing-Mei, CHENG Xuan. Electrochemical Behavior of Porous and Flat Silicon Electrode Interfaces[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 711-716.
[15] Fei XUE,Ji-Min HE,Wei-Miao CHEN,Xian-Gen SONG,Xian-Bo CHENG,Yun-Jie DING. Effect of the Calcination Temperature of the Support on the Performance of Rh-Mn-Li/SBA-15 Catalysts for CO Hydrogenation[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2769-2775.