Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (10): 2581-2592    DOI: 10.3866/PKU.WHXB201606226
ARTICLE     
Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting
Xu-Qiang HAO1,Hao YANG1,Zhi-Liang JIN1,*(),Jing XU1,Shi-Xiong MIN1,Gong-Xuan Lü2,*()
1 School of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan 750021, P. R. China
2 State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
Download: HTML     PDF(13427KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nanosheet materials obtained from laminar compounds are new two-dimensional anisotropic nanomaterials that can even reach the sub-nanometer scale. These materials possess unique physical and chemical properties. An example of such a nanosheet materials is graphitic carbon nitride (g-C3N4) nanosheets transformed from bulk g-C3N4. Here, g-C3N4 nanosheets were prepared from bulk g-C3N4 by high-temperature thermal oxidation. The photocatalytic activity of eosin (EY)-sensitized g-C3N4 nanosheets for hydrogen evolution was about 2.6 times higher than that of bulk g-C3N4. The structure of the g-C3N4 nanosheets and process of electron transfer between EY and the g-C3N4 nanosheets were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, fluorescence spectroscopy, and photoelectrochemical measurements. The g-C3N4 nanosheets possessed high specific surface area. The g-C3N4 nanosheets not only effectively absorbed dye molecules, but also enhanced the separation and electron transport efficiencies of photogenerated charges because of their quantum confinement effect. The quantum confinement effect of g-C3N4 nanosheets widened their bandgap, improved electron transfer ability along the in-plane direction, and lengthened the lifetime of photoexcited charge carriers. As a result, the photocatalytic activity of the g-C3N4 nanosheets was improved compared with that of bulk g-C3N4.



Key wordsg-C3N4 nanosheet      Dye-sensitization      Quantum confinement effect      Photocatalysis      Hydrogen evolution     
Received: 21 April 2016      Published: 22 June 2016
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21263001,21463001,21433007)
Corresponding Authors: Zhi-Liang JIN,Gong-Xuan Lü     E-mail: zl-jin@nun.edu.cn;gx-lu@lzb.ac.cn
Cite this article:

Xu-Qiang HAO,Hao YANG,Zhi-Liang JIN,Jing XU,Shi-Xiong MIN,Gong-Xuan Lü. Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting. Acta Physico-Chimica Sinca, 2016, 32(10): 2581-2592.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201606226     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2581

Fig 1  (A) XRD patterns and (B) FTIR spectra of (a) bulk g-C3N4 and (b) g-C3N4-NS g-C3N4-NS: graphitic carbon nitride nanosheet
Fig 2  SEM images of (A) bulk g-C3N4 and (B) g-C3N4-NS; TEM images of (C,D) bulk g-C3N4 and (E,F) g-C3N4-NS
Fig 3  (A) C 1s and (B) N 1s XPS scan spectra of g-C3N4-NS
Fig 4  UV-Vis diffuse reflectance spectra of bulk g-C3N4 and g-C3N4-NS
Fig 5  (A) Isotherms and (B) pore size distributions of bulk g-C3N4 and g-C3N4-NS
SampleSBET/(m2?g-1) aPore volume/(cm3?g-1) bAverage poresize/nm b
bulk g-C3N47.3210.0639834.96
g-C3N4-NS12.820.0701321.87
Table 1  N2 adsorption isotherms characterization of catalysts
Fig 6  (A) Photocatalytic activities of EY-sensitized g-C3N4/1%(w) Pt and g-C3N4-NS/1% (w) Pt for hydrogenevolution under visible light irradiation; (B) stabilitytesting of H2 evolution over EY-g-C3N4-NS/1%(w) Ptphotocatalyst (A) The photocatalytic activities of eosin (EY)-sensitized (4.0 × 10-4mol?L-1) g-C3N4/1% (w) Pt and g-C3N4-NS/1% (w) Pt for hydrogenevolution in 100 mL 10% (φ) triethanolamine (TEOA) aqueoussolution (pH 8) under visible light irradiation. (B) The 5th run ofstability testing adds in 28 mg EY again for photoreaction.
Fig 7  (A) SEM,(B,C) TEM images of g-C3N4-NS/Pt photocatalyst after reaction and (D) XRD patterns of g-C3N4-NS and g-C3N4-NS/1%Pt
Fig 8  (A) Concentration changes of EY under visible light in the presence of bulk g-C3N4/1%Pt and g-C3N4-NS/1%Pt and (B) the first-order reaction kinetics curves of EY degradation
Fig 9  Effect of the (A) pH and (B) EY concentration on the photocatalytic H2 evolution over EY-g-C3N4-NS/1%Pt EY-g-C3N4-NS/1%Pt in 10% (φ) TEOA aqueous solution (pH 8) for photocatalytic H2 evolution under visible light irradiation (λ ≥ 420 nm; reaction time: 5 h)
Fig 10  Effect of the different Pt contents (w) on the photocatalytic H2 evolution over EY-g-C3N4-NS/Pt The different Pt mass ratios from 0.5% to 5% were loaded to EY-g-C3N4-NS for photocatalytic H2 evolution in 10% (φ) TEOA aqueous solution (pH 8) under visible light irradiation(λ ≥ 420 nm,reaction time: 5 h).
Fig 11  Apparent quantum yields (AQEs) of hydrogen evolution for EY-g-C3N4-NS/1%Pt systems under different wavelength irradiation AQEs of hydrogen evolution for EY (1.0 × 10-4 mol?L-1) sensitized g-C3N4-NS/1%Pt systems in 10% (φ) TEOA aqueous solution (pH 8) under different wavelength irradiation (reaction time: 30 min)
Fig 12  Fluorescence spectra of EY-sensitized (1 × 10-6 mol?L-1) g-C3N4 and g-C3N4-NS samples in 10%(φ) TEOA aqueous solution at pH 8
System aτ/ns dA/%eτ>/ns fχ2 g
EY b0.378500.3781.009
EY-bulk g-C3N4c0.438500.4381.021
EY-g-C3N4-NS c0.546500.5460.9978
Table 2  Fluorescence lifetime of EY in the presence of g-C3N4 and g-C3N4-NS in 10%(φ) TEOA aqueous solution
Fig 13 (A) Transient photocurrent response and (B) linear sweep voltammetry (LSV) curves for theEY-sensitized g-C3N4 and g-C3N4-NS electrodes Photocurrent density-time and LSV of EY-sensitized g-C3N4and g-C3N4-NS coated on indium tin oxide (ITO) electrodes were investigated in a mixed solution of 10% (φ) TEOA and Na2SO4 (0.1 mol?L-1) at pH 8 under visible light irradiation. The scan rate was 1 mV?s-1.
Fig 14 Photocatalytic mechanism for hydrogen evolution over EY-sensitized g-C3N4-NS/Pt under visible light irradiation CB: conduction band; VB: valence band; ISC: intersystem crossing
1 Yang Y. ; Xia L. F. ; Fan Z. Y. ; Chen W. ; Chen X. P. ; Yuan J. ; Shangguan W. F J. Mol. Catal. (China) 2014, 28, 182.
1 杨俞; 夏龙飞; 范泽云; 陈威; 陈小平; 袁坚上官文峰. 分子催化, 2014, 28, 182.
2 Peng S. Q. ; Ding M. ; Yi T. ; Li Y. X J. Mol. Catal. (China) 2014, 28, 466.
2 彭绍琴; 丁敏; 易婷李越湘. 分子催化, 2014, 28, 466.
3 Li C. L. ; Lei Z. Q. ; Wang Q. Z. ; Cao F. ; Wang F. ; Shangguan W. F J. Mol. Catal. (China) 2015, 29, 382.
3 李曹龙; 雷自强; 王其召; 曹菲; 王飞上官文峰. 分子催化, 2015, 29, 382.
4 Wang X. ; Maeda K. ; Thomas A; Takanabe ; K . ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M Nat. Mater. 2009, 8, 76.
5 Wang X. ; Blechert S. ; Antonietti M ACS Catal. 2012, 2, 1596.
6 Chen X. F. ; Jun Y. S. ; Takanabe K. ; Kazuhiko M. ; Kazunari D. ; Fu X. Z. ; Antonietti M. ; Wang X Chem. Mater 2009, 21, 4093.
7 Hao X. Q. ; Jin Z. L. ; Min S. X. ; Lu G. X RSC Advances 2016, 6, 23709.
8 Cao S. ; Yu J J. Phys. Chem. Lett. 2014, 5, 2101.
9 Wang X. ; Maeda K. ; Chen X. F. ; Takanabe K. ; Kazunari D. ; Hou Y. D. ; Fu X. Z. ; Antonietti M J. Am. Chem. Soc. 2009, 131, 1680.
10 Yan S. C. ; Li Z. S. ; Zou Z. G Langmuir 2010, 26, 3894.
11 Wang Y. ; Di Y. ; Antonietti M. ; Li H. R. ; Chen X. F. ; Wang X Chem. Mater. 2010, 22, 5119.
12 Chen X. F. ; Zhang J. S. ; Fu X. Z. ; Antonietti M. ; Wang X J. Am. Chem. Soc. 2009, 131, 11658.
13 Wu, S. Z. Synthesis Processing and Modification of GraphiticCarbon Nitride with Enhanced Photocatalytic Activity. Ph. D.Dissertation, South China University of Technology, Guangzhou, 2014.
13 吴思展.类石墨氮化碳(g-C3N4)的合成、加工处理、修饰及其光催化性能的研究[D.广州:华南理工大学, 2014.]
14 Ma L. ; Kang X. X. ; Hu S. Z. ; Wang F J. Mol. Catal. (China) 2015, 29, 359.
14 马琳; 康晓雪; 胡绍争王菲. 分子催化, 2015, 29, 359.
15 Zhang J. S. ; Wang B. ; Wang X. C Prog. Chem. 2014, 26, 19.
15 张金水; 王博王心晨. 化学进展, 2014, 26, 19d.
16 Zhang J. ; Wang Y. ; Jin J. ; Zhang J. ; Lin Z. ; Huang F. ; Yu J G. ACS Appl. Mater. Interfaces 2013, 5, 10317.
17 Dong F. ; Zhao Z. ; Xiong T. ; Ni Z. L. ; Zhang W. D. ; Sun Y.J. ; Ho W. K ACS Appl. Mater. Interfaces 2013, 5, 11392.
18 Ye C. ; Li J. X. ; Li Z. J. ; Li X. B. ; Fan X. B. ; Zhang L. P. ; Chen B. ; Tung C. H. ; Wu L. Z ACS Catal. 2015, 5, 6973.
19 Niu P. ; Zhang L. L. ; Liu G. ; Cheng H. M Adv. Funct. Mater. 2012, 22, 4763.
20 Li Y. F. ; Li Y. ; Li K. ; Yang Y. ; Li L. J. ; Xing Y. ; Song S. Y. ; Jin R. C. ; Li M Chem. -Eur. J. 2015, 21, 17739.
21 Cheng N. Y. ; Tian J. Q. ; Liu Q. ; Ge C. J. ; Qusti A. H. ; Asiri A. M. ; Al-Youbi A. O. ; Sun X. P ACS Appl. Mater. Interfaces 2013, 5, 6815.
22 Cao S.W. ; Yuan Y. P. ; Fang J. ; Shahjamali M. M. ; Boeya F.Y. C. ; Barber J. ; Loo J. S. C. ; Xue C Int. J. Hydrog. Energy 2013, 38, 1258.
23 Tonda S. ; Kumar S. ; Kandula S. ; Shanker V J. Mater. Chem. A 2014, 2, 6772.
24 Schwinghammer K. ; Mesch M. B. ; Duppel V. ; Ziegler C. ; Senker J. ; Lotsch B. V J. Am. Chem. Soc. 2014, 136, 1730.
25 Wang Z. S. ; Kawauchi H. ; Kashima T. ; Arakawa H Coord. Chem. Rev. 2004, 248, 1381.
26 Zhu K. ; Neale N. R. ; Miedaner A. ; Frank A. J Nano Lett. 2007, 7, 69.
27 Jin Z. L. ; Zhang X. J. ; Li Y. X. ; Li S. B. Lu G X., Catal. Commun 2007, 8, 1267.
28 Jin Z. L. ; Zhang X. J. ; Li Y. X. ; Li S. B. ; Lu G. X J. Mol. Catal. A: Chem. 2006, 259, 275.
29 Liu X. ; Li Y. X. ; Peng S. Q. ; Lai H Acta Phys. -Chim. Sin. 2015, 31, 612.
29 刘兴; 李越湘; 彭绍琴赖华. 物理化学学报, 2015, 31, 612.
30 Li B. ; Lü G. X Acta Phys. -Chim. Sin. 2013, 29, 1778.
30 李波吕功煊. 物理化学学报, 2013, 29, 1778.
31 Takanabe K. ; Kamata K. ; Wang X. ; Antonietti M. ; Kubota J. ; Domen K Phys. Chem. Chem. Phys 2010, 12, 13020.
32 Min S. X. ; Lu G. X J. Phys. Chem. C 2012, 116, 19644.
33 Xu J. J. ; Li Y. X. ; Peng S. Q. ; Lu G. X. ; Li S. B Phys. Chem. Chem. Phys. 2013, 15, 7657.
34 Wang Y. B. ; Hong J. D. ; Zhang W. ; Rong X Catal. Sci. Technol. 2013, 3, 1703.
35 Hao X. Q. ; Jin. Z. L% Wang F. ; Xu J. ; Min S. X. ; Yuan H. ; Lu G. X Superlatt. Microstruct. 2015, 82, 599.
36 Hao X. Q. ; Jin Z. L. ; Lu G. X Chem. Lett. 2016, 45, 116.
37 Ge L. ; Han C. ; Xiao X. ; Guo L Int. J. Hydrog. Energy 2013, 38, 6960.
38 Zhen W. L. ; Ma J. T. ; Lu G. X Appl. Catal. B-Environ. 2016, 190, 12.
39 Williams G. ; Kamat P. V Langmuir 2009, 25, 13869.
[1] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[2] Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 869-885.
[3] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 590-601.
[4] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 399-406.
[5] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.
[6] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[7] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2082-2091.
[8] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2022-2028.
[9] Cui-Juan XUAN,Jie WANG,Jing ZHU,De-Li WANG. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 149-164.
[10] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 80-102.
[11] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2185-2196.
[12] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2069-2076.
[13] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2077-2083.
[14] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1758-1764.
[15] CHANG Jin-Fa, XIAO Yao, LUO Zhao-Yan, GE Jun-Jie, LIU Chang-Peng, XING Wei. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1556-1592.