Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (10): 2411-2426    DOI: 10.3866/PKU.WHXB201606227
FEATURE ARTICLE     
Applications of Graphene-Based Hybrid Material as Electrodes in Microbial Fuel Cells
Cheng-Xian WANG1,Fei YU1,2,3,*(),Jie MA2,3
1 School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
2 Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, P. R. China
3 State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P. R. China
Download: HTML     PDF(19648KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Microbial fuel cell (MFC) is a novel bioelectrochemical device that uses a biocatalyst to convert chemical energy stored in organic wastewater into electrical energy. However, multiple factors limit the practical applications of MFCs, such as the high cost of electrode production and their low conversion efficiencies of power density and energy. Therefore, improving the catalytic performance of the electrodes and lowering the cost of electrode production have become focuses in MFC research. Because of the excellent electrical conductivity and catalytic properties of graphene-based hybrid materials, the development of these electrode materials for use in MFCs has attracted much attention. This review summarizes recent advances of graphene-based hybrid electrodes in MFCs. The preparation methods and the catalytic performance of graphene-modified electrodes, metal and non-metallic/graphene hybrid electrodes, metal oxide/graphene hybrid electrodes, polymer/graphene hybrid electrodes, and graphene gel electrodes are discussed in detail. The influence of graphene-based hybrid anodes and cathodes on the electricity generation performance of MFCs is analyzed. Finally, the problems facing graphene-based hybrid electrodes for MFCs are summarized, and the application prospects of MFCs are considered.



Key wordsGraphene      Hybrid material      Microbial fuel cell      Cathode electrode      Anode electrode     
Received: 22 April 2016      Published: 22 June 2016
MSC2000:  O646.5  
Fund:  National Natural Science Foundation of China(21577099);National Natural Science Foundation of China(51408362);Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology, China
Corresponding Authors: Fei YU     E-mail: fyu@vip.163.com
Cite this article:

Cheng-Xian WANG,Fei YU,Jie MA. Applications of Graphene-Based Hybrid Material as Electrodes in Microbial Fuel Cells. Acta Physico-Chimica Sinca, 2016, 32(10): 2411-2426.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201606227     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2411

Fig 1 Schematic diagram of graphene preparation by borohydride reduction route43
Fig 2 Schematic diagram of the formation process of three-dimensional (3D) porous graphene structures (a,d);cross-sectional SEM images of GF (b,c) and GS (e); SEM image of graphene .lm of GS surface aligned by graphene sheets (f)19 GF: graphene foam; GS: graphene sponge
Fig 3 SEM images of a colonized graphene-sponge (G-S) anode after 50 d of MFC operation at different scales The macroscale pores (a),the branches structure wrapped by microbial biofilms (b),the G-S anode surface covered with microorganisms (c) and microbial nanowires (d)6
Fig 4 Schematic illustration of the interactions between the CP/IL-GNS anode and S. oneidensis bacterias2
Fig 5 A schematic diagram illustrates of the preparation of rGO-Ni anode electrode (a); SEM images and digital pictures (insets) of plain nickel foam (b) and rGO-Ni foam (c); digital picture of a curved rGO-Ni foam (inset: rGO-Ni foam rolled up into a cylindrical shape) (d); digital picture of a 25 cm x 20 cm rGO-Ni foam (e)65
Fig 6 Synthesis of nanostructured G/TiO2 hybrids by a one-pot microwave-assisted solvotherma (MWST) process and their use as MFC anode materials72
Fig 7 TEM images of hydrothermally synthesized MnO2-NTs (a), graphene (c), and MnO2-NTs/graphene composite (d); lattice from the wall of MnO2-NTs (b); the selected area electron diffraction (SAED) patterns of MnO2-NTs (inset of (b)) and graphene (inset of (c))18
Fig 8 Schematic of the fabrication of the CP/GNRs/PANIPANI electrode and the electron transfer from bacteria to the electrode36
Fig 9 SEM images of CP (A, D), CP/GNS (B, E) and CP/IL-GNS (C, F) before and after S. oneidensis cells attached on their surface2
Fig 10 Characterization of the G-S electrode as an anode for MFC (a)6; constant-load discharge curve ofthe MFC based on the chitosan/vacunm-stripped graphene CHI/VSG-50 anode (b)53 Arrows of (b) indicate the time of glucose feeding
Fig 11 Schematic illustration of the interaction between 3D graphene/PANI monolith electrode and S. oneidensis MR-1 bacteria77
1 Malaeb L. ; Katuri K. P. ; Logan B. E. ; Maab H. ; Nunes S.P. ; Saikaly P. E Environ. Sci. Technol. 2013, 47 (20), 11821.
2 Zhao C. ; Wang Y. ; Shi F. ; Zhang J. ; Zhu J. J Chem. Commun. 2013, 49 (59), 6668.
3 Gangadharan P. ; Nambi I. M. ; Senthilnathan J Bioresource Technol. 2015, 195, 96.
4 Wang X. ; Cai Z. ; Zhou Q. ; Zhang Z. ; Chen C Biotechnol. Bioeng. 2012, 109 (2), 426.
5 Zhang F. ; Ge Z. ; Grimaud J. ; Hurst J. ; He Z Environ. Sci. Technol. 2013, 47 (9), 4941.
6 Xie X. ; Yu G. ; Liu N. ; Bao Z. ; Criddle C. S. ; Cui Y Energy Environ. Sci. 2012, 5 (5), 6862.
7 Zhang Y. ; Mo G. ; Li X. ; Zhang W. ; Zhang J. ; Ye J. ; Huang X. ; Yu C J. Power Sources 2011, 196, 5402.
8 Mink J. E. ; Qaisi R. M. ; Hussain M. M Energy Technol. 2013, 1 (11), 648.
9 Dunaj S. J. ; Vallino J. J. ; Hines M. E. ; Gay M. ; Kobyljanec C. ; Rooney-Varga J. N Environ. Sci. Technol. 2012, 46 (3), 1914.
10 Nimje V. R. ; Chen C. Y. ; Chen H. R. ; Chen C. C. ; Huang Y.M. ; Tseng M. J. ; Cheng K. C. ; Chang Y. F Bioresource Technol. 2012, 104, 315.
11 Inoue K. ; Ito T. ; Kawano Y. ; Iguchi A. ; Miyahara M. ; Suzuki Y. ; Watanabe K J. Biosci. Bioeng. 2013, 116 (5), 610.
12 Angosto J. M. ; Fernandez-Lopez J. A. ; Godinez C Environ. Sci. Technol. 2015, 36 (1), 68.
13 Kim J. R. ; Zuo Y. ; Regan J. M. ; Logan B. E Biotechnol. Bioeng. 2008, 99 (5), 1120.
14 Kim K. Y. ; Yang W. ; Logan B. E Water Res. 2015, 80, 41.
15 Kim K. Y. ; Chae K. J. ; Choi M. J. ; Ajayi F. F. ; Jang A. ; Kim C.W. ; Kim I. S Bioresource Technol. 2011, 102 (5), 4144.
16 Kim Y. ; Hatzell M. C. ; Hutchinson A. J. ; Logan B. E Energy Environ. Sci. 2011, 4 (11), 4662.
17 Hou J. X. ; Liu Z. L. ; Zhang P. Y J. Power Sources 2013, 224, 139.
18 Khilari S. ; Pandit S. ; Ghangrekar M. M. ; Das D. ; Pradhan D RSC Adv. 2013, 3 (21), 7902.
19 Chen W. F. ; Huang Y. X. ; Li D. B. ; Yu H. Q. ; Yan L. F RSC Adv. 2014, 4 (41), 21619.
20 He Y. R. ; Xiao X. ; Li W.W. ; Sheng G. P. ; Yan F. F. ; Yu H.Q. ; Yuan H. ; Wu L. J Phys. Chem. Chem. Phys. 2012, 14 (28), 9966.
21 Baranitharan E. ; Khan M. R. ; Prasad D. M. R. ; Salihon J. B Water Air Soil Poll. 2013, 224 (5), 1.
22 Chen S. L. ; He G. H. ; Carmona-Martinez A. A. ; Agarwal S. ; Greiner A. ; Hou H. Q. ; Schroder U Electrochem. Commun. 2011, 13 (10), 1026.
23 Taskan E. ; Hasar H Appl. Biochem. Biotech. 2015, 175 (4), 2300.
24 Zhang L. ; Lu Z. ; Li D. ; Ma J. ; Song P. ; Huang G. ; Liu Y. ; Cai L J. Clean Prod 2016, 115, 332.
25 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A Science 2004, 306 (5696), 666.
26 Tsoukleri G. ; Parthenios J. ; Papagelis K. ; Jalil R. ; Ferrari A.C. ; Geim A. K. ; Novoselov K. S. ; Galiotis C Small 2009, 5 (21), 2397.
27 Liang J. F. ; Cai Z. ; Li L. D. ; Guo L. ; Geng J. X RSC Adv. 2014, 4 (10), 4843.
28 Yang L. ; Wang S. ; Peng S. ; Jiang H. ; Zhang Y. ; Deng W. ; Tan Y. ; Ma M. ; Xie Q Chem. Eur. J. 2015, 21 (30), 10634.
29 Yang H. ; Gong J. ; Wen X. ; Xue J. ; Chen Q. ; Jiang Z. ; Tian N. ; Tang T Compos. Sci. Technol. 2015, 113, 31.
30 Sui Z. Y. ; Meng Y. N. ; Xiao P.W. ; Zhao Z. Q. ; Wei Z. X. ; Han B. H ACS Appl. Mater. Inter. 2015, 7 (3), 1431.
31 Zhang Q. ; Xu X. ; Li H. ; Xiong G. ; Hu H. ; Fisher T. S Carbon 2015, 93, 659.
32 Zhuang Y. ; Yu F. ; Ma J. ; Chen J RSC Adv. 2015, 5 (35), 27964.
33 Zou L. ; Qiao Y. ; Wu X. S. ; Ma C. X. ; Li X. ; Li C. M J. Power Sources 2015, No. 276, 208.
34 Sun Y. R. ; Yang M. X. ; Yu F. ; Chen J. H. ; Ma J Prog. Chem. 2015, 27 (8), 1133.
35 Liu Y. ; Liu H. ; Wang C. ; Hou S. X. ; Yang N Environ. Sci. Technol. 2013, 47 (23), 13889.
36 Zhao C. ; Gai P. ; Liu C. ; Wang X. ; Xu H. ; Zhang J. ; Zhu J J. J. Mater. Chem. A 2013, 1 (40), 12587.
37 Lv Z. ; Chen Y. ; Wei H. ; Li F. ; Hu Y. ; Wei C. ; Feng C Electrochim. Acta 2013, No. 111, 366.
38 Kumar G. G. ; Kirubaharan C. J. ; Udhayakumar S. ; Ramachandran K. ; Karthikeyan C. ; Renganathan R. ; Nahrn K. S ACS Sustainable Chem. Eng. 2014, 2 (10), 2283.
39 Yuan Y. ; Zhou S. ; Zhao B. ; Zhuang L. ; Wang Y Bioresource Technol. 2012, 116, 453.
40 Andjelkovic I. ; Tran D. N. ; Kabiri S. ; Azari S. ; Markovic M. ; Losic D ACS Appl. Mater. Inter. 2015, 7 (18), 9758.
41 Nguyen S. T. ; Nguyen H. T. ; Rinaldi A. ; Nguyen N. P. V. ; Fan Z. ; Duong H. M Colloids and Surfaces A: Physicochem. Eng. Aspects 2012, No. 41, 352.
42 Wei H. ; Xu M.W. ; Bao S. J. ; Yang F. ; Chai H RSC Adv. 2014, 4 (33), 16979.
43 Ramachandran R. ; Saranya M. ; Velmurugan V. ; Raghupathy B. P. C. ; Jeong S. K. ; Grace A. N Appl. Energ. 2015, 153, 22.
44 Qiao Y. ; Wen G. Y. ; Wu X. S. ; Zou L RSC Adv. 2015, 5 (72), 58921.
45 Wen Q. ; Wang S. ; Yan J. ; Cong L. ; Chen Y. ; Xi H Bioelectrochemistry 2014, 95, 23.
46 Chen J. ; Sheng K. ; Luo P. ; Li C. ; Shi G Adv. Mater. 2012, 24 (33), 4569.
47 Han Z. ; Tang Z. H. ; Li P. ; Yang G. Z. ; Zheng Q. B. ; Yang J H. Nanoscale 2013, 5 (12), 5462.
48 Ma J. ; Yang M. X. ; Yu F. ; Zheng J Sci. Rep. 2015.
49 Lin Y. ; Ehlert G. J. ; Bukowsky C. ; Sodano H. A ACS Appl. Mater. Inter. 2011, 3 (7), 2200.
50 Ma J. ; Li C. ; Yu F. ; Chen J ChemSusChem 2014, 7 (12), 3304.
51 Chen X. Y. ; Sun Y. R. ; Yu F. ; Chen J. H. ; Ma J Prog. Chem. 2015, 27 (11), 1542.
52 Sruti A. N. ; Jagannadham K J. Electron. Mater. 2010, 39 (8), 1268.
53 He Z. M. ; Liu J. ; Qiao Y. ; Li C. M. ; Tan T. T. Y Nano Lett. 2012, 12 (9), 4738.
54 Li S. Z. ; Hu Y. Y. ; Xu Q. ; Sun J. ; Hou B. ; Zhang Y. P J. Power Sources 2012, 213, 265.
55 Bai H. ; Li C. ; Shi G Adv. Mater. 2011, 23 (9), 1089.
56 Mehdinia A. ; Ziaei E. ; Jabbari A Int. J. Hydrog. Energy 2014, 39 (20), 10724.
57 Xiao L. ; Damien J. ; Luo J. ; Jang H. D. ; Huang J. ; He Z J. Power Sources 2012, 208, 187.
58 Tsai H. Y. ; Hsu W. H. ; Huang Y. C J. Nanomater. 2015, 2015, 686891.
59 Guo W. ; Cui Y. R. ; Song H. ; Sun J. H Bioproc. Biosyst. Eng. 2014, 37 (9), 1749.
60 Chen J. ; Deng F. ; Hu Y. ; Sun J. ; Yang Y J. Power Sources 2015, 290, 80.
61 Liu J. ; Qiao Y. ; Guo C. X. ; Lim S. ; Song H. ; Li C. M Bioresource Technol. 2012, 114, 275.
62 Tang J. ; Chen S. ; Yuan Y. ; Cai X. ; Zhou S Biosens. Bioelectron. 2015, 71, 387.
63 Zhuang L. ; Yuan Y. ; Yang G. ; Zhou S Electrochem. Commun. 2012, 21, 69.
64 Zhao C. E. ; Gai P. ; Song R. ; Zhang J. ; Zhu J. J Anal. Methods 2015, 7 (11), 4640.
65 Wang H. ; Wang G. ; Ling Y. ; Qian F. ; Song Y. ; Lu X. ; Chen S. ; Tong Y. ; Li Y Nanoscale 2013, 5 (21), 10283.
66 Qiao Y. ; Wu X. S. ; Ma C. X. ; He H. ; Li C. M RSC Adv. 2014, 4 (42), 21788.
67 Yan Z. H. ; Wang M. ; Huang B. X. ; Liu R. M. ; Zhao J. S Int. J. Electrochem. Sci. 2013, 8 (1), 149.
68 Liu Y. ; Jin X. J. ; Dionysiou D. D. ; Liu H. ; Huang Y. M J. Power Sources 2015, No. 278, 773.
69 Chou H. T. ; Lee H. J. ; Lee C. Y. ; Tai N. H. ; Chang H. Y Bioresource Technol. 2014, 169, 532.
70 Kirubaharan C. J. ; Santhakumar K. ; Kumar G. G. ; Senthilkumar N. ; Jang J. H Int. J. Hydrog. Energy 2015, 40 (38), 13061.
71 Feng L. ; Chen Y. ; Chen L ACS Nano 2011, 5 (12), 9611.
72 Zhao C. E. ; Wang W. J. ; Sun D. ; Wang X. ; Zhang J. R. ; Zhu J. J Chem. Eur. J. 2014, 20 (23), 7091.
73 Kumar G. G. ; Awan Z. ; Nahm K. S. ; Xavier J. S Biosens. Bioelectron. 2014, 53, 528.
74 Wen Q. ; Wang S. ; Yan J. ; Cong L. ; Pan Z. ; Ren Y. ; Fan Z J. Power Sources 2012, 216, 187.
75 Zhang Y. ; Mo G. ; Li X. ; Ye J J. Power Sources 2012, 197, 93.
76 Ren Y. ; Pan D. ; Li X. ; Fu F. ; Zhao Y. ; Wang X J. Chem. Technol. Biotechnol. 2013, 88 (10), 1946.
77 Yong Y. C. ; Dong X. C. ; Chan-Park M. B. ; Song H. ; Chen P ACS Nano 2012, 6 (3), 2394.
78 Chen W. ; Yan L Nanoscale 2011, 3 (8), 3132.
79 Zhong Y. ; Zhou M. ; Huang F. ; Lin T. ; Wan D Sol. Energy Mater. Sol. Cells 2013, 113, 195.
80 Xu Y. ; Sheng K. ; Li C. ; Shi G ACS Nano 2010, 4 (7), 4324.
81 Wu Z. S. ; Winter A. ; Chen L. ; Sun Y. ; Turchanin A. ; Feng X. ; Mullen K Adv. Mater. 2012, 24 (37), 5130.
82 Kim F. ; Luo J. Y. ; Cruz-Silva R. ; Cote L. J. ; Sohn K. ; Huang J. X Adv. Funct. Mater. 2010, 20 (17), 2867.
83 Wang J. Z. ; Zhao G. H. ; Jing L. Y. ; Peng X. M. ; Li Y. F Biochem. Eng. J. 2015, 98, 75.
84 Jiang X. ; Ma Y.W. ; Li J. J. ; Fan Q. L. ; Huang W J. Phys. Chem. C 2010, 114 (51), 22462.
85 Choi B. G. ; Yang M. ; Hong W. H. ; Choi J.W. ; Huh Y. S ACS Nano 2012, 6 (5), 4020.
86 Wu C. ; Huang X. ; Wu X. ; Qian R. ; Jiang P Adv. Mater. 2013, 25 (39), 5658.
87 Cai W.W. ; Liu W. Z. ; Han J. L. ; Wang A. J Biosens. Bioelectron. 2016, 80, 118.
88 Kim T. ; Lee J. S. ; Li K. ; Kang T. J. ; Kim Y. H Carbon 2016, 101, 345.
89 Pham V. H. ; Dickerson J. H J. Phys. Chem. 2016, 120 (10), 5353.
90 Singh S. ; Tripathi P. ; Bhatnagar A. ; Patel C. R. P. ; Singh A.P. ; Dhawan S. K. ; Gupta B. K. ; Srivastava O. N RSC Adv. 2015, 5 (129), 107083.
91 Wu R. H. ; Yu B.W. ; Liu X. Y. ; Li H. L. ; Wang W. X. ; Chen L. Y. ; Bai Y. T. ; Ming Z. ; Yang S. T Appl. Surf. Sci. 2016, 362, 56.
92 Ahn W. ; Seo M. H. ; Jun Y. S. ; Lee D. U. ; Hassan F. M. ; Wang X. ; Yu A. ; Chen Z ACS Appl. Mater. Inter. 2016, 8 (3), 1984.
93 Krishnamurthy A. ; Gadhamshetty V. ; Mukherjee R. ; Chen Z. ; Ren W. ; Cheng H. M. ; Koratkar N Carbon 2013, 56, 45.
94 Liu Q. ; Zhou Y. ; Chen S. L. ; Wang Z. J. ; Hou H. Q. ; Zhao F J. of Power Sources 2015, No. 273, 1189- 1193.
95 Pisutpaisal N. ; Sirisukpoca U Adv. Mater. Res. 2012, 512- 515.
96 Yang W. ; He W. ; Zhang F. ; Hickner M. A. ; Logan B. E Environ. Sci. Technol. Lett. 2014, 1 (10), 416.
97 Huggins T. M. ; Pietron J. J. ; Wang H. ; Ren Z. J. ; Biffinger J. C Bioresource Technol. 2015, 195, 147.
98 Li B. ; Wang M. ; Zhou X. ; Wang X. ; Liu B. ; Li B Bioresource Technol. 2015, 193, 545.
99 Baranitharan E. ; Khan M. R. ; Yousuf A. ; Teo W. F. A. ; Tan G. Y. A. ; Cheng C. K Fuel 2015, 143, 72.
100 Yuan H. ; He Z Nanoscale 2015, 7 (16), 7022.
101 Chen J Asian J. Chem. 2013, 25 (14), 8022.
102 Logan B. E. ; Hamelers B. ; Rozendal R. ; Schroder U. ; Keller J. ; Freguia S. ; Aelterman P. ; Verstraete W. ; Rabaey K Environ. Sci. Technol. 2006, 40 (17), 5181.
103 Savizi I. S. ; Kariminia H. R. ; Bakhshian S Environ. Sci. Technol. 2012, 46 (12), 6584.
104 Yuan Y. ; Zhou S. ; Tang J Environ. Sci. Technol. 2013, 47 (9), 4911.
105 Zhao F. ; Rahunen N. ; Varcoe J. R. ; Chandra A. ; Avignone-Rossa C. ; Thumser A. E. ; Slade R. C Environ. Sci. Technol. 2008, 42 (13), 4971.
106 Liu H. ; Logan B. E Environ. Sci. Technol. 2004, 38 (14), 4040.
107 Zhu Y. ; Ji J. ; Ren J. ; Yao C. ; Ge L Colloids and Surfaces A: Physicochem. Eng. Aspects 2014, 455, 92.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[3] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[4] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[5] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[6] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[7] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1338-1353.
[8] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1230-1235.
[9] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.
[10] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.
[11] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[12] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.
[13] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2404-2423.
[14] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2284-2292.
[15] Xu-Chun WANG,Jin-Ze LI,Guang-Yong LI,Jin WANG,Xue-Tong ZHANG,Qiang GUO. Fabrication and Performance of Various Aerogel Microspheres[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2141-2152.