Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (10): 2399-2410    DOI: 10.3866/PKU.WHXB201606242
FEATURE ARTICLE     
Graphene: Synthesis, Characterization and Application in Transparent Conductive Films
Jie-Jun ZHU1,2,Hai-Bin SUN3,1,Yao-Zheng WU1,Jian-Guo WAN1,*(),Guang-Hou WANG1
1 National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
2 Department of Applied Physics, Nanjing University of Technology, Nanjing 210009, P. R. China
3 Key Laboratory of Advanced Micro/Nano Functional Materials, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, Henan Province, P. R. China
Download: HTML     PDF(8911KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Over the past decade, graphene has been the focus of intensive research because of its remarkable physical and chemical properties. Researchers have made many efforts to synthesize graphene and investigate its potential applications. In this article, we first briefly review the fabrication processes and properties of graphene. Then, we discuss the application of graphene/Ag hybrid films as transparent conductive films (TCFs). Next, we introduce our results on this topic. Graphene and Ag nanowires were synthesized by chemical vapor deposition (CVD) and the polyol process, respectively. We successfully fabricated a graphene/Ag hybrid film with a low sheet resistance (Rs) of 26 Ω·□-1. Finally, we describe the main challenges facing graphene hybrid films and their potential applications in a wide range of optoelectronic devices.



Key wordsGraphene      Silver nanowire      transparent conductive film      Sheet resistance      Optical transmittance     
Received: 25 April 2016      Published: 24 June 2016
MSC2000:  O643  
Fund:  National Key Basic Research Program of China (973)(2015CB921203);National Natural Science Foundationof China(51472113);National Natural Science Foundationof China(11134005)
Corresponding Authors: Jian-Guo WAN     E-mail: wanjg@nju.edu.cn
Cite this article:

Jie-Jun ZHU,Hai-Bin SUN,Yao-Zheng WU,Jian-Guo WAN,Guang-Hou WANG. Graphene: Synthesis, Characterization and Application in Transparent Conductive Films. Acta Phys. -Chim. Sin., 2016, 32(10): 2399-2410.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201606242     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2399

Fig 1 Schematic diagram of graphene structure
Fig 2 Low energy density functional theory (DFT) three-dimensional (3D) band structure11
Fig 3 Schematic diagram of fabrication processes for graphene
Fig 4  Schematic diagram of the preparation instruments for graphene by atmospheric pressure chemical vapor deposition (APCVD)
Fig 5 Typical Raman spectrum of graphene
Fig 6  Different peak shapes of the Raman spectra in the two-dimension (2D) band of different layers of graphene40 HOPG: highly oriented pyrolytic graphite
Fig 7 Scanning electron microscope (SEM) image of polycrystal graphene transferred onto a Si/SiO2 substrate The arrows show the line defects (such as ripples,folds,and wrinkles)
Fig 8 (a) Transmission electron microscope (TEM) image of the graphene film, (b) high resolution TEM image of the edge of graphene film, (c) selected area electron diffraction (SAED) patterns taken from the blue circle-shape region in (a), (d) profile plots of diffraction peak intensities along the blue arrows47b
Fig 9 Optical transmittance spectra of graphene61 The line scan profile shows the intensity of transmitted white light of air,graphene and its bilayer along the yellow line. color online. (Inset) sample design: photograph of A support structure which has several apertures covered by graphene and its bilayer
Fig 10 Process flow illustrating the fabrication of a graphene/Ag nanowire (Ag NW) hybrid film115
Fig 11 (a-c) SEM images, (d) optical transmittance spectra, (e) sheet resistance for graphene/Ag NW hybrid films115 T550: transmittance at 550 nm
1 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A Science 2004, 306, 666.
2 Nair R. R. ; Blake P. ; Grigorenko A. N. ; Novoselov K. S. ; Booth T. J. ; Stauber T. ; Peres N. M. R. ; Geim A. K Science 2008, 320, 1308.
3 Chen S. S. ; Brown L. ; Levendorf M. ; Cai W.W. ; Ju S. Y. ; Edgeworth J. ; Li X. S. ; Magnuson C.W. ; Velamakanni A. ; Piner R. D. ; Kang J. Y. ; Park J. ; Ruoff R. S ACS Nano 2011, 5, 1321.
4 Schedin F. ; Lidorikis E. ; Lombardo A. ; Kravets V. G. ; Geim A. K. ; Grigorenko A. N. ; Novoselov K. S. ; Ferrari A. C ACS Nano 2010, 4, 5617.
5 Kholmanov I. N. ; Magnuson C.W. ; Aliev A. E. ; Li H. F. ; Zhang B. ; Suk J.W. ; Zhang L. L. ; Peng E. ; Mousavi S. H. ; Khanikaev A. B. ; Piner R. ; Shvets G. ; Ruoff R. S Nano Lett. 2012, 12, 5679.
6 Kim J. ; Lee M. S. ; Jeon S. ; Kim M. ; Kim S. ; Kim K. ; Bien F. ; Hong S. Y. ; Park J. U Adv. Mater. 2015, 27, 3292.
7 Deng B. ; Hsu P. C. ; Chen G. ; Chandrashekar B. N. ; Liao L. ; Ayitimuda Z. ; Wu J. ; Guo Y. ; Lin L. ; Zhou Y. ; Aisijiang M. ; Xie Q. ; Cui Y. ; Liu Z. ; Peng H Nano Lett. 2015, 15, 4206.
8 Lee C. G. ; Wei X. D. ; Kysar J.W. ; Hone J Science 2008, 321, 385.
9 Balandin A. A. ; Ghosh S. ; Bao W. Z. ; Calizo I. ; Teweldebrhan D. ; Miao F. ; Lau C. N Nano Lett. 2008, 8, 902.
10 Stoller M. D. ; Park S. ; Zhu Y.W. ; An J. H. ; Ruoff R. S Nano Lett 2008, 8, 3498.
11 Terrones M. ; Botello-Méndez A. R. ; Campos-Delgado J. ; López-Urías F. ; Vega-Cantú Y. I. ; Rodríguez-Macías F. J. ; Elías A. L. ; Munoz-Sandoval E. ; Cano-Márquez A. G. ; Charlier J. C. ; Terrones H Nano Today 2010, 5, 351.
12 Zhang Y. B. ; Tang T. T. ; Girit C. ; Hao Z. ; Martin M. C. ; Zettl A. ; Crommie M. F. ; Shen Y. R. ; Wang F Nature 2009, 459, 820.
13 Ohta T. ; Bostwick A. ; Seyller T. ; Horn K. ; Rotenberg E Science 2006, 313, 951.
14 Berger C. ; Song Z. M. ; Li X. B. ; Wu X. S. ; Brown N. ; Mayou D. ; Li T. B. ; Hass J. ; Marchenkov A. N Science 2006, 312, 1191.
15 Schniepp H. C. ; Li J. L. ; McAllister M. J. ; Sai H. ; Herrera-Alonso M. ; Adamson D. H. ; Prud'homme R. K. ; Car R. ; Saville D. A. ; Aksay I. A J. Phys. Chem. B 2006, 110, 8535.
16 Kim K. S. ; Zhao Y. ; Jang H. ; Lee S.Y. ; Kim J. M. ; Kim K.S. ; Ahn J. H. ; Kim P. ; Choi J. Y. ; Hong B. H Nature 2009, 457, 706.
17 Jiao L.Y. ; Zhang L. ; Wang X. R. ; Diankov G. ; Dai H. J Nature 2009, 458, 877.
18 Ponomareiiko L. A. ; Yang R. ; Mohiuddin T. M. ; Katsneison M. I. ; Novoseiov K. S. ; Morozov S. V. ; Zhukov A. A. ; Schedin F. ; Hill E.W. ; Geim A. K Phys. Rev. Lett 2009, 102, 206603.
19 Bolotin K. I. ; Sikes K. J. ; Jiang Z. ; Klima M. ; Fudenberg G. ; Hone J. ; Kim P. ; Stormer H. L Solid State Commun. 2008, 146, 351.
20 Du X. ; Skachko I. ; Barker A. ; Andrei E. Y Nat. Nanotechnol 2008, 3, 491.
21 Berger C. ; Song Z. M. ; Li T. B. ; Li X. B. ; Ogbazghi A. Y. ; Feng R. ; Dai Z. T. ; Marchenkov A. N. ; Conrad E. H. ; First P. N. ; de Heer W. A J. Phys. Chem. B 2004, 108, 19912.
22 Zhang C. H. ; Fu L. ; Zhang Y. F. ; Liu Z. F Acta Chim. Sin. 2013, 71, 308.
22 张朝华; 付磊; 张艳锋; 刘忠范. 化学学报, 2013, 71, 308.
23 Yu Q. K. ; Lian J. ; Siriponglert S. ; Li H. ; Chen Y. P. ; Pei S S. Appl. Phys. Lett. 2008, 93, 113103.
24 Reina A. ; Thiele S. ; Jia X. T. ; Bhaviripudi S. ; Dresselhaus M. S. ; Schaefer J. A. ; Kong J Nano Res. 2009, 2, 509.
25 Li X. S. ; Cai W.W. ; An J. H. ; Kim S. ; Nah J. ; Yang D. X. ; Piner R. ; Velamakanni A. ; Jung I. ; Emanuel T. ; Banerjee S.K. ; Colombo L. ; Ruoff R. S Science 2009, 324, 1312.
26 Li X. S. ; Cai W.W. ; Colombo ; L; Ruoff R. S Nano Lett 2009, 9, 4268.
27 Sun Z. Z. ; Yan Z. ; Yao J. ; Beitler E. ; Zhu Y. ; Tour J. M Nature 2010, 468, 549.
28 Ruan G. D. ; Sun Z. Z. ; Peng Z.W. ; Tour J. M ACS Nano 2011, 5, 7601.
29 Li Z. Y. ; Wu P. ; Wang C. X. ; Fan X. D. ; Zhang W. H. ; Zhai X. F. ; Zeng C. G. ; Li Z. Y. ; Yang J. L. ; Hou J. G ACS Nano 2011, 5, 3385.
30 Zhang B. ; Lee W. H. ; Piner R. ; Kholmanov I. ; Wu Y. P. ; Li H. F. ; Ji H. X. ; Ruoff R. S ACS Nano 2012, 6, 2471.
31 Srivastava A. ; Galande C. ; Ci L. J. ; Song L. ; Rai C. ; Jariwala D. ; Kelly K. F. ; Ajayan P. M Chem. Mater. 2010, 22, 3457.
32 Dong X. C. ; Wang P. ; Fang W. J. ; Su C. Y. ; Chen Y. H. ; Li L. J. Huang ; W . ; Chen P Carbon 2011, 49, 3672.
33 Gadipelli S. ; Calizo I. ; Ford J. ; Cheng G. J. ; Walker A. R.H. ; Yildirim T J. Mater. Chem 2011, 21, 16057.
34 Zhao P. ; Kumamoto A. ; Kim S. J. ; Chen X. ; Hou B. ; Chiashi S. ; Einarsson E. ; Ikuhara Y. ; Maruyama S J. Phys. Chem. C 2013, 117, 10755.
35 Zhao P. ; Kim S. J. ; Chen X. ; Einarsson E. ; Wang M. ; Song Y. N. ; Wang H. T. ; Chiashi S. ; Xiang R. ; Maruyama S ACS Nano 2014, 8, 11631.
36 Bhaviripudi S. ; Jia X. T. ; Dresselhaus M. S. ; Kong J Nano Lett 2010, 10, 4128.
37 Ferrari A. C. ; Basko D. M Nat. Nanotechnol 2013, 8, 235.
38 Wang Y. Y. ; Ni Z. H. ; Shen Z. X. ; Wang H. M. ; Wu Y. H Appl. Phys. Lett 2008, 92, 043121.
39 Yoon D. ; Moon H. ; Son Y.W. ; Choi J. S. ; Park B. H. ; Cha Y. H. ; Kim Y. D. ; Cheong H Phys. Rev. B 2009, 80, 125422.
40 Malard L. M. ; Pimenta M. A. ; Dresselhaus G. M. ; Dresselhaus S Phys. Rep. 2009, 473, 51.
41 Xu W. G. ; Mao N. N. ; Zhang J Small 2013, 9, 1206.
42 Li X. S. ; Zhu Y.W. ; Cai W.W. ; Mark B. ; Han B. Y. ; David C. ; Richard D. P. ; Colombo L. G. ; Rodney S. R Nano Lett 2009, 9, 4359.
43 Jia C. C. ; Jiang J. L. ; Gan L. ; Guo X. F Sci. Rep 2012, 2, 707.
44 Chen S. S. ; Brown L. ; Levendorf M. ; Cai W.W. ; Ju S. Y. ; Edgeworth J. ; Li X. S. ; Magnuson C.W. ; Velamakanni A. ; Piner R. D. ; Kang J. Y. ; Park J.W. ; Ruoff R. S ACS Nano 2011, 5, 1321.
45 Kim J. ; Kim F. ; Huang J. X Mater. Today 2010, 13, 28.
46 Zheng Q. ; Ip W. H. ; Lin X. ; Yousefi N. ; Yeung K. K. ; Li Z. ; Kim J. K ACS Nano 2011, 5, 6039.
47 (a) Hernandez Y., Nicolosi V., Lotya M., Blighe F. M., Sun Z. Y., De S., McGovern I. T., Holland B., Byrne M., Gun'ko Y. K., Boland J. J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A. C., Coleman J. N.. Nat. Nanotechnol,2008, 3:563 doi: 10.1038/nnano.2008.215
48 Meyer J. C. ; Geim A. K. ; Katsnelson M. I. ; Novoselov K. S. ; Booth T. J. ; Roth S Nature 2007, 446, 60.
49 Wang H. ; Wang G. X. Z. ; Bao P. F. ; Yang S. L. ; Zhu W. ; Xie X. ; Zhang W. J J. Am. Chem. Soc. 2012, 134, 3627.
50 Yan Z. ; Lin J. ; Peng Z.W. ; Sun Z. Z. ; Zhu Y. ; Li L. ; Xiang C. S. ; Lo?c Samuel E. ; Kittrell C. ; Tour J. M ACS Nano 2012, 6, 9110.
51 Zhou H. L. ; Yu W. J. ; Liu L. X. ; Cheng R. ; Chen Y. ; Huang X. Q. ; Liu Y. ; Wang Y. ; Huang Y. ; Duan X. F Nat. Commun. 2013, 4, 2096.
52 Yan K. ; Peng H. L. ; Zhou Y. ; Li H. ; Liu Z. F Nano Lett. 2011, 11, 1106.
53 Sun Z. Z. ; Raji A. R. O. ; Zhu Y. ; Xiang C. S. ; Yan Z. ; Kittrell C. ; Samuel E. L. G. ; Tour J. M ACS Nano 2012, 6, 9790.
54 Liu L. X. ; Zhou H. L. ; Cheng R. ; Yu W. J. ; Liu Y. ; Chen Y. ; Shaw J. ; Zhong X. ; Huang Y. ; Duan X. F ACS Nano 2012, 6, 8241.
55 Meyer J. C. ; Geim A. K. ; Katsnelson M. I. ; Novoselov K. S. ; Obergfell D. ; Roth S. ; Girit C. ; Zettl A Solid State Commun 2007, 143, 101.
56 Zhang D. ; Ryu K. ; Liu X. ; Polikarpov E. ; Ly J. ; Tompson M. E. ; Zhou C Nano Lett 2006, 6, 1880.
57 Wu Z. ; Chen Z. ; Du X. ; Logan J. M. ; Sippel J. ; Nikolou M. ; Kamaras K. ; Reynolds J. R. ; Tanner D. B. ; Hebard A. F. ; Rinzler A. G Science 2004, 305, 1273.
58 Geng H. Z. ; Kim K. K. ; So K. P. ; Lee Y. S. ; Chang Y. ; Lee Y. H J.Am. Chem. Soc. 2007, 129, 7758.
59 Elschner A. ; Lovenich W MRS Bull. 2011, 36, 794.
60 Na S. I. ; Kim S. S. ; Jo J. ; Kim D. Y Adv. Mater. 2008, 20, 4061.
61 Hu L. ; Kim H. S. ; Lee J. ; Peumans P. ; Cui Y ACS Nano 2010, 4, 2955.
62 Mayousse C. ; Celle C. ; Moreau E. ; Mainguet J. F. ; Carella A. ; Simonato J. P Nanotechnology 2013, 24, 215501.
63 Lee J. ; Lee P. ; Lee H. ; Lee D. ; Lee S. S. ; Ko S. H Nanoscale 2012, 4, 6408.
64 Lee E. J. ; Chang M. H. ; Kim Y. S. ; Kim J. Y APL Mater. 2013, 1, 042118.
65 Guo H. ; Lin N. ; Chen Y. ; Wang Z. ; Xie Q. ; Zheng T. ; Gao N. ; Li S. ; Kang J. ; Cai D. ; Peng D. L Sci. Rep. 2013, 3, 2323.
66 Rathmell A. R. ; Bergin S. M. ; Hua Y. L. ; Li Z. Y. ; Wiley B J. Adv. Mater 2010, 22, 3558.
67 Rathmell A. R. ; Wiley B. J Adv. Mater. 2011, 23, 4798.
68 Wassei J. K. ; Kaner R. B Mater. Today 2010, 13, 52.
69 Lee J. H. ; Shin D.W. ; Makotchenko V. G. ; Nazarov A. S. ; Fedorov V. E. ; Kim Y. H. ; Choi J. Y. ; Kim J. M. ; Yoo J. B Adv. Mater. 2009, 21, 4383.
70 Li B. ; Ye S. G. ; Ian E. S. ; Samuel A. ; Benjamin J W. Nano Lett. 2015, 15, 6722.
71 Huang P. Y. ; Ruiz-Vargas C. S. ; van der Zande A. M. ; Whitney W. S. ; Levendorf M. P. ; Kevek J.W. ; Garg S. ; Alden J. S. ; Hustedt C. J. ; Zhu Y. ; Park J. ; McEuen P. L. ; Muller D. A Nature 2011, 469, 389.
72 Yazyev O. V. ; Louie S. G Nat. Mater. 2010, 9, 806.
73 Kim K. ; Lee Z. ; Regan W. ; Kisielowski C. ; Crommie M. F. ; Zettl A ACS Nano 2011, 5, 2142.
74 Wang Z. L. ; Ahmad T. S. ; El-Sayed M. A Surf. Sci. 1997, 380, 302.
75 Hao E. ; Li S. ; Bailey R. C. ; Zou S. ; Schatz G. C. ; Hupp J. T J. Phys. Chem. B 2004, 108, 1224.
76 Beermann J. ; Bozhevolnyi S. I. ; Coello V Phys. Rev. B 2006, 73, 115408.
77 Huang X. H. ; Jain P. K. ; EI-Sayed I. H. ; EI-Sayed M. A Nanomedicine 2007, 2, 681.
78 Nishihata Y. ; Mizuki J. ; Akao T. ; Tanaka H. ; Uenishi M. ; Kimura M. ; Okamoto T. ; Hamada N Nature 2002, 418, 164.
79 Maier S. A. ; Brongersma M. L. ; Kik P. G. ; Meltzer S. ; Requicha A. A. G. ; Atwater H. A Adv. Mater. 2001, 13, 1501.
80 Peyser L. A. ; Vinson A. E. ; Bartko A. P. ; Dickson R. M Science 2001, 291, 103.
81 Coluccio M. L. ; Das G. ; Mecarini F. ; Gentile F. ; Pujia A. ; Bava L. ; Tallerico R. ; Candeloro P. ; Liberale C. ; Angelis F.D. ; Fabrizio E. D Microelectron. Eng. 2009, 86, 1085.
82 McLellan J. M. ; Li Z. Y. ; Siekkinen A. R. ; Xia Y Nano Lett 2007, 7, 1013.
83 Wang Q. Q. ; Han J. B. ; Gong H. M. ; Chen D. J. ; Zhao X. J. ; Feng J. Y. ; Ren J. J Adv. Funct. Mater. 2006, 16, 2405.
84 Hassani S. S. ; Ghasemi M. R. ; Rashidzadeh M. ; Sobat Z Cryst. Res. Technol. 2009, 44, 948.
85 Shegai T. ; Huang Y. ; Xu H. ; K?ll M Appl. Phys. Lett. 2010, 96, 103114.
86 Aslan K. ; Leonenko Z. ; Lakowicz J. R. ; Geddes C. D J. Phys. Chem. B 2005, 109, 3157.
87 Ditlbacher H. ; Hohenau A. ; Wagner D. ; Kreibig U. ; Rogers M. ; Hofer F. ; Aussenegg F. R. ; Krenn J. R Phys. Rev. Lett. 2005, 95, 257403.
88 Sanders A.W. ; Routenberg D. A. ; Wiley B. J. ; Xia Y. ; Dufresne E. R. ; Reed M. A Nano Lett 2006, 6, 1822.
89 Knight M.W. ; Grady N. K. ; Bardhan R. ; Hao F. ; Nordlander P. ; Halas N. J Nano Lett 2007, 7, 2346.
90 Fang Z. Y. ; Lu Y.W. ; Fan L. R. ; Lin C. F. ; Zhu X Plasmonics 2010, 5, 57.
91 Kim F. ; Song J. H. ; Yang P J. Am. Chem. Soc. 2002, 124, 14316.
92 Jana N. R. ; Gearheart L. ; Murphy C Adv. Mater 2001, 13, 1389.
93 Wang X. L. ; Zeng Y. F. ; Bu X. H Chemistry 2005, 68, 723.
93 王秀丽; 曾永飞; 卜显和. 化学通报, 2005, 68, 723.
94 Han Y. J. ; Kim J. M. ; Stucky G. D Chem. Mater. 2000, 12, 2068.
95 Martin C. R Chem. Mater. 1996, 8, 1739.
96 Yu Y. Y. ; Chang S. S. ; Lee C. L. ; Wang C. R. C J. Phys. Chem. B 1997, 101, 6661.
97 Sun Y. ; Xia Y Adv. Mater. 2002, 14, 833.
98 Sun Y. ; Mayers B. ; Herricks T. ; Xia Y Nano Lett 2003, 3, 955.
99 Tsuji M. ; Nishizawa Y. ; Matsumoto K. ; Kubokawa M. ; Miyamae N. ; Tsuji T Mater. Lett 2006, 60, 834.
100 Caswell K. K. ; Bender C. M. ; Murphy C. J Nano Lett 2003, 3, 667.
101 Zhu J. J. ; Kan C. X. ; Wan J. G. ; Han M. ; Wang G. H J. Nanomater. 2011, 982547
102 Lee Y. ; Bae S. ; Jang H. ; Jang S. ; Zhu S. E. ; Sim S. H. ; Song Y. I. ; Hong B. H. ; Ahn J. H Nano Lett 2010, 10, 490.
103 Chen X. D. ; Liu Z. B. ; Zheng C. Y. ; Xing F. ; Yan X. Q. ; Chen Y. S. ; Tian J. G Carbon 2013, 56, 271.
104 Kang S. J. ; Kim B. ; Kim K. S. ; Zhao Y. ; Chen Z. Y. ; Lee G.H. ; Hone J. ; Kim P. ; Nuckolls C Adv. Mater. 2011, 23, 3531.
105 Song J. ; Kam F. Y. ; Png R. Q. ; Seah W. L. ; Zhuo J. M. ; Lim G. K. ; Ho P. K. H. ; Chua L. L Nat. Nanotechnol 2013, 8, 356.
106 Kim H. ; Yoon B. ; Sung J. ; Choi D. G. ; Park C J. Mater. Chem. 2008, 18, 3489.
107 Song L. ; Ci L. J. ; Gao W. ; Ajayan P. M ACS Nano 2009, 3, 1353.
108 Levendorf M. P. ; Ruiz-Vargas C. S. ; Garg S. ; Park J Nano Lett. 2009, 9, 4479.
109 Bae S. ; Kim H. ; Lee Y. ; Xu X. F. ; Park J. S. ; Zheng Y. ; Balakrishnan J. ; Lei T. ; Kim H. R. ; Song Y. I. ; Kim Y. J. ; Kim K. S. ; Ozyilmaz B. ; Ahn J. H. ; Hong B. H. ; Iijima S Nat. Nanotechnol. 2010, 5, 574.
110 Mattevi C. ; Kim H. ; Chhowalla M J. Mater. Chem. 2011, 21, 3324.
111 Ahn S. H. ; Guo L J. Adv. Mater. 2008, 20, 2044.
112 Cai W.W. ; Zhu Y.W. ; Li X. S. ; Piner R. D. ; Ruoff R. S Appl. Phys. Lett. 2009, 95, 123115.
113 Reina A. ; Jia X. T. ; Ho J. ; Nezich D. ; Son H. B. ; Bulovic V. ; Dresselhaus M. S. ; Kong J Nano Lett 2009, 9, 30.
114 Lee Y. H. ; Lee J. H Appl. Phys. Lett. 2010, 96, 083101.
115 Sun H. B. ; Ge G. X. ; Zhu J. J. ; Yan H. L. ; Lu Y. ; Wu Y. Z. ; Wan J. G. ; Han M. ; Luo Y. S RSC Adv 2015, 5, 108044.
116 Xu S. C. ; Man B. Y. ; Jiang S. Z. ; Liu M. ; Yang C. ; Chen C.S. ; Zhang C CrystEngComm 2014, 16, 3532.
117 Donghwa L. ; Hyungjin L. ; Yumi A. ; Youngu L Carbon 2015, 81, 439.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[2] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[3] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[4] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[5] Xiu-Xiu WANG,Jian-Wei ZHAO,Gang YU. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1773-1780.
[6] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[7] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[8] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[9] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[10] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[11] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[12] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[13] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[14] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[15] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.