Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (10): 2555-2562    DOI: 10.3866/PKU.WHXB201606281
ARTICLE     
High-Performance Thermogalvanic Cell Based on Organic Nanofluids
Hao-Yu SUN,Jin-Huan PU,Gui-Hua TANG*()
Download: HTML     PDF(6358KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The thermoelectric performance of traditional thermogalvanic cells is relatively low and a more efficient conversion mechanism is required. In this paper, the distribution of glycerol/glycerin in an aqueous sodium chloride solution in a carbon nanotube (CNT) is investigated by molecular dynamics (MD) simulation. The distributions of ions, molecule net charge, and electrical potential of the system are markedly affected by temperature. We propose a novel nanofluid thermoelectric conversion method based on the CNT and glycerol/glycerin aqueous sodium chloride solution. The thermoelectric performance of the proposed system is much higher than that of most of current liquid thermogalvanic cells, and the application temperature range is also widened considerably. A preliminary thermal-to-electrical energy conversion experiment based on nanoporous carbon withmixtures of sodiumchloride and glycerol is also conducted to qualitatively verify the numerical results.



Key wordsMolecular dynamics      Thermogalvanic cell      Carbon nanotube      Low-temperature energy utilization      Thermoelectric conversion     
Received: 13 May 2016      Published: 28 June 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51576156)
Corresponding Authors: Gui-Hua TANG     E-mail: ghtang@mail.xjtu.edu.cn
Cite this article:

Hao-Yu SUN,Jin-Huan PU,Gui-Hua TANG. High-Performance Thermogalvanic Cell Based on Organic Nanofluids. Acta Phys. -Chim. Sin., 2016, 32(10): 2555-2562.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201606281     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2555

Fig 1 Physical model of simulation
Electrolyte solution w(glycerol)/% (in solvent) w(NaCl)/% (in electrolyte solution)
a 0 5
b 10.45 19.68
c 20.30 18.37
d 40.15 15.54
e 60.10 12.51
f 100 5
Table 1 Content of each component in glycerine/glycerolaqueous electrolyte solution
Fig 2 Number density distribution of the ions and molecules in electrolyte solution of the CNT at 300 K CDATA[(A) Na+, (B) H in glycerol, (C) and (D) are ions and solvent molecules for the electrolyte solution. (a) no glycerol in solvent and 5% NaCl; (b) 10.45% glycerol in solvent and 19.68% NaCl; (c) 20.30% in solvent and 18.37% NaCl; (d) 40.15% glycerol in solvent and 15.54% NaCl; (e) 60.10% glycerol in solvent and 12.51% NaCl; (f) 100% glycerol and 5% NaCl; H1 and O1: H and O in the water molecule; C1, C2, H, HO, OH: C1 is the carbon atom at both end of the glycerol molecule, C2 is the carbon atom at the middle, H, HO: are the hydrogen atoms directly bonded with the carbon and oxygen atoms, respectively, and OH is the oxygen in glycerol molecule.
Fig 3 Distribution of net charge and electric potential in the CNT (A) net charge for electrolyte solution e, (B) electric potential for electrolyte solution e, (C) distribution of net charge at T = 300 K, (D) net output electric potential at different thermal differences (ΔT), (E) schematic of the potential difference generated between two liquid-CNT interfaces at a heat grade. The systems a-f are same as Fig. 2. ρne: density of net charge, Chen: data from Chen′s article21,22
w(glycerol)/% ε2
25 ℃ 40 ℃ 60 ℃ 80 ℃ 100 ℃
10 75.7 70.41 63.98 58.31 -
20 72.9 67.70 61.56 56.01 -
30 70.0 64.87 58.97 53.65 -
40 67.1 62.03 56.24 51.17 -
50 64.0 59.55 53.36 48.52 -
60 60.0 55.48 50.17 49.39 41.08
70 55.6 51.41 46.33 41.90 38.07
100 40.1 37.30 33.82 30.63 27.88
Table 2 Dielectric constants (ε2) of glycerol-water solutions under different temperatures
Fig 4 Schematic of distribution of ions in the mesopore in electrolyte solution
Fig 5 Changes of α, η, and ηr with ΔT in different electrolyte solutions (A) Seebeck coefficient,(B) thermoelectric conversion efficiency,(C) thermoelectric conversion efficiency of Carnot efficiency. The systems a-f are same as Fig. 2.
Fig 6 Output electric potential between two electrodes
Fig 7 Output electric potential between two electrodes
1 Heremans J. P. ; Dresselhaus M. S. ; Bell L. E. ; Morelli D. T Nat. Nanotech 2013, 8, 471.
2 Tritt T. M Annu. Rev. Mater. Res. 2011, 41, 433.
3 Snyder J. G. ; Toberer E. S Nat. Mater. 2008, 7, 105.
4 Bell L. E Science 2008, 321, 1457.
5 Poudel B. ; Hao Q. ; Ma Y. ; Lan Y. C. ; Minnich A. ; Yu B. ; Yan X. ; Wang D. Z. ; Muto A. ; Vashaee D. ; Chen X. Y. ; Liu J. M. ; Dresselhaus M. S. ; Chen G. ; Ren Z. F Science 2008, 320, 634.
6 Kongtragool B. ; Wongwises S Renew. Sust. Energy Rev 2003, 7, 131.
7 Kong X. O. ; Wang R. Z. ; Huang X. H Energ. Convers. Manage. 2004, 45, 433.
8 Kongtragool B. ; Wongwises S Renew. Energy 2007, 32, 547.
9 Thombare D. G. ; Verma S. K Renew. Sust. Energy Rev 2008, 12, 1.
10 Vining C. B Nat. Mater 2009, 8, 83.
11 Mancini T. ; Heller P. ; Butler B. ; Osborn B. ; Schiel W. ; Goldberg V. ; Buck R. ; Diver R. ; Andraka C. ; Moreno J ASME J. Sol. Energy 2003, 125, 135.
12 Kuzminskii Y. V. ; Zasukha V. A. ; Kuzminskaya G. Y J. Power Sources 1994, 52, 231.
13 Quickenden T. I. ; Mua Y J. Electrochem. Soc 1995, 142, 3985.
14 Bouty E J. Phys. 1880, 9, 229.
15 Debethune A ; J . ; Licht. T. S% Swendeman N J. Electrochem. Soc. 1959, 106, 616.
16 Gunawa A. ; Lin C. H. ; Buttry D. A. ; Mujica V. ; Taylor R. A. ; Prasher R. S. ; Phelan P. E Nano. Micro. Therm 2013, 17 (4), 304.
17 Quickenden T. I. ; Vernon C. F Sol. Energy 1986, 36, 63.
18 Kang T. J. ; Fang S. ; Kozlov M. E. ; Haines C. S. ; Li N. ; Kim Y. H. ; Chen Y. S. ; Baughman R. H Adv. Funct. Mater. 2012, 22, 477.
19 Yu Q. ; Punyamurtual V. K. ; Han A. ; Lim H J. Power Sources 2008, 183, 403.
20 Hu R. C. ; Cola B. A. ; Haram N. ; Barisci J. N. ; Lee S. ; Stoughton S. ; Wallace G. ; Too C. ; Thomas M. ; Gestos A. ; Cruz M. E. D. ; Ferraris J. P. ; Zakhidow A. A. ; Baughman R H. Nano Lett. 2010, 10, 838.
21 Chen X. ; Xu B. X. ; Liu L Appl. Mech. Rev. 2014, 66, 050803.
22 Xu B. X. ; Liu L. ; Lim H. ; Qiao Y. ; Chen X Nano Energy 2012, 1, 805.
23 Xu B. X. ; Yu Q. ; Park T. ; Tak M. ; Zhou Q. L. ; Chen X Energy Environ. Sci. 2011, 4, 3632.
24 Li Q. ; Yang D. F. ; Wang J. H. ; Wu Q. ; Liu Q. Z Acta Phys. -Chim. Sin 2016, 32 (3), 691.
24 李清; 杨登峰; 王建花; 武琪刘清芝. 物理化学学报, 2016, 32 (3), 691.
25 Shen Z. L. ; He G. H. ; Zhang N. ; Hao C Acta Phys. -Chim. Sin. 2015, 31 (6), 1025.
25 谌庄琳; 贺高红; 张宁郝策. 物理化学学报, 2015, 31 (6), 1025.
26 Plimpton S J. Comput. Phys 1995, 117, 1.
27 Xue Q. Z. ; Li W. Y J. University Petroleum 1999, 23 (4), 102.
27 薛庆忠李文瀛. 石油大学学报, 1999, 23 (4), 102.
28 Association G. P. Physical Properties of Glycerine and Its Solutions; Glycerine Producers' Association: New York 1963;p 17.
29 Zhang L. L. ; Zhao X. S Chem. Soc. Rev. 2009, 38, 2520.
30 Mua Y. ; Quickenden T. I J. Electrochem. Soc 1996, 143 (8), 2558.
31 Mann D. J. ; Halls M. D Phys. Rev. Lett. 2003, 90, 195503.
32 Zhu F. ; Schulten K Biophys. J 2003, 85, 236.
[1] YANG Huachao, BO Zheng, SHUAI Xiaorui, YAN Jianhua, CEN Kefa. Influence of Wettability on the Charging Dynamics of Electric Double-Layer Capacitors[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 200-207.
[2] Wenqiong CHEN,Yongji GUAN,Xiaoping ZHANG,Youquan DENG. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 912-919.
[3] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[4] Liang XIN,Huai SUN. On the Simulation of Complex Reactions Using Replica Exchange Molecular Dynamics (REMD)[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1179-1188.
[5] Noriyuki YOSHII,Mika KOMORI,Shinji KAWADA,Hiroaki TAKABAYASHI,Kazushi FUJIMOTO,Susumu OKAZAKI. Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1163-1170.
[6] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[7] Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178.
[8] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[9] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[10] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[11] Xiu-Xiu WANG,Jian-Wei ZHAO,Gang YU. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1773-1780.
[12] Liao-Ran CAO,Chun-Yu ZHANG,Ding-Lin ZHANG,Hui-Ying CHU,Yue-Bin ZHANG,Guo-Hui LI. Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1354-1365.
[13] Fang CHEN,Yuan-Yuan LIU,Jian-Long WANG,Ning-Ning Su,Li-Jie LI,Hong-Chun CHEN. Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[14] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[15] Yi-Jian CHEN,Hong-Tao ZHOU,Ji-Jiang GE,Gui-Ying XU. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1214-1222.