Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (10): 2636-2644    DOI: 10.3866/PKU.WHXB201606282
ARTICLE     
Surface Defect Passivation of Graphene Quantum Dots by Amino Functionalization and Photoluminescence Emission Enhancement
Yun-Jing WANG,Ying-Qiu LIU,Xiu-Xiu GAO,Yan-Shan ZHAN,Li-Yang PAN,Wen-Kai ZHANG*(),Xiao-Min FANG*()
Download: HTML     PDF(10840KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this work, graphene oxide sheets are cut into graphene quantum dots (GQDs) by acidic oxidation, then GQDs are hydrothermally treated with ammonia (NH3) at 100℃ to form amino-functionalized graphene quantum dots (N-GQDs). Atomic force microscopy (AFM) shows smaller dots in ammonia treated GQDs, and holey graphene structure is directly observed. Fourier transform infrared (FTIR) spectra confirm that NH3 can effectively react with epoxy and carboxyl groups to form hydroxylamine and amide groups, respectively. The absorption and photoluminescence (PL) properties of the samples are determined by ultraviolet-visible-near infrared (UV-Vis-NIR) spectra and steady-state fluorescence spectra. Three PL excitation peaks occurring at around 250, 290, and 350 nm are attributed to C=C related π-π* transition, C-O-C and C=O related n-π* transitions, respectively. After amino functionalization, the C-O-C related n-π* transition is suppressed, and the PL emission spectrum of N-GQDs is less excitation wavelength. The fluorescence quantum yield of the N-GQDs is 9.6%, which is enhanced by 32 times compared with that of the unmodified GQDs (~0.3%). Timeresolved PL spectra are also used to investigate the N-GQDs. The PL lifetimes depend on the emission wavelength and coincide with the PL spectrum, and are different from most fluorescent species. This result reveals the synergy and competition between defect derived photoluminescence and amino passivation of the N-GQDs. Compared with oxygen-related defects, nitrogen-related localized electronic states are expected to have a longer lifetime and enhanced radiative decay rates.



Key wordsGraphene quantum dot      Photoluminescence      Amino      Defect      Passivation      Functionalization     
Received: 24 May 2016      Published: 28 June 2016
MSC2000:  O649  
Fund:  the National Natural Science Foundation of China(51403051,21502042);Key Project of the Education Department of Henan Province, China(16A150003)
Corresponding Authors: Wen-Kai ZHANG,Xiao-Min FANG     E-mail: zhangwenkai@henu.edu.cn;xmfang@henu.edu.cn
Cite this article:

Yun-Jing WANG,Ying-Qiu LIU,Xiu-Xiu GAO,Yan-Shan ZHAN,Li-Yang PAN,Wen-Kai ZHANG,Xiao-Min FANG. Surface Defect Passivation of Graphene Quantum Dots by Amino Functionalization and Photoluminescence Emission Enhancement. Acta Physico-Chimica Sinca, 2016, 32(10): 2636-2644.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201606282     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2636

Fig 1  Cutting and perforation effect in ammonia treated graphene nanosheets (d) and (f) represent the magnified images of the white dash region in (c) and (e), respectively.(g) schematic for the two-step GO sheets cutting and perforation mechanism. color online
Fig 2  FTIR of GQDs and N-GQDs The magnified spectra of the rectangular region are shown in (b).
Fig 3  Absorption and PL properties of GQDs and N-GQDs (a) absorption spectra; (b) fluorescence excitation spectra; (c, d) fluorescence emission spectra; GQDs and N-GQDs are illuminated with 365 nm UV lamp, and fluorescence images are shown in the inset of (c) and (d), respectively
Fig 4  Relationship between the position of emission peak and the excitation wavelength
Fig 5  Calculated fluorescence quantum yields (QY)
Fig 6  Time resolved emission spectra (TRES) analyses of GQDs and N-GQDs (a, b) contour plot of TRES; (c) the fitted lifetime (τ1); (d) τ2; (e, f) average lifetime (τave).All the lifetimes were obtained fitting by two exponential decay rates. τave = τ1?A1 + τ2?A2
Fig 7  Fluorescence spectra obtained at different time delays
Fig 8  (a) Schematic representation of amino functionalization of GQDs; photoluminescence excitation contour map of GQDs (b) and N-GQDs (c); energy level diagram and excited state deactivation pathways for GQDs (d) and N-GQDs (e)
1 Li X. ; Rui M. ; Song J. ; Shen Z. ; Zeng H Adv. Funct. Mater. 2015, 25, 4929.
2 Zhao A. ; Chen Z. ; Zhao C. ; Gao N. ; Ren J. ; Qu X Carbon 2015, 85, 309.
3 Miao P. ; Han K. ; Tang Y. ; Wang B. ; Lin T. ; Cheng W Nanoscale 2015, 7, 1586.
4 Ding C. ; Zhu A. ; Tian Y Accounts Chem. Res. 2014, 47, 20.
5 Lin X. ; Yang Y. ; Nian L. ; Su H. ; Ou J. ; Yuan Z. ; Xie F. ; Hong W. ; Yu D. ; Zhang M. ; Ma Y. ; Chen X Nano Energy 2016, 26, 216.
6 Li L. ; Wu G. ; Yang G. ; Peng J. ; Zhao J. ; Zhu J Nanoscale 2013, 5, 4015.
7 Wang Y. ; Hu A J. Mater. Chem. C 2014, 2, 6921.
8 Strauss V. ; Clark T. ; Guldi D. M. ; Margraf J. T. ; Dolle C. ; Butz B. ; Nacken T. J. ; Walter J. ; Bauer W. ; Peukert W. ; Spiecker E J. Am. Chem. Soc. 2014, 136, 17308.
9 Huang J. ; Rong M. Z. ; Zhang M. Q Phys. Chem. Chem. Phys. 2016, 18, 4800.
10 Liu F. ; Jang M. ; Ha H. D. ; Kim J. ; Cho Y. ; Seo T. S Adv. Mater. 2013, 25, 3657.
11 Wang X. ; Cao L. ; Yang S. ; Lu F. ; Meziani M. J. ; Tian L. ; Sun K W. Angew. Chem. 2010, 122, 5438.
12 Cao L. ; Meziani M. J. ; Sahu S. ; Sun Y Accounts Chem. Res. 2012, 46, 171.
13 Galande C. ; Mohite A. D. ; Naumov A. V. ; Gao W. ; Ci L. ; Ajayan A. ; Gao H. ; Srivastava A. ; Weisman R. B. ; Ajayan P M. Sci. Rep. 2011, 1, 85.
14 Singamaneni S. R. ; van Tol J. ; Ye R. ; Tour J. M Appl. Phys. Lett. 2015, 107, 212402.
15 Gan Z. X. ; Xiong S. J. ; Wu X. L. ; Xu T. ; Zhu X. B. ; Gan X. ; Guo J. H. ; Shen J. C. ; Sun L. T. ; Chu P. K Adv. Opt. Mater. 2013, 1, 926.
16 Eda G. ; Lin Y. Y. ; Mattevi C. ; Yamaguchi H. ; Chen H. A. ; Chen I. S. ; Chen C.W. ; Chhowalla M Adv. Mater. 2010, 22, 505.
17 Chien C. ; Li S. ; Lai W. ; Yeh Y. ; Chen H. ; Chen I. ; Chen L. ; Chen K. ; Nemoto T. ; Isoda S. ; Chen M. ; Fujita T. ; Eda G. ; Yamaguchi H. ; Chhowalla M. ; Chen C Angew. Chem. Int. Ed. 2012, 51, 6662.
18 Zhang W. ; Liu Y. ; Meng X. ; Ding T. ; Xu Y. ; Xu H. ; Ren Y. ; Liu B. ; Huang J. ; Yang J. ; Fang X Phys. Chem. Chem. Phys. 2015, 17, 22361.
19 Tang L. B. ; Ji R. ; Cao X. ; Lin J. ; Jiang H. ; Li X. ; Teng K.S. ; Luk C. M. ; Zeng S. ; Hao J. ; Lau S. P ACS Nano 2012, 6, 5102.
20 Kumar G. S. ; Roy R. ; Sen D. ; Ghorai U. K. ; Thapa R. ; Mazumder N. ; Saha S. ; Chattopadhyay K. K Nanoscale 2014, 6, 3384.
21 Zhu S. J. ; Zhang J. H. ; Tang S. J. ; Qiao C. Y. ; Wang L. ; Wang H. Y. ; Liu X. ; Li B. ; Li Y. F. ; Yu W. L. ; Wang X. F. ; Sun H. C. ; Yang B Adv. Funct. Mater. 2012, 22, 4732.
22 Tetsuka H. ; Asahi R. ; Nagoya A. ; Okamoto K. ; Tajima I. ; Ohta R. ; Okamoto A Adv. Mater. 2012, 24, 5333.
23 Jin S. H. ; Kim D. H. ; Jun G. H. ; Hong S. H. ; Jeon S ACS Nano 2013, 7, 1239.
24 Hernandez Y. ; Nicolosi V. ; Lotya M. ; Blighe F. M. ; Sun Z. ; De S. ; McGovern I. T. ; Holland B. ; Byrne M. ; GuńKo Y. K. ; Boland J. J. ; Niraj P. ; Duesberg G. ; Krishnamurthy S. ; Goodhue R. ; Hutchison J. ; Scardaci V. ; Ferrari A. C. ; Coleman J. N Nat. Nanotechnol. 2008, 3, 563.
25 Zhou Y. ; Bao Q. ; Tang L. A. L. ; Zhong Y. ; Loh K. P Chem. Mater 2009, 21, 2950.
26 Patel M. ; Feng W. ; Savaram K. ; Khoshi M. R. ; Huang R. ; Sun J. ; Rabie E. ; Flach C. ; Mendelsohn R. ; Garfunkel E. ; He H Small 2015, 11, 3358.
27 Zhou D. ; Cui Y. ; Xiao P. ; Jiang M. ; Han B Nat. Commun. 2014, 5, 4716.
28 Lin L. ; Zhang S Chem. Commun. 2012, 48, 10177.
29 (a) Cushing S. K., Li M., Huang F., Wu N. ACS Nano,2014, 8:1002 doi: 10.1021/nn405843d (b) Gao X. X., Wang M.W., Yu J. H., Liu L., Lu Z., Wang Y.J., Zhan Y. S., Liu Y. Q., Zhang W. K., Fang X. M. Chem. Res.,2016, 27:280
30 Hu S. ; Trinchi A. ; Atkin P. ; Cole I Angew. Chem. Int. Ed. 2015, 54, 2970.
31 Zhang W. ; Chen Y. ; Gan L. ; Qing J. ; Zhou X. ; Huang Y. ; Yang Y. ; Zhang Y. ; Ou J. ; Chen X. ; Zhang M. Q J. Phys. Chem. Solids 2014, 75, 1340.
32 Deng X. ; Sun J. ; Yang S. ; Shen H. ; Zhou W. ; Lu J. ; Ding G. ; Wang Z Appl. Phys. Lett. 2015, 107, 241905.
33 Munechika K. ; Chen Y. ; Tillack A. F. ; Kulkarni A. P. ; Plante I. J. L. ; Munro A. M. ; Ginger D. S Nano Lett. 2010, 10, 2598.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Mengxiong CAO,Xingyu WANG,Yaru MA,Chunlin MA,Weiping ZHOU,Xiaoxiong WANG,Haiou WANG,Weishi TAN. Point Defects Induced Ferromagnetism in Neutron Irradiated MgO(110) Single Crystals[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 437-444.
[3] Xiu-Xiu WANG,Jian-Wei ZHAO,Gang YU. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1773-1780.
[4] . Synthesis, Characterization, Spectroscopic Properties, and Luminescence Quenching Mechanism of a Pt(Ⅱ) Complex Decorated with a π-Conjugated TEMPO-Terpyridine Ligand System[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1390-1398.
[5] Hai-Xia LI,Yan-Cheng LIU,Rui-Zhi TANG,Peng ZHANG,Liu-Kui MA,Chi-Yuan WEI,Wen-Feng WANG. Reactions of Triplet-State Difloxacin with Amino Acids and dGMP: A Laser Flash Photolysis Study[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1051-1056.
[6] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.
[7] WANG Juan, LI Shi-Kun, ZHAO Zhen-Chao, ZHOU Dan-Hong, LU An-Hui, ZHANG Wei-Ping. Density Functional Theory Study of CO2 Adsorption in Amine-Functionalized Carbonaceous Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1666-1673.
[8] WANG Han, WANG Xiao-Min. Effect of Preparation Conditions on the Optical Properties of PEI-Functionalized Graphene Quantum Dots[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1267-1272.
[9] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 975-982.
[10] CAO Hong-Yu, GAO Ling-Xing, TANG Qian, SU Jin-Hong, ZHENG Xue-Fang. Mechanism of Oxymyoglobin Oxidation Reaction Induced by Ultraviolet Light[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 872-878.
[11] SUN Bo, LIU Hai-Feng, SONG Hai-Feng, ZHENG Hui. Microdynamics Simulations of the Hydrogen-Corrosion Resistance of Passivation Layers on Pu Surface[J]. Acta Physico-Chimica Sinca, 2015, 31(Suppl): 81-89.
[12] XIA Xiang-Lai, LI Lin-Yan, GUO Fang, SU Wei, LIU Yan, CHEN Xiao-Mou, PAN She-Qi. Simulation of the Immobilization of Pu in the Gd2Zr2O7 Matrix by Investigating the Thermophysical Properties of (Gd1-xCex)2Zr2O7+x[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1810-1814.
[13] TONG La-Ga, LIU Jin-Yan, WANG Cen-Chen, RONG Hua, LI Wei. Preparation of Micro/Nano ZnO Pompons and Their Catalytic Activity for the Solar Degradation of Organic Dyes[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1615-1620.
[14] QIAO Zhi, XIE Xin-Jian, XUE Jun-Ming, LIU Hui, LIANG Li-Min, HAO Qiu-Yan, LIU Cai-Chi. Optimization of Intrinsic Silicon Passivation Layers in nc-Si:H/c-Si Silicon Heterojunction Solar Cells[J]. Acta Physico-Chimica Sinca, 2015, 31(6): 1207-1214.
[15] LIU Feng-Ming, LIU Ting-Yu, LIU Jian, LI Hai-Xin. Prediction of Native Point Defects in HfO2 Crystals Using First Principles and Thermodynamic Calculations[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 441-447.