Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (10): 2523-2530    DOI: 10.3866/PKU.WHXB201606292
ARTICLE     
Molecular Dynamics Simulation of Gas Transport in Amorphous Polyisoprene
Xiang LU1,*(),Xun CHEN1,Ya-Shun WANG1,Yuan-Yuan TAN1,Zi-Yuan GAOMU2
1 Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, P. R. China
2 Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G0X6, Canada
Download: HTML     PDF(3022KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Molecular dynamics (MD) simulations were performed to study the transport properties of gases (oxygen, nitrogen, and methane) in amorphous cis-1,4-polyisoprene over a wide range of temperatures. The COMPASS force field was used as the molecular mechanics force field in the simulations. Experimental values of density and glass transition temperature were successfully reproduced using the atomistic potentials determined by COMPASS. Diffusion coefficients were determined from long NVT simulation times (up to 3 or 1.5 ns) in the temperature range of 278-378 K. The diffusion coefficients calculated fromthe Einstein relationship agree well with available experimental data. Further studies on the temperature dependence of diffusion coefficients indicate that curvature is observed in the Arrhenius plot of diffusivity versus inverse temperature for methane, but the plots are linear over the investigated temperature range for oxygen and nitrogen. These simulation results are useful to understand the temperature dependence of diffusion coefficients, and provide a basis for the determination of diffusion coefficients at high temperatures and the modeling of thermo-oxidative degradation of polyisoprene.



Key wordsGas      Diffusion coefficient      Polyisoprene      Molecular dynamics      Molecular simulation     
Received: 28 April 2016      Published: 29 June 2016
MSC2000:  O641  
Fund:  The project was supported by the National Natural Science Foundation of China(51375487,51205402)
Corresponding Authors: Xiang LU     E-mail: luxiang9014@126.com
Cite this article:

Xiang LU,Xun CHEN,Ya-Shun WANG,Yuan-Yuan TAN,Zi-Yuan GAOMU. Molecular Dynamics Simulation of Gas Transport in Amorphous Polyisoprene. Acta Physico-Chimica Sinca, 2016, 32(10): 2523-2530.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201606292     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2523

 
GasT/KDuration/nsEnsemble
O2278, 2983NVT
318, 338, 358, 3781.5
N2278, 2983NVT
318, 338, 358, 3781.5
CH42984.5NVT
318, 338, 358, 3781.5
Table 1 Setings for the simulation time of production runs at various temperatures
Fig 2 Spcific volume versus temperature for amorphous cis-1,4-polyisoprene
ρ/(g?cm-3)104α/K-1Tg/K
calculated0.8875.2198
experimental0.906-0.916 146.7 14199-204 14
 
Fig 3 Tyical trajectories of an oxygen molecule in amorphous cis-1,4-polyisoprene (a) at 298 K and (b) at 358 K during a period of 1.5 ns
Fig 4 MS of oxygen molecules in amorphous cis-1,4- polyisoprene at 298 and 318 K
Gas1010 Dcal/(m2?s-1)1010 Dexp/(m2?s-1)
O21.541.75 6
N21.791.15 6
CH41.080.88 6
Table 3 Coparison of the calculated diffusion coefficients with experimental data for oxygen, nitrogen, and methane at 298 K
Fig 5 Teperature dependence of diffusion coefficients for oxygen in amorphous cis-1,4-polyisoprene
Fig 6 Teperature dependence of diffusion coefficients for nitrogen in amorphous cis-1,4-polyisoprene
Fig 7 Teperature dependence of diffusion coefficients for methane in amorphous cis-1,4-polyisoprene
Fig 8 Diplacements of a methane molecule from its initial position at 318 and 358 K The displacements of the methane molecule at 358 K are shifted upward by 0.5 nm to avoid overlapping of plots
1 Charati S. G. ; Stern S. A Macromolecules 1998, 31 (16), 5529.
2 Müller-Plathe F J. Chem. Phys. 1991, 94 (4), 3192.
3 Kucukpinar E. ; Doruker P Polymer 2003, 44 (12), 3607.
4 Celina M. ; Gillen K. T Macromolecules 2005, 38 (7), 2754.
5 Wise J. ; Gillen ; K. T; Clough R. L Polymer 1997, 38 (8), 1929.
6 Van Amerongen G. J J. Appl. Phys. 1946, 17, 972.
7 Frish H. L. ; Stern S. A CRC Crit. Rev. Solid State Mater. Sci. 1983, 11 (2), 123.
8 Crank J The Mathematics of Diffusion 2nd ed Clarendon Press: Oxford, 1975, pp 2- 8.
9 Fujita H Fortschr. Hochpolym.-Forsch. 1961, 3, 1.
10 Stern S. A. ; Frisch H. L Annu. Rev. Mater. Sci. 1981, 11, 523.
11 Hofmann D. ; Fritz L. ; Ulbrich J. ; Schepers C. ; Bohning M Macromol. Theory Simul. 2000, 9 (6), 293.
12 Hofmann D. ; Fritz L. ; Ulbrich J. ; Paul D Comput. Theor. Polym. Sci. 2000, 10 (5), 419.
13 Guevara-Carrion G. ; Nieto-Draghi C. ; Vrabec J. ; Hasse H J. Phys. Chem. B 2008, 112 (51), 16664.
14 Furuta I. ; Kimura S. I. Iwama M Physical Contants ofRubbery Polymers. In Polymer Handbook, 4th ed., Brandrup J., Immergut, E. H., Crulke, E. A. Eds Wiley: New York 1998, ppV5- V6.
15 Tamai Y. ; Tanaka H. ; Nakanishi K Macromolecules 1994, 27 (16), 4498.
16 Cuthbert T. R. ; Wagner N. J. ; Paulaitis M. E. ; Murgia G. ; D'Aguanno B Macromolecules 1999, 32 (15), 5017.
17 Fried J. R. ; Goyal D. K J. Polym. Sci.: Part B: Polym. Phys. 1998, 36 (3), 519.
18 Müller-Plathe F J. Chem. Phys. 1992, 96 (4), 3200.
19 Feng H. J. ; Gao W. ; Sun Z. F. ; Lei B. X. ; Li G. N. ; Chen L P. J. Phys. Chem. B 2013, 117 (41), 12525.
20 Tao C. G. ; Feng H. J. ; Zhou J. ; Lü L. H. ; Lu X. H Acta Phys. -Chim. Sin. 2009, 25 (7), 1373.
20 陶长贵; 冯海军; 周健; 吕玲红; 陆小华. 物理化学学报, 2009, 25 (7), 1373.
21 Lü Y. Q. ; Zheng S. L. ; Wang S. N. ; Du H. ; Zhang Y Acta Phys. -Chim. Sin. 2015, 31 (6), 1045.
21 吕页清; 郑诗礼; 王少娜; 杜浩; 张懿. 物理化学学报, 2015, 31 (6), 1045.
22 Liu Q. L. ; Huang Y J. Phys. Chem. B 2006, 110 (35), 17375.
23 Fried J. R. ; Ren P Comput. Theor. Polym. Sci. 2000, 10 (5), 447.
24 Lim S. Y. ; Tsotsis T. T. ; Sahimi M J. Chem. Phys. 2003, 119, 496.
25 Hu N. ; Fried J. R Polymer 2005, 46 (12), 4330.
26 Fried J. R. ; Sadat-Akhavi M. ; Mark J. E J. Membr. Sci. 1998, 149 (1), 115.
27 Tocci E. ; Bellacchio E. ; Russo N. ; Diroli E J. Membr. Sci. 2002, 206 (1-2), 389.
28 Wang X. Y. ; Willmore F. T. ; Raharjo R. D. ; Wang X. C. ; Freeman B. D. ; Hill A. J. ; Sanchez I. C J. Phys. Chem. B 2006, 110 (33), 16685.
29 Gee R. H. ; Boyd R. H Polymer 1995, 36 (7), 1435.
30 Pant P. V. K. ; Boyd R. H Macromolecules 1993, 26 (4), 679.
31 Meunier M J. Chem. Phys. 2005, 123, 134906.
32 Mozaffari F. ; Eslami H. ; Moghadasi J Polymer 2010, 51 (1), 300.
33 Van Amerongen G. J J. Polym. Sci. 1950, 5 (3), 307.
34 Sun H J. Phys. Chem. B 1998, 102 (38), 7338.
35 Theodorou D. N. ; Suter U W. Macromolecules 1985, 18 (7), 1467.
36 Meirovitch H. J J. Chem. Phys. 1983, 79 (1), 502.
37 Berendsen H. J. C. ; Postama J. P. M. ; Van Gunsteren W. F. ; DiNola A. ; Haak J. R J. Chem. Phys. 1984, 81 (8), 3684.
38 Fried J. R. ; Ren P Comput. Theor. Polym. Sci. 1999, 9 (2), 111.
39 Yu K. Q. ; Li Z. S. ; Sun J. Z Macromol. Theory Simul. 2001, 10 (6), 624.
40 Barrer R. M J. Phys. Chem. 1957, 61 (2), 178.
41 Williams M. L. ; Landel R. F. ; Ferry J. D J. Am. Chem. Soc. 1955, 77 (14), 3701.
42 Barrer R. M. ; Skirrow G J. Polym. Sci. 1948, 3 (4), 549.
[1] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 537-542.
[2] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1905-1914.
[3] Hong-Yan NING,Qi-Lei YANG,Xiao YANG,Ying-Xia LI,Zhao-Yu SONG,Yi-Ren LU,Li-Hong ZHANG,Yuan LIU. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1865-1874.
[4] Xiu-Xiu WANG,Jian-Wei ZHAO,Gang YU. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1773-1780.
[5] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1898-1904.
[6] Pei-Yi LIAO,Chen ZHANG,Li-Jun ZHANG,Yan-Zhang YANG,Liang-Shu ZHONG,Xiao-Ya GUO,Hui WANG,Yu-Han SUN. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1672-1680.
[7] Ling-Xuan WANG,Hua-Tong ZHU,Li-Li ZU. Studying ionization and decomposition mechanism of alkyl dinitrites by mass spectrometry[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1709-1714.
[8] Fang-Fang ZHENG,Qian LI,Hong ZHANG,Wei-Zheng WENG,Xiao-Dong YI,Yan-Ping ZHENG,Chuan-Jing HUANG,Hui-Lin WAN. Preparation and Characterization of Sinter-Resistant Rh-Sm2O3/SiO2 Catalyst and Its Performance for Partial Oxidation of Methane to Syngas[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1689-1698.
[9] Yang ZHOU,Gao LI. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1297-1309.
[10] . Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1354-1365.
[11] . Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1140-1148.
[12] Yi-Jian CHEN,Hong-Tao ZHOU,Ji-Jiang GE,Gui-Ying XU. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1214-1222.
[13] Hassan GOLMOHAMMADI,Zahra DASHTBOZORGI,Sajad KHOOSHECHIN. Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 918-926.
[14] Ting-Ting ZHOU,Hua-Jie SONG,Feng-Lei HUANG. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 949-959.
[15] Ai-Jing LI,Wei XIE,Ming WANG,Si-Chuan XU. Molecular Dynamics of Dopamine to Transmit through Molecular Channels within D3R[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 927-940.