Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (10): 2462-2474    DOI: 10.3866/PKU.WHXB201606293
REVIEW     
Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells
Hong ZHU*(),Ming-Chuan LUO,Ye-Zheng CAI,Zhao-Nan SUN
Download: HTML     PDF(17840KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Proton exchange membrane fuel cells (PEMFCs) are considered as ideal alternative power devices to traditional internal combustion engines for automobile applications because of their high electric power density, high energy conversion efficiency, and low environmental impact as well as low temperatures for start-up and operation. However, PEMFCs normally require a high loading of the expensive precious metal platinum (Pt) as the electrocatalytic material to maintain desirable energy output. Thus, the development of novel catalysts with lower Pt loading, enhanced activity, and improved durability is vital for the scalable commercialization of PEMFC technology. In this regard, core-shell structure has been demonstrated as an effective strategy to minimize the amount of Pt in PEMFCs because of the following two factors:(1) a core-shell architecture with a Pt-rich shell and M-rich (M represents an earth-abundant element) core can greatly improve the utilization of Pt; (2) the activity and stability of Pt on the surface can be greatly enhanced by strain (geometry) and electronic (alloying) effects caused by the M in the core. First, we briefly discuss the structure-performance relationship of typical core-shell structured electrocatalysts for the oxygen reduction reaction (ORR). Then, we review the development of Pt-based core-shell structured catalysts for the ORR. Finally, a perspective on this research topic is provided.



Key wordsProton exchange membrane fuel cell      Oxygen reduction reaction      Low-platinum catalyst      Core-shell structure      Electronic/geometric effect     
Received: 09 May 2016      Published: 29 June 2016
MSC2000:  O646  
Fund:  National Natural Science Foundation of China(21376022);International S & T Cooperation Program of China(2013DFA51860)
Corresponding Authors: Hong ZHU     E-mail: zhuho128@126.com
Cite this article:

Hong ZHU,Ming-Chuan LUO,Ye-Zheng CAI,Zhao-Nan SUN. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Acta Physico-Chimica Sinca, 2016, 32(10): 2462-2474.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201606293     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2462

Fig 1 Volcano plots: ORR activities of platinum monolayers on different single-crystal surfaces as functions of calculated d-band center62
Fig 2 (A) TEM and (B) HAADF-STEM image of air-D-PtNi3 sample; (C) TEM and (D) HAADF-STEM images of N2-D-PtNi3 sample; (E) particle size distributions of various PtNi3 catalyst and (F) correlations between particle size,composition,and porosity76
Fig 3 (a) Single cell polarization curves with P1-NA and P2-NA cathodes,(b) specific area activities and (c) specific mass activities of various dealloyed catalysts; (d) end-of-life (EOL) vs beginning-of-life (BOL) mass activity for various catalysts on membrane electrode assemblies (MEAs)87
Fig 4 Schematic diagrams and TEM images of the nano structures91 (A) initial solid PtNi3 polyhedra; (B) PtNi intermediates; (C) hollow Pt3Ni nanoframes; (D) annealed Pt3Ni nanoframes with Pt(111)-skin-like surfaces
Fig 5 (a) Schematic illustration of the synthesis of Au/FePt3 NPs; TEM,HRTEM,and XRD characterizations of (b) 7 nm pure Au,(c) Au/FePt3 NPs,and (d) 10 nm FePt3109 NPs: nanoparticles; TEM: transmission electron microscope; HRTEM: high resolution transmission electron microscope; XRD: X-ray diffraction
Fig 6 (a) ORR polarization curves for various samples in 0.1 mol?L-1 HClO4; (b) Koutecky-Levich plots for Pt3Co/C-700 (inset shows the corresponding polarization curves at different rotating speeds); comparison of(c) specific mass activity and (d) specific area activity for various catalysts118
1 Gates B Science 2011, 334, 877.
2 Debe M. K Nature 2012, 486, 43.
3 Larminie J Fuel Cell Systems ExplainedScience Press:Beijing, 2003, pp 25- 53.
3 Larminie J 可再生能源开发技术北京:科学出版社, 2003, pp 25- 53.
4 Hammer B. ; Norskov J. K Nature 1995, 376, 238.
5 Mavrikakis M. ; Stoltze P. ; Norskov J. K Catal. Lett. 2000, 64, 101.
6 N?rskov J. K. ; Rossmeisl J. ; Logadottir A. ; Lindqvist L. ; Kitchin J. R. ; Bligaard T. ; Jónsson H J. Phys. Chem. B 2004, 108, 17886.
7 Stamenkovic V. ; Mun B. S. ; Mayrhofer K. J. ; Ross P. N. ; Markovic N. M. ; Rossmeisl J. ; Greeley J. ; Norskov J. K Angew. Chem. Int. Ed. 2006, 45, 2897.
8 Norskov J. K. ; Bligaard T. ; Rossmeisl J. ; Christensen C. H Nat. Chem. 2009, 1, 37.
9 Viswanathan V. ; Hansen H. A. ; Rossmeisl J. ; N?rskov J. K ACS Catal. 2012, 2, 1654.
10 Greeley J. ; Stephens I. E. ; Bondarenko A. S. ; Johansson T.P. ; Hansen H. A. ; Jaramillo T. F. ; Rossmeisl J. ; Chorkendorff I. ; Norskov J. K Nat. Chem. 2009, 1, 552.
11 Zhou W. P. ; Yang X. ; Vukmirovic M. B. ; Koel B. E. ; Jiao J. ; Peng G. ; Mavrikakis M. ; Adzic R. R J. Am. Chem. Soc. 2009, 131, 12755.
12 Wang J. X. ; Inada H. ; Wu L. ; Zhu Y. ; Choi Y. ; Liu P. ; Zhou W. P. ; Adzic R. R J. Am. Chem. Soc. 2009, 131, 17298.
13 Shao M. ; Sasaki K. ; Marinkovic N. ; Zhang L. ; Adzic R Electrochem. Commun. 2007, 9, 2848.
14 Zhang J. ; Vukmirovic M. B. ; Sasaki K. ; Nilekar A. U. ; Mavrikakis M. ; Adzic R. R J. Am. Chem. Soc. 2005, 127, 12480.
15 Zhang J. ; Mo Y. ; Vukmirovic M. B. ; Klie R. ; Sasaki K. ; Adzic R. R J. Phys. Chem. B 2004, 108, 10955.
16 Stamenkovic V. R. ; Fowler B. ; Mun B. S. ; Wang G. ; Ross P.N. ; Lucas C. A. ; Markovic N. M Science 2007, 315, 493.
17 Chen S. ; Ferreira P. J. ; Sheng W. ; Yabuuchi N. ; Allard L. F. ; Shao-Horn Y J. Am. Chem. Soc. 2008, 130, 13818.
18 Stamenkovic V. R. ; Mun B. S. ; Arenz M. ; Mayrhofer K. J. ; Lucas C. A. ; Wang G. ; Ross P. N. ; Markovic N. M Nat. Mater. 2007, 6, 241.
19 Stamenkovic V. R. ; Mun B. S. ; Mayrhofer K. J. ; Ross P. N. ; Markovic N. M J. Am. Chem. Soc. 2006, 128, 8813.
20 Lim B. ; Jiang M. ; Camargo P. H. ; Cho E. C. ; Tao J. ; Lu X. ; Zhu Y. ; Xia Y. N Science 2009, 324, 1302.
21 Harpeness R. ; Gedanken A Langmuir 2004, 20, 3431.
22 Zhu H. ; Li X.W. ; Wang F. H Int. J. Hydrog. Energy 2011, 36, 9151.
23 Dutta I. ; Carpenter M. K. ; Balogh M. P. ; Ziegelbauer J. M. ; Moylan T. E. ; Atwan M. H. ; Irish N. P J. Phys. Chem. C Nanomater. Interfaces 2010, 114, 16309.
24 Strasser P. ; Koh S. ; Greeley J Phys. Chem. Chem. Phys. 2008, 10, 3670.
25 Mani P. ; Srivastava R. ; Strasser P J. Phys. Chem. C 2008, 112, 2770.
26 Shviro M. ; Polani S. ; Zitoun D Nanoscale 2015, 7, 13521.
27 Dubau L. ; Asset T. ; Chattot R. ; Bonnaud C. ; Vanpeene V. ; Nelayah J. ; Maillard F ACS Catal. 2015, 5, 5333.
28 Lee C. L. ; Huang K. L. ; Tsai Y. L. ; Chao Y. J Electrochem. Commun. 2013, 34, 282.
29 Chiwata M. ; Yano H. ; Ogawa S. ; Watanabe M. ; Iiyama A. ; Uchida H Electrochemistry 2016, 84, 133.
30 Wang D. Y. ; Chou H. L. ; Cheng C. C. ; Wu Y. H. ; Tsai C.M. ; Lin H. Y. ; Wang Y. L. ; Hwang B. J. ; Chen C. C Nano Energy 2015, 11, 631.
31 Wakabayashi N. ; Takeichi M. ; Uchida H. ; Watanabe M J. Phys. Chem. B 2005, 109, 5836.
32 Zhao T. T. ; Lin R. ; Zhang L. ; Cao C. H. ; Ma J. X Acta Phys. -Chim. Sin. 2013, 29, 1745.
32 赵天天; 林瑞; 张路; 曹春晖; 马建新. 物理化学学报, 2013, 29, 1745.
33 Reyes-Rodríguez J. L. ; Godínez Salomón F. ; Leyva M. A. ; Solorza-Feria O Int. J. Hydrog. Energy 2013, 38, 12634.
34 Matin M. A. ; Jang J. H. ; Kwon Y. U Int. J. Hydrog. Energy 2014, 39, 3710.
35 Jia Q. ; Liang W. ; Bates M. K. ; Mani P. ; Lee W. ; Mukerjee S ACS Nano 2015, 9, 387.
36 Cao C. H. ; Lin R. ; Zhao T. T. ; Huang Z. ; Ma J. X Acta Phys. -Chim. Sin. 2013, 29, 95.
36 曹春晖; 林瑞; 赵天天; 黄真; 马建新. 物理化学学报, 2013, 29, 95.
37 Li Z. ; He C. ; Cai M. ; Kang S. ; Shen P. K Int. J. Hydrog. Energy 2012, 37, 14152.
38 Morris A. R. ; Skoglund M. D. ; Holles J. H Appl. Catal. A: Gen. 2015, 489, 98.
39 Ramos-Sanchez G. ; Praserthdam S. ; Godinez-Salomon F. ; Barker C. ; Moerbe M. ; Calderon H. A. ; Lartundo L. A. ; Leyva M. A. ; Solorza-Feria O. ; Balbuena P. B Phys. Chem. Chem. Phys. 2015, 17, 28286.
40 An W. ; Liu P ACS Catal. 2015, 5, 6328.
41 Chen Y. ; Shi J J. Fuel Cell Sci. Tech. 2014, 12, 021005.
42 Zhang S. ; Hao Y. ; Su D. ; Doan-Nguyen V. V. ; Wu Y. ; Li J. ; Sun S. ; Murray C. B J. Am. Chem. Soc. 2014, 136, 15921.
43 Dhavale V. M. ; Kurungot S ACS Catal. 2015, 5, 1445.
44 Zhu C. M. ; Gao A. ; Wang Y. ; Liu Y Chem. Commun. 2014, 50, 13889.
45 Wang D. ; Yu Y. ; Zhu J. ; Liu S. ; Muller D. A. ; Abruna H. D Nano Lett. 2015, 15, 1343.
46 Han L. ; Liu H. ; Cui P. ; Peng Z. ; Zhang S. ; Yang J Sci. Rep. 2014, 4, 6414.
47 Xu Z. ; Zhang H. ; Liu S. ; Zhang B. ; Zhong H. ; Su D. S Int. J. Hydrog. Energy 2012, 37, 17978.
48 Xu C. ; Liu Y. ; Wang J. ; Geng H. ; Qiu H ACS Appl. Mater. Interfaces 2011, 3, 4626.
49 Johansson T. P. ; Ulrikkeholm E. T. ; Hernandez-Fernandez P. ; Escudero-Escribano M. ; Malacrida P. ; Stephens I. E. ; Chorkendorff I Phys. Chem. Chem. Phys. 2014, 16, 13718.
50 Escudero-Escribano M. ; Malacrida P. ; Hansen M. H. ; Vej-Hansen U. G. ; Velazquez-Palenzuela A. ; Tripkovic V. ; Schiotz J. ; Rossmeisl J. ; Stephens I. E. ; Chorkendorff I Science 2016, 352, 73.
51 Malacrida P. ; Casalongue H. G. ; Masini F. ; Kaya S. ; Hernandez-Fernandez P. ; Deiana D. ; Ogasawara H. ; Stephens I. E. ; Nilsson A. ; Chorkendorff I Phys. Chem. Chem. Phys. 2015, 17, 28121.
52 Hernandez-Fernandez P. ; Masini F. ; McCarthy D. N. ; Strebel C. E. ; Friebel D. ; Deiana D. ; Malacrida P. ; Nierhoff A. ; Bodin A. ; Wise A. M. ; Nielsen J. H. ; Hansen T.W. ; Nilsson A. ; Stephens I. E. ; Chorkendorff I Nat. Chem. 2014, 6, 732.
53 Velázquez-Palenzuela A. ; Masini F. ; Pedersen A. ; Escudero-Escribano M. ; Deiana D. ; Malacrida P. ; Hansen T.W. ; Friebel D. ; Nilsson A. ; Stephens I. E. L. ; Chorkendorff I. B J. Catal. 2015, 328, 297.
54 Escudero-Escribano M. ; Verdaguer Casadevall A. ; Malacrida P. ; Gronbjerg U. ; Knudsen B. P. ; Jepsen A. K. ; Rossmeisl J. ; Stephens I. E. ; Chorkendorff I J. Am. Chem. Soc. 2012, 134, 16476.
55 Jia Q. ; Ramaker D. E. ; Ziegelbauer J. M. ; Ramaswamy N. ; Halder A. ; Mukerjee S J. Phys. Chem. C 2013, 117, 4585.
56 U..S. Department of Energy. Multi-year Research, Developmentand Demonstration Plan: Planned Program Activities for 2005-2015. 2009.
57 Adzic R. R. ; Zhang J. ; Sasaki K. ; Vukmirovic M. B. ; Shao M. ; Wang J. X. ; Nilekar A. U. ; Mavrikakis M. ; Valerio J. A. ; Uribe F Top. Catal. 2007, 46, 249.
58 Brankovic S. R. ; Wang J. X. ; Adzic R. R Electrochem. Solid-State Lett. 2001, 4, A217.
59 Zhang Y. ; Ma C. ; Zhu Y. ; Si R. ; Cai Y. ; Wang J. X. ; Adzic R. R Catal. Today 2013, 202, 50.
60 Kuttiyiel K. A. ; Sasaki K. ; Choi Y. ; Su D. ; Liu P. ; Adzic R R. Energy Environ. Sci. 2012, 5, 5297.
61 Gong K. ; Su D. ; Adzic R. R J. Am. Chem. Soc. 2010, 132, 14364.
62 Zhang J. ; Vukmirovic M. B. ; Xu Y. ; Mavrikakis M. ; Adzic R. R Angew. Chem. Int. Ed. 2005, 44, 2132.
63 Shao M. H. ; He G. ; Peles A. ; Odell J. H. ; Zeng J. ; Su D. ; Tao J. ; Yu T. ; Zhu Y. ; Xia Y. N Chem. Commun. 2013, 49, 9030.
64 Wang J. X. ; Ma C. ; Choi Y. ; Su D. ; Zhu Y. ; Liu P. ; Si R. ; Vukmirovic M. B. ; Zhang Y. ; Adzic R. R J. Am. Chem. Soc. 2011, 133, 13551.
65 Cai Y. ; Ma C. ; Zhu Y. ; Wang J. X. ; Adzic R. R Langmuir 2011, 27, 8540.
66 Gong K. ; Vukmirovic M. B. ; Ma C. ; Zhu Y. ; Adzic R. R J. Electroanal. Chem. 2011, 662, 213.
67 Koenigsmann C. ; Santulli A. C. ; Gong K. ; Vukmirovic M.B. ; Zhou W. P. ; Sutter E. ; Wong S. S. ; Adzic R. R J. Am. Chem. Soc. 2011, 133, 9783.
68 Shao M. H. ; Peles A. ; Odell J J. Phys. Chem. C 2014, 118, 18505.
69 Tian X. L. ; Luo J. M. ; Nan H. X. ; Zou H. B. ; Chen R. ; Shu T. ; Li X. H. ; Li Y.W. ; Song H. Y. ; Liao S. J. ; Adzic R. R J. Am. Chem. Soc. 2016, 138, 1575.
70 Zhou W. P. ; Sasaki K. ; Su D. ; Zhu Y. ; Wang J. X. ; Adzic R R. J. Phys. Chem. C 2010, 114, 8950.
71 Zhang J. ; Sasaki K. ; Sutter E. ; Adzic R. R Science 2007, 315, 220.
72 Sasaki K. ; Naohara H. ; Choi Y. ; Cai Y. ; Chen W. F. ; Liu P. ; Adzic R. R Nat. Commun. 2012, 3, 1115.
73 Adzic R. R Electrocatalysis-Us 2012, 3, 163.
74 Erlebacher J. ; Aziz M. J. ; Karma A. ; Dimitrov N. ; Sieradzki K Nature 2001, 410, 450.
75 Wang D. S. ; Zhao P. ; Li Y. D Sci. Rep. 2011, 1, 37.
76 Gan L. ; Heggen M. ; O'Malley R. ; Theobald B. ; Strasser P Nano Lett. 2013, 13, 1131.
77 Snyder J. ; McCue I. ; Livi K. ; Erlebacher J J. Am. Chem. Soc. 2012, 134, 8633.
78 Strasser P. ; Koh S. ; Anniyev T. ; Greeley J. ; More K. ; Yu C. ; Liu Z. ; Kaya S. ; Nordlund D. ; Ogasawara H. ; Toney M. F. ; Nilsson A Nat. Chem. 2010, 2, 454.
79 Hasché F. ; Oezaslan M. ; Strasser P ChemCatChem 2011, 3, 1805.
80 Skrabalak S. E. ; Xia Y. N ACS Nano 2009, 3, 10.
81 Peng Z. ; Yang H Nano Today 2009, 4, 143.
82 Gan L. ; Heggen M. ; Rudi S. ; Strasser P Nano Lett. 2012, 12, 5423.
83 Wang C. ; Chi M. ; Wang G. ; van der Vliet D. ; Li D. ; More K. ; Wang H. H. ; Schlueter J. A. ; Markovic N. M. ; Stamenkovic V. R Adv. Funct. Mater. 2011, 21, 147.
84 Wang C. ; Chi M. ; Li D. ; Strmcnik D. ; van der Vliet D. ; Wang G. ; Komanicky V. ; Chang K. C. ; Paulikas A. P. ; Tripkovic D. ; Pearson J. ; More K. L. ; Markovic N. M. ; Stamenkovic V. R J. Am. Chem. Soc. 2011, 133, 14396.
85 Gan L. ; Cui C. ; Rudi S. ; Strasser P Top. Catal. 2013, 57, 236.
86 Caldwell K. M. ; Ramaker D. E. ; Jia Q. ; Mukerjee S. ; Ziegelbauer J. M. ; Kukreja R. S. ; Kongkanand A J. Phys. Chem. C 2015, 119, 757.
87 Han B. ; Carlton C. E. ; Kongkanand A. ; Kukreja R. S. ; Theobald B. R. ; Gan L. ; O'Malley R. ; Strasser P. ; Wagner F.T. ; Shao-Horn Y Energy Environ. Sci. 2015, 8, 258.
88 Zhu H. ; Luo M. C. ; Zhang S. ; Wei L. L. ; Wang F. H. ; Wang Z. M. ; Wei Y. S. ; Han K. F Int. J. Hydrog. Energy 2013, 38, 3323.
89 Luo M. C. ; Wei L. L. ; Wang F. H. ; Han K. F. ; Zhu H J. Power Sources 2014, 270, 34.
90 Bae J. H. ; Han J. H. ; Chung T. D Phys. Chem. Chem. Phys. 2012, 14, 448.
91 Chen C. ; Kang Y. ; Huo Z. ; Zhu Z. ; Huang W. ; Xin H. L. ; Snyder J. D. ; Li D. ; Herron J. A. ; Mavrikakis M. ; Chi M. ; More K. L. ; Li Y. ; Markovic N. M. ; Somorjai G. A. ; Yang P. ; Stamenkovic V. R Science 2014, 343, 1339.
92 Becknell N. ; Kang Y. ; Chen C. ; Resasco J. ; Kornienko N. ; Guo J. ; Markovic N. M. ; Somorjai G. A. ; Stamenkovic V.R. ; Yang P J. Am. Chem. Soc. 2015, 137, 15817.
93 Wu Y. ; Wang D. ; Zhou G. ; Yu R. ; Chen C. ; Li Y J. Am. Chem. Soc. 2014, 136, 11594.
94 Jung N. ; Chung Y. H. ; Chung D. Y. ; Choi K. H. ; Park H. Y. ; Ryu J. ; Lee S. Y. ; Kim M. ; Sung Y. E. ; Yoo S. J Phys. Chem. Chem. Phys. 2013, 15, 17079.
95 Du B. ; Zaluzhna O. ; Tong Y. J Phys. Chem. Chem. Phys. 2011, 13, 11568.
96 Atienza D. O. ; Allison T. C. ; Tong Y. J J. Phys. Chem. C 2012, 116, 26480.
97 Chen Y. ; Liang Z. ; Yang F. ; Liu Y. ; Chen S J. Phys. Chem. C 2011, 115, 24073.
98 Long N. V. ; Ohtaki M. ; Hien T. D. ; Randy J. ; Nogami M Electrochim. Acta 2011, 56, 9133.
99 Liu L. ; Samjeske G. ; Nagamatsu S. I. ; Sekizawa O. ; Nagasawa K. ; Takao S. ; Imaizumi Y. ; Yamamoto T. ; Uruga T. ; Iwasawa Y J. Phys. Chem. C 2012, 116, 23453.
100 Zhang G. ; Shao Z. G. ; Lu W. ; Xie F. ; Qin X. ; Yi B Electrochim. Acta 2013, 103, 66.
101 Zhang G. ; Shao Z. G. ; Lu W. ; Xiao H. ; Xie F. ; Qin X. ; Li J. ; Liu F. ; Yi B J. Phys. Chem. C 2013, 117, 13413.
102 Zhang G. ; Shao Z. G. ; Lu W. ; Xie F. ; Xiao H. ; Qin X. ; Yi B Appl. Catal. B: Environ. 2013, 132, 132-133- 183.
103 Alia S. M. ; Jensen K. O. ; Pivovar B. S. ; Yan Y. S ACS Catal. 2012, 2, 858.
104 Zhang H. ; Jin M. ; Wang J. ; Kim M. J. ; Yang D. ; Xia Y J. Am. Chem. Soc. 2011, 133, 10422.
105 Zhang H. ; Jin M. ; Wang J. ; Li W. ; Camargo P. H. ; Kim M.J. ; Yang D. ; Xie Z. ; Xia Y J. Am. Chem. Soc. 2011, 133, 6078.
106 Jiang M. ; Lim B. ; Tao J. ; Camargo P. H. C. ; Ma C. ; Zhu Y. ; Xia Y Nanoscale 2010, 2, 2406.
107 Lim B. ; Wang J. ; Camargo P. H. ; Jiang M. ; Kim M. J. ; Xia Y Nano Lett. 2008, 8, 2535.
108 Zhang L. ; Roling L. T. ; Wang X. ; Vara M. ; Chi M. ; Liu J. ; Choi S. I. ; Park J. ; Herron J. A. ; Xie Z. ; Mavrikakis M. ; Xia Y. N Science 2015, 349, 412.
109 Wang C. ; van der Vliet D. ; More K. L. ; Zaluzec N. J. ; Peng S. ; Sun S. ; Daimon H. ; Wang G. ; Greeley J. ; Pearson J. ; Paulikas A. P. ; Karapetrov G. ; Strmcnik D. ; Markovic N. M. ; Stamenkovic V. R Nano Lett. 2011, 11, 919.
110 Mazumder V. ; Chi M. ; More K. L. ; Sun S. H J. Am. Chem. Soc. 2010, 132, 7848.
111 Mazumder V. ; Chi M. ; More K. L. ; Sun S. H Angew. Chem. Int. Ed. 2010, 49, 9368.
112 Meku E. ; Du C. ; Sun Y. ; Du L. ; Wang Y. ; Yin G J. Electrochem. Soc. 2016, 163, F132.
113 Kumar V. B. ; Sanetuntikul J. ; Ganesan P. ; Porat Z. E. ; Shanmugam S. ; Gedanken A Electrochim. Acta 2016, 190, 659.
114 Cui Z. ; Li L. ; Manthiram A. ; Goodenough J. B J. Am. Chem. Soc. 2015, 137, 7278.
115 Cui Z. ; Chen H. ; Zhou W. ; Zhao M. ; DiSalvo F. J Chem. Mater. 2015, 27, 7538.
116 Chung D. Y. ; Jun S.W. ; Yoon G. ; Kwon S. G. ; Shin D. Y. ; Seo P. ; Yoo J. M. ; Shin H. J. ; Chung Y. H. ; Kim H. ; Mun B.S. ; Lee K. ; Lee N. S% Yoo S. J. ; Lim D. ; Kang K. ; Sung Y. ; Hyeon T J. Am. Chem. Soc. 2015, 137, 15478.
117 Arumugam B. ; Tamaki T. ; Yamaguchi T ACS Appl. Mater. Interfaces 2015, 7, 16311.
118 Wang D. L. ; Xin H. L. ; Hovden R. ; Wang H. ; Yu Y. ; Muller D. A. ; DiSalvo F. J. ; Abru?a H. D Nat. Mater. 2012, 12, 81.
119 Zhang S. ; Zhang X. ; Jiang G. ; Zhu H. ; Guo S. J. ; Su D. ; Lu G. ; Sun S. H J. Am. Chem. Soc. 2014, 136, 7734.
120 Wang G. ; Huang B. ; Xiao L. ; Ren Z. ; Chen H. ; Wang D.L. ; Abruna H. D. ; Lu J. ; Zhuang L J. Am. Chem. Soc. 2014, 136, 9643.
121 Bele M. ; Jovanovic P. ; Pavlisic A. ; Jozinovic B. ; Zorko M. ; Recnik A. ; Chernyshova E. ; Hocevar S. ; Hodnik N. ; Gaberscek M Chem. Commun. 2014, 50, 13124.
122 Hunt S. T. ; Milina M. ; Alba-Rubio A. C. ; Hendon C. H% Dumesic J. A. ; Roman-Leshkov Y Science 2016, 352, 974.
[1] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 361-376.
[2] Hai-Bo SHEN,Hao JIANG,Yi-Si LIU,Jia-Yu HAO,Wen-Zhang LI,Jie LI. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1811-1821.
[3] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[4] Guo-Min LI,Bao-Shun ZHU,Li-Ping LIANG,Yu-Ming TIAN,Bao-Liang LÜ,Lian-Cheng WANG. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1715-1720.
[5] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1429-1435.
[6] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1366-1378.
[7] Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 886-902.
[8] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 283-294.
[9] Qiao-Wan CHANG,Fei XIAO,Yuan XU,Min-Hua SHAO. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 9-17.
[10] Cui-Juan XUAN,Jie WANG,Jing ZHU,De-Li WANG. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 149-164.
[11] YANG Yi, LUO Lai-Ming, DU Juan-Juan, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 834-847.
[12] ZHANG Ling, WANG Hai-Yan, JIANG Zhong-Xiang, WANG Yu-Jia. Synthesis and Catalytic Activity of Core-Shell MFI/CHA Zeolites[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 745-752.
[13] LUO Liu-Xuan, SHEN Shui-Yun, ZHU Feng-Juan, ZHANG Jun-Liang. Formic Acid Oxidation by Pd Monolayers on Pt3Ni Nanocubes[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 337-342.
[14] WANG Jun, LI Li, WEI Zi-Dong. Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 321-328.
[15] ZHANG Jie, DOU Mei-Ling, WANG Feng, LIU Jing-Jun, LI Zhi-Lin, JI Jing, SONG Ye. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1727-1732.