Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2016,Vol.32>> Issue(10)>> 2462-2474     doi: 10.3866/PKU.WHXB201606293         中文摘要
Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells
ZHU Hong, LUO Ming-Chuan, CAI Ye-Zheng, SUN Zhao-Nan
State Key Laboratory of Chemical Resource Engineering, School of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Full text: PDF (17840KB) HTML Export: BibTeX | EndNote (RIS)

Proton exchange membrane fuel cells (PEMFCs) are considered as ideal alternative power devices to traditional internal combustion engines for automobile applications because of their high electric power density, high energy conversion efficiency, and low environmental impact as well as low temperatures for start-up and operation. However, PEMFCs normally require a high loading of the expensive precious metal platinum (Pt) as the electrocatalytic material to maintain desirable energy output. Thus, the development of novel catalysts with lower Pt loading, enhanced activity, and improved durability is vital for the scalable commercialization of PEMFC technology. In this regard, core-shell structure has been demonstrated as an effective strategy to minimize the amount of Pt in PEMFCs because of the following two factors:(1) a core-shell architecture with a Pt-rich shell and M-rich (M represents an earth-abundant element) core can greatly improve the utilization of Pt; (2) the activity and stability of Pt on the surface can be greatly enhanced by strain (geometry) and electronic (alloying) effects caused by the M in the core. First, we briefly discuss the structure-performance relationship of typical core-shell structured electrocatalysts for the oxygen reduction reaction (ORR). Then, we review the development of Pt-based core-shell structured catalysts for the ORR. Finally, a perspective on this research topic is provided.



Keywords: Proton exchange membrane fuel cell   Oxygen reduction reaction   Low-platinum catalyst   Core-shell structure   Electronic/geometric effect  
Received: 2016-05-09 Accepted: 2016-06-27 Publication Date (Web): 2016-06-29
Corresponding Authors: ZHU Hong Email: zhuho128@126.com

Fund: The project was supported by the National Natural Science Foundation of China (21376022) and International S & T Cooperation Program of China (2013DFA51860).

Cite this article: ZHU Hong, LUO Ming-Chuan, CAI Ye-Zheng, SUN Zhao-Nan. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016,32 (10): 2462-2474.    doi: 10.3866/PKU.WHXB201606293

(1) Gates, B. Science 2011, 334, 877. doi: 10.1126/science.1216290
(2) Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115
(3) Larminie, J. Fuel Cell Systems Explained; Science Press:Beijing, 2003; pp 25-53; translated by Zhu, H. [Larminie, J. 可再生能源开发技术. 朱红, 译. 北京: 科学出版社, 2003:25-53.]
(4) Hammer, B.; Norskov, J. K. Nature 1995, 376, 238. doi: 10.1038/378376a0
(5) Mavrikakis, M.; Stoltze, P.; Norskov, J. K. Catal. Lett. 2000, 64, 101. doi: 10.1023/A:1019028229377
(6) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j
(7) Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Norskov, J. K.Angew. Chem. Int. Ed. 2006, 45, 2897. doi: 10.1002/anie.200504386
(8) Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H.Nat. Chem. 2009, 1, 37. doi: 10.1038/NCHEM.121
(9) Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K.ACS Catal. 2012, 2, 1654. doi: 10.1021/cs300227s
(10) Greeley, J.; Stephens, I. E.; Bondarenko, A. S.; Johansson, T.P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Norskov, J. K. Nat. Chem. 2009, 1, 552. doi: 10.1038/NCHEM.367
(11) Zhou, W. P.; Yang, X.; Vukmirovic, M. B.; Koel, B. E.; Jiao, J.; Peng, G.; Mavrikakis, M.; Adzic, R. R. J. Am. Chem. Soc. 2009, 131, 12755. doi: 10.1021/ja9039746
(12) Wang, J. X.; Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W. P.; Adzic, R. R. J. Am. Chem. Soc. 2009, 131, 17298. doi: 10.1021/ja9067645
(13) Shao, M.; Sasaki, K.; Marinkovic, N.; Zhang, L.; Adzic, R.Electrochem. Commun. 2007, 9, 2848. doi: 10.1016/j.elecom.2007.10.009
(14) Zhang, J.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R. J. Am. Chem. Soc. 2005, 127, 12480. doi: 10.1021/ja053695i
(15) Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. J. Phys. Chem. B 2004, 108, 10955. doi: 10.1021/jp0379953
(16) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P.N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941
(17) Chen, S.; Ferreira, P. J.; Sheng, W.; Yabuuchi, N.; Allard, L. F.; Shao-Horn, Y. J. Am. Chem. Soc. 2008, 130, 13818. doi: 10.1021/ja802513y
(18) Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M. Nat. Mater. 2007, 6, 241. doi: 10.1038/nmat1840
(19) Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2006, 128, 8813. doi: 10.1021/ja0600476
(20) Lim, B.; Jiang, M.; Camargo, P. H.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. N. Science 2009, 324, 1302. doi: 10.1126/science.1170377
(21) Harpeness, R.; Gedanken, A. Langmuir 2004, 20, 3431. doi: 10.1021/la035978z
(22) Zhu, H.; Li, X.W.; Wang, F. H. Int. J. Hydrog. Energy 2011, 36, 9151. doi: 10.1016/j.ijhydene.2011.04.224
(23) Dutta, I.; Carpenter, M. K.; Balogh, M. P.; Ziegelbauer, J. M.; Moylan, T. E.; Atwan, M. H.; Irish, N. P. J. Phys. Chem. C Nanomater. Interfaces 2010, 114, 16309. doi: 10.1021/jp106042z
(24) Strasser, P.; Koh, S.; Greeley, J. Phys. Chem. Chem. Phys. 2008, 10, 3670. doi: 10.1039/b803717e
(25) Mani, P.; Srivastava, R.; Strasser, P. J. Phys. Chem. C 2008, 112, 2770. doi: 10.1021/jp0776412
(26) Shviro, M.; Polani, S.; Zitoun, D. Nanoscale 2015, 7, 13521. doi: 10.1039/C5NR03522H
(27) Dubau, L.; Asset, T.; Chattot, R.; Bonnaud, C.; Vanpeene, V.; Nelayah, J.; Maillard, F. ACS Catal. 2015, 5, 5333. doi: 10.1021/acscatal.5b01248
(28) Lee, C. L.; Huang, K. L.; Tsai, Y. L.; Chao, Y. J. Electrochem. Commun. 2013, 34, 282. doi: 10.1016/j.elecom.2013.07.020
(29) Chiwata, M.; Yano, H.; Ogawa, S.; Watanabe, M.; Iiyama, A.; Uchida, H. Electrochemistry 2016, 84, 133. doi: 10.5796/electrochemistry.84.133
(30) Wang, D. Y.; Chou, H. L.; Cheng, C. C.; Wu, Y. H.; Tsai, C.M.; Lin, H. Y.; Wang, Y. L.; Hwang, B. J.; Chen, C. C. Nano Energy 2015, 11, 631. doi: 10.1016/j.nanoen.2014.11.040
(31) Wakabayashi, N.; Takeichi, M.; Uchida, H.; Watanabe, M.J. Phys. Chem. B 2005, 109, 5836. doi: 10.1021/jp046204+
(32) Zhao, T. T.; Lin, R.; Zhang, L.; Cao, C. H.; Ma, J. X. Acta Phys. -Chim. Sin. 2013, 29, 1745. [赵天天, 林瑞, 张路, 曹春晖, 马建新. 物理化学学报, 2013, 29, 1745.] doi: 10.3866/PKU.WHXB201305101
(33) Reyes-Rodríguez, J. L.; Godínez Salomón, F.; Leyva, M. A.; Solorza-Feria, O. Int. J. Hydrog. Energy 2013, 38, 12634. doi: 10.1016/j.ijhydene.2012.12.031
(34) Matin, M. A.; Jang, J. H.; Kwon, Y. U. Int. J. Hydrog. Energy 2014, 39, 3710. doi: 10.1016/j.ijhydene.2013.12.137
(35) Jia, Q.; Liang, W.; Bates, M. K.; Mani, P.; Lee, W.; Mukerjee, S. ACS Nano 2015, 9, 387. doi: 10.1021/nn506721f
(36) Cao, C. H.; Lin, R.; Zhao, T. T.; Huang, Z.; Ma, J. X. Acta Phys. -Chim. Sin. 2013, 29, 95. [曹春晖, 林瑞, 赵天天, 黄真, 马建新. 物理化学学报, 2013, 29, 95.] doi: 10.3866/PKU.WHXB201209272
(37) Li, Z.; He, C.; Cai, M.; Kang, S.; Shen, P. K. Int. J. Hydrog. Energy 2012, 37, 14152. doi: 10.1016/j.ijhydene.2012.07.100
(38) Morris, A. R.; Skoglund, M. D.; Holles, J. H. Appl. Catal. A: Gen. 2015, 489, 98. doi: 10.1016/j.apcata.2014.10.019
(39) Ramos-Sanchez, G.; Praserthdam, S.; Godinez-Salomon, F.; Barker, C.; Moerbe, M.; Calderon, H. A.; Lartundo, L. A.; Leyva, M. A.; Solorza-Feria, O.; Balbuena, P. B. Phys. Chem. Chem. Phys. 2015, 17, 28286. doi: 10.1039/c5cp00503e
(40) An, W.; Liu, P. ACS Catal. 2015, 5, 6328. doi: 10.1021/acscatal.5b01656
(41) Chen, Y.; Shi, J. J. Fuel Cell Sci. Tech. 2014, 12, 021005. doi: 10.1115/1.4028149
(42) Zhang, S.; Hao, Y.; Su, D.; Doan-Nguyen, V. V.; Wu, Y.; Li, J.; Sun, S.; Murray, C. B. J. Am. Chem. Soc. 2014, 136, 15921. doi: 10.1021/ja5099066
(43) Dhavale, V. M.; Kurungot, S. ACS Catal. 2015, 5, 1445. doi: 10.1021/cs501571e
(44) Zhu, C. M.; Gao, A.; Wang, Y.; Liu, Y. Chem. Commun. 2014, 50, 13889. doi: 10.1039/C4CC02391A
(45) Wang, D.; Yu, Y.; Zhu, J.; Liu, S.; Muller, D. A.; Abruna, H. D.Nano Lett. 2015, 15, 1343. doi: 10.1021/nl504597j
(46) Han, L.; Liu, H.; Cui, P.; Peng, Z.; Zhang, S.; Yang, J. Sci. Rep. 2014, 4, 6414. doi: 10.1038/srep06414
(47) Xu, Z.; Zhang, H.; Liu, S.; Zhang, B.; Zhong, H.; Su, D. S. Int. J. Hydrog. Energy 2012, 37, 17978. doi: 10.1016/j.ijhydene.2012.09.050
(48) Xu, C.; Liu, Y.; Wang, J.; Geng, H.; Qiu, H. ACS Appl. Mater. Interfaces 2011, 3, 4626. doi: 10.1021/am201057t
(49) Johansson, T. P.; Ulrikkeholm, E. T.; Hernandez-Fernandez, P.; Escudero-Escribano, M.; Malacrida, P.; Stephens, I. E.; Chorkendorff, I. Phys. Chem. Chem. Phys. 2014, 16, 13718. doi: 10.1039/C4CP00319E
(50) Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velazquez-Palenzuela, A.; Tripkovic, V.; Schiotz, J.; Rossmeisl, J.; Stephens, I. E.; Chorkendorff, I.Science 2016, 352, 73. doi: 10.1126/science.aad8892
(51) Malacrida, P.; Casalongue, H. G.; Masini, F.; Kaya, S.; Hernandez-Fernandez, P.; Deiana, D.; Ogasawara, H.; Stephens, I. E.; Nilsson, A.; Chorkendorff, I. Phys. Chem. Chem. Phys. 2015, 17, 28121. doi: 10.1039/C5CP00283D
(52) Hernandez-Fernandez, P.; Masini, F.; McCarthy, D. N.; Strebel, C. E.; Friebel, D.; Deiana, D.; Malacrida, P.; Nierhoff, A.; Bodin, A.; Wise, A. M.; Nielsen, J. H.; Hansen, T.W.; Nilsson, A.; Stephens, I. E.; Chorkendorff, I. Nat. Chem. 2014, 6, 732. doi: 10.1038/NCHEM.2001
(53) Velázquez-Palenzuela, A.; Masini, F.; Pedersen, A.; Escudero-Escribano, M.; Deiana, D.; Malacrida, P.; Hansen, T.W.; Friebel, D.; Nilsson, A.; Stephens, I. E. L.; Chorkendorff, I. B.J. Catal. 2015, 328, 297. doi: 10.1016/j.jcat.2014.12.012
(54) Escudero-Escribano, M.; Verdaguer Casadevall, A.; Malacrida, P.; Gronbjerg, U.; Knudsen, B. P.; Jepsen, A. K.; Rossmeisl, J.; Stephens, I. E.; Chorkendorff, I. J. Am. Chem. Soc. 2012, 134, 16476. doi: 10.1021/ja306348d
(55) Jia, Q.; Ramaker, D. E.; Ziegelbauer, J. M.; Ramaswamy, N.; Halder, A.; Mukerjee, S. J. Phys. Chem. C 2013, 117, 4585. doi: 10.1021/jp311353u
(56) U.S. Department of Energy. Multi-year Research, Developmentand Demonstration Plan: Planned Program Activities for 2005-2015. 2009.
(57) Adzic, R. R.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Shao, M.; Wang, J. X.; Nilekar, A. U.; Mavrikakis, M.; Valerio, J. A.; Uribe, F. Top. Catal. 2007, 46, 249. doi: 10.1007/s11244-007-9003-x
(58) Brankovic, S. R.; Wang, J. X.; Adzic, R. R. Electrochem. Solid-State Lett. 2001, 4, A217. doi: 10.1149/1.1414943
(59) Zhang, Y.; Ma, C.; Zhu, Y.; Si, R.; Cai, Y.; Wang, J. X.; Adzic, R. R. Catal. Today 2013, 202, 50. doi: 10.1016/j.cattod.2012.03.040
(60) Kuttiyiel, K. A.; Sasaki, K.; Choi, Y.; Su, D.; Liu, P.; Adzic, R.R. Energy Environ. Sci. 2012, 5, 5297. doi: 10.1039/C1EE02067F
(61) Gong, K.; Su, D.; Adzic, R. R. J. Am. Chem. Soc. 2010, 132, 14364. doi: 10.1021/ja1063873
(62) Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angew. Chem. Int. Ed. 2005, 44, 2132. doi: 10.1002/anie.200462335
(63) Shao, M. H.; He, G.; Peles, A.; Odell, J. H.; Zeng, J.; Su, D.; Tao, J.; Yu, T.; Zhu, Y.; Xia, Y. N. Chem. Commun. 2013, 49, 9030. doi: 10.1039/C3CC43276A
(64) Wang, J. X.; Ma, C.; Choi, Y.; Su, D.; Zhu, Y.; Liu, P.; Si, R.; Vukmirovic, M. B.; Zhang, Y.; Adzic, R. R. J. Am. Chem. Soc. 2011, 133, 13551. doi: 10.1021/ja204518x
(65) Cai, Y.; Ma, C.; Zhu, Y.; Wang, J. X.; Adzic, R. R. Langmuir 2011, 27, 8540. doi: 10.1021/la200753z
(66) Gong, K.; Vukmirovic, M. B.; Ma, C.; Zhu, Y.; Adzic, R. R.J. Electroanal. Chem. 2011, 662, 213. doi: 10.1016/j.jelechem.2011.07.008
(67) Koenigsmann, C.; Santulli, A. C.; Gong, K.; Vukmirovic, M.B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. J. Am. Chem. Soc. 2011, 133, 9783. doi: 10.1021/ja111130t
(68) Shao, M. H.; Peles, A.; Odell, J. J. Phys. Chem. C 2014, 118, 18505. doi: 10.1021/jp503296s
(69) Tian, X. L.; Luo, J. M.; Nan, H. X.; Zou, H. B.; Chen, R.; Shu, T.; Li, X. H.; Li, Y.W.; Song, H. Y.; Liao, S. J.; Adzic, R. R.J. Am. Chem. Soc. 2016, 138, 1575. doi: 10.1021/jacs.5b11364
(70) Zhou, W. P.; Sasaki, K.; Su, D.; Zhu, Y.; Wang, J. X.; Adzic, R.R. J. Phys. Chem. C 2010, 114, 8950. doi: 10.1021/jp100283p
(71) Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Science 2007, 315, 220. doi: 10.1126/science.1134569
(72) Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W. F.; Liu, P.; Adzic, R. R. Nat. Commun. 2012, 3, 1115. doi: 10.1038/ncomms2124
(73) Adzic, R. R. Electrocatalysis-Us 2012, 3, 163. doi: 10.1007/s12678-012-0112-3
(74) Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Nature 2001, 410, 450. doi: 10.1038/35068529
(75) Wang, D. S.; Zhao, P.; Li, Y. D. Sci. Rep. 2011, 1, 37. doi: 10.1038/srep00037
(76) Gan, L.; Heggen, M.; O'Malley, R.; Theobald, B.; Strasser, P.Nano Lett. 2013, 13, 1131. doi: 10.1021/nl304488q
(77) Snyder, J.; McCue, I.; Livi, K.; Erlebacher, J. J. Am. Chem. Soc. 2012, 134, 8633. doi: 10.1021/ja3019498
(78) Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; Toney, M. F.; Nilsson, A. Nat. Chem. 2010, 2, 454. doi: 10.1038/nchem.623
(79) Hasché, F.; Oezaslan, M.; Strasser, P. ChemCatChem 2011, 3, 1805. doi: 10.1002/cctc.201100169
(80) Skrabalak, S. E.; Xia, Y. N. ACS Nano 2009, 3, 10. doi: 10.1021/nn800875p
(81) Peng, Z.; Yang, H. Nano Today 2009, 4, 143. doi: 10.1016/j.nantod.2008.10.010
(82) Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Nano Lett. 2012, 12, 5423. doi: 10.1021/nl302995z
(83) Wang, C.; Chi, M.; Wang, G.; van der Vliet, D.; Li, D.; More, K.; Wang, H. H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Adv. Funct. Mater. 2011, 21, 147. doi: 10.1002/adfm.201001138
(84) Wang, C.; Chi, M.; Li, D.; Strmcnik, D.; van der Vliet, D.; Wang, G.; Komanicky, V.; Chang, K. C.; Paulikas, A. P.; Tripkovic, D.; Pearson, J.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R. J. Am. Chem. Soc. 2011, 133, 14396. doi: 10.1021/ja2047655
(85) Gan, L.; Cui, C.; Rudi, S.; Strasser, P. Top. Catal. 2013, 57, 236. doi: 10.1007/s11244-013-0178-z
(86) Caldwell, K. M.; Ramaker, D. E.; Jia, Q.; Mukerjee, S.; Ziegelbauer, J. M.; Kukreja, R. S.; Kongkanand, A. J. Phys. Chem. C 2015, 119, 757. doi: 10.1021/jp5098553
(87) Han, B.; Carlton, C. E.; Kongkanand, A.; Kukreja, R. S.; Theobald, B. R.; Gan, L.; O'Malley, R.; Strasser, P.; Wagner, F.T.; Shao-Horn, Y. Energy Environ. Sci. 2015, 8, 258. doi: 10.1039/c4ee02144d
(88) Zhu, H.; Luo, M. C.; Zhang, S.; Wei, L. L.; Wang, F. H.; Wang, Z. M.; Wei, Y. S.; Han, K. F. Int. J. Hydrog. Energy 2013, 38, 3323. doi: 10.1016/j.ijhydene.2012.12.127
(89) Luo, M. C.; Wei, L. L.; Wang, F. H.; Han, K. F.; Zhu, H.J. Power Sources 2014, 270, 34. doi: 10.1016/j.jpowsour.2014.07.102
(90) Bae, J. H.; Han, J. H.; Chung, T. D. Phys. Chem. Chem. Phys. 2012, 14, 448. doi: 10.1039/c1cp22927c
(91) Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y.; Markovic, N. M.; Somorjai, G. A.; Yang, P.; Stamenkovic, V. R. Science 2014, 343, 1339. doi: 10.1126/science.1249061
(92) Becknell, N.; Kang, Y.; Chen, C.; Resasco, J.; Kornienko, N.; Guo, J.; Markovic, N. M.; Somorjai, G. A.; Stamenkovic, V.R.; Yang, P. J. Am. Chem. Soc. 2015, 137, 15817. doi: 10.1021/jacs.5b09639
(93) Wu, Y.; Wang, D.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. J. Am. Chem. Soc. 2014, 136, 11594. doi: 10.1021/ja5058532
(94) Jung, N.; Chung, Y. H.; Chung, D. Y.; Choi, K. H.; Park, H. Y.; Ryu, J.; Lee, S. Y.; Kim, M.; Sung, Y. E.; Yoo, S. J. Phys. Chem. Chem. Phys. 2013, 15, 17079. doi: 10.1039/c3cp52807c
(95) Du, B.; Zaluzhna, O.; Tong, Y. J. Phys. Chem. Chem. Phys. 2011, 13, 11568. doi: 10.1039/c1cp20761j
(96) Atienza, D. O.; Allison, T. C.; Tong, Y. J. J. Phys. Chem. C 2012, 116, 26480. doi: 10.1021/jp310313k
(97) Chen, Y.; Liang, Z.; Yang, F.; Liu, Y.; Chen, S. J. Phys. Chem. C 2011, 115, 24073. doi: 10.1021/jp207828n
(98) Long, N. V.; Ohtaki, M.; Hien, T. D.; Randy, J.; Nogami, M.Electrochim. Acta 2011, 56, 9133. doi: 10.1016/j.electacta.2011.07.090
(99) Liu, L.; Samjeske, G.; Nagamatsu, S. I.; Sekizawa, O.; Nagasawa, K.; Takao, S.; Imaizumi, Y.; Yamamoto, T.; Uruga, T.; Iwasawa, Y. J. Phys. Chem. C 2012, 116, 23453. doi: 10.1021/jp308021a
(100) Zhang, G.; Shao, Z. G.; Lu, W.; Xie, F.; Qin, X.; Yi, B.Electrochim. Acta 2013, 103, 66. doi: 10.1016/j.electacta.2013.04.045
(101) Zhang, G.; Shao, Z. G.; Lu, W.; Xiao, H.; Xie, F.; Qin, X.; Li, J.; Liu, F.; Yi, B. J. Phys. Chem. C 2013, 117, 13413. doi: 10.1021/jp401375b
(102) Zhang, G.; Shao, Z. G.; Lu, W.; Xie, F.; Xiao, H.; Qin, X.; Yi, B. Appl. Catal. B: Environ. 2013, 132-133, 183. doi: 10.1016/j.apcatb.2012.11.029
(103) Alia, S. M.; Jensen, K. O.; Pivovar, B. S.; Yan, Y. S. ACS Catal. 2012, 2, 858. doi: 10.1021/cs200682c
(104) Zhang, H.; Jin, M.; Wang, J.; Kim, M. J.; Yang, D.; Xia, Y.J. Am. Chem. Soc. 2011, 133, 10422. doi: 10.1021/ja204447k
(105) Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H.; Kim, M.J.; Yang, D.; Xie, Z.; Xia, Y. J. Am. Chem. Soc. 2011, 133, 6078. doi: 10.1021/ja201156s
(106) Jiang, M.; Lim, B.; Tao, J.; Camargo, P. H. C.; Ma, C.; Zhu, Y.; Xia, Y. Nanoscale 2010, 2, 2406. doi: 10.1039/c0nr00324g
(107) Lim, B.; Wang, J.; Camargo, P. H.; Jiang, M.; Kim, M. J.; Xia, Y. Nano Lett. 2008, 8, 2535. doi: 10.1021/nl8016434
(108) Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z.; Mavrikakis, M.; Xia, Y. N. Science 2015, 349, 412. doi: 10.1126/science.aab0801
(109) Wang, C.; van der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S.; Daimon, H.; Wang, G.; Greeley, J.; Pearson, J.; Paulikas, A. P.; Karapetrov, G.; Strmcnik, D.; Markovic, N. M.; Stamenkovic, V. R. Nano Lett. 2011, 11, 919. doi: 10.1021/nl102369k
(110) Mazumder, V.; Chi, M.; More, K. L.; Sun, S. H. J. Am. Chem. Soc. 2010, 132, 7848. doi: 10.1021/ja1024436
(111) Mazumder, V.; Chi, M.; More, K. L.; Sun, S. H. Angew. Chem. Int. Ed. 2010, 49, 9368. doi: 10.1002/anie.201003903
(112) Meku, E.; Du, C.; Sun, Y.; Du, L.; Wang, Y.; Yin, G.J. Electrochem. Soc. 2016, 163, F132. doi: 10.1149/2.0031603jes
(113) Kumar, V. B.; Sanetuntikul, J.; Ganesan, P.; Porat, Z. E.; Shanmugam, S.; Gedanken, A. Electrochim. Acta 2016, 190, 659. doi: 10.1016/j.electacta.2015.12.193
(114) Cui, Z.; Li, L.; Manthiram, A.; Goodenough, J. B. J. Am. Chem. Soc. 2015, 137, 7278. doi: 10.1021/jacs.5b03865
(115) Cui, Z.; Chen, H.; Zhou, W.; Zhao, M.; DiSalvo, F. J. Chem. Mater. 2015, 27, 7538. doi: 10.1021/acs.chemmater.5b03912
(116) Chung, D. Y.; Jun, S.W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H. J.; Chung, Y. H.; Kim, H.; Mun, B.S.; Lee, K.; Lee N. S.; Yoo, S. J.; Lim, D.; Kang, K.; Sung, Y.; Hyeon, T. J. Am. Chem. Soc. 2015, 137, 15478. doi: 10.1021/jacs.5b09653
(117) Arumugam, B.; Tamaki, T.; Yamaguchi, T. ACS Appl. Mater. Interfaces 2015, 7, 16311. doi: 10.1021/acsami.5b03137
(118) Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Nat. Mater. 2012, 12, 81. doi: 10.1038/nmat3458
(119) Zhang, S.; Zhang, X.; Jiang, G.; Zhu, H.; Guo, S. J.; Su, D.; Lu, G.; Sun, S. H. J. Am. Chem. Soc. 2014, 136, 7734. doi: 10.1021/ja5030172
(120) Wang, G.; Huang, B.; Xiao, L.; Ren, Z.; Chen, H.; Wang, D.L.; Abruna, H. D.; Lu, J.; Zhuang, L. J. Am. Chem. Soc. 2014, 136, 9643. doi: 10.1021/ja503315s
(121) Bele, M.; Jovanovic, P.; Pavlisic, A.; Jozinovic, B.; Zorko, M.; Recnik, A.; Chernyshova, E.; Hocevar, S.; Hodnik, N.; Gaberscek, M. Chem. Commun. 2014, 50, 13124. doi: 10.1039/C4CC05637J
(122) Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon C. H.; Dumesic, J. A.; Roman-Leshkov, Y. Science 2016, 352, 974. doi: 10.1126/science.aad8471

1. TIAN Chun-Xia, YANG Jun-Shuai, LI Li, ZHANG Xiao-Hua, CHEN Jin-Hua.New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. -Chim. Sin., 2016,32(6): 1473-1481
2. MENG You-Quan, WANG Chao, ZHANG Qing-Lei, SHEN Shui-Yun, ZHU Feng-Juan, YANG Hong, ZHANG Jun-Liang.The Effects of Cathode Platinum Loading and Operating Backpressure on PEMFC Performance[J]. Acta Phys. -Chim. Sin., 2016,32(6): 1460-1466
3. YANG Yi, LUO Lai-Ming, DU Juan-Juan, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen.Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016,32(4): 834-847
4. ZHANG Ling, WANG Hai-Yan, JIANG Zhong-Xiang, WANG Yu-Jia.Synthesis and Catalytic Activity of Core-Shell MFI/CHA Zeolites[J]. Acta Phys. -Chim. Sin., 2016,32(3): 745-752
5. LUO Liu-Xuan, SHEN Shui-Yun, ZHU Feng-Juan, ZHANG Jun-Liang.Formic Acid Oxidation by Pd Monolayers on Pt3Ni Nanocubes[J]. Acta Phys. -Chim. Sin., 2016,32(1): 337-342
6. WANG Jun, LI Li, WEI Zi-Dong.Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene[J]. Acta Phys. -Chim. Sin., 2016,32(1): 321-328
7. HAYIERBIEK Kulisong, ZHAO Shu-Xian, YANG Yang, ZENG Han.Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Phys. -Chim. Sin., 2015,31(9): 1715-1726
8. SHANG Ming-Feng, DUAN Pei-Quan, ZHAO Tian-Tian, TANG Wen-Chao, LIN Rui, HUANG Yu-Ying, WANG Jian-Qiang.In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell[J]. Acta Phys. -Chim. Sin., 2015,31(8): 1609-1614
9. XU Ke, CHENG Yi, SUN Bo, PEI Yan, YAN Shi-Run, QIAO Ming-Hua, ZHANG Xiao-Xin, ZONG Bao-Ning.Fischer-Tropsch Synthesis over Skeletal Co@HZSM-5 Core-Shell Catalysts[J]. Acta Phys. -Chim. Sin., 2015,31(6): 1137-1144
10. QIAN Yang, XU Jiang.Properties of Zr Nanocrystalline Coating on Ti Alloy Bipolar Plates in Simulated PEMFC Environments[J]. Acta Phys. -Chim. Sin., 2015,31(2): 291-301
11. YANG Mei-Ni, LIN Rui, FAN Ren-Jie, ZHAO Tian-Tian, ZENG Hao.Preparation and Application of Pt-Ni Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells[J]. Acta Phys. -Chim. Sin., 2015,31(11): 2131-2138
12. PENG San, GUO Hui-Lin, KANG Xiao-Feng.Preparation of Nitrogen-Doped Graphene and Its Electrocatalytic Activity for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2014,30(9): 1778-1786
13. FAN Ren-Jie, LIN Rui, HUANG Zhen, ZHAO Tian-Tian, MA Jian-Xin.Preparation and Characterization of Pt Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells[J]. Acta Phys. -Chim. Sin., 2014,30(7): 1259-1266
14. CHEN Hui, CHEN Dan, XIE Wei-Miao, ZHENG Xiang, LI Guo-Hua.Preparation and Electrocatalytic Activity of Tungsten Carbide and Tungsten-Iron Carbide Composite with Core-Shell Structure[J]. Acta Phys. -Chim. Sin., 2014,30(5): 891-898
15. XU Li, PAN Guo-Shun, LIANG Xiao-Lu, LUO Gui-Hai, ZOU Chun-Li, LUO Hai-Mei.Electrocatalytic Activity of Fe-N/C-TsOH Catalyst for the Oxygen Reduction Reaction in Alkaline Media[J]. Acta Phys. -Chim. Sin., 2014,30(2): 318-324
16. LI Jing-Jing, LI Yuan, WANG Ai-Ling, QU Yan-Rong, YUE Bin, ZHOU Dan, CHU Hai-Bin, ZHAO Yong-Liang.Surface Plasmon Resonance Enhanced Luminescence of Europium Complexes with Ag@SiO2 Core-Shell Structure[J]. Acta Phys. -Chim. Sin., 2014,30(12): 2328-2334
17. HAN Shuai-Yuan, YUE Bao-Hua, YAN Liu-Ming.Research Progress in the Development of High-Temperature Proton Exchange Membranes Based on Phosphonic Acid Group[J]. Acta Phys. -Chim. Sin., 2014,30(1): 8-21
18. ZHAO Tian-Tian, LIN Rui, ZHANG Lu, CAO Chui-Hui, MA Jian-Xin.Effects of Pt Content on the Catalytic Performance of Co@Pt/C Core-Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2013,29(08): 1745-1752
19. DAI Xian-Feng, ZHEN Ming-Fu, XU Pan, SHI Jing-Jing, MA Cheng-Yu, QIAO Jin-Li.Electrochemical Behavior of Pyridine-Doped Carbon-Supported Co-Phthalocyanine (Py-CoPc/C) for Oxygen Reduction Reaction and Its Application to Fuel Cell[J]. Acta Phys. -Chim. Sin., 2013,29(08): 1753-1761
20. ZHANG Xiao-Hua, ZHONG Jin-Di, YU Ya-Ming, ZHANG Yun-Song, LIU Bo, CHEN Jin-Hua.Well-Dispersed Platinum Nanoparticles Supported on Nitrogen-Doped Hollow Carbon Microspheres for Oxygen-Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2013,29(06): 1297-1304
21. LI Shang, WANG Jia-Tang, CHEN Rui-Xin, ZHAO Wei, QIAN Liu, PAN Mu.Catalytic Performance of Heat-Treated Fe-Melamine/C and Fe-g-C3N4/C Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2013,29(04): 792-798
22. CHEN Qiu-Xiang, ZHANG Jie-Jing, WANG Yu-Xin.Micro-Modelling of PEMFC Taking Account of Gaseous and Liquid Water inside the Catalyst Layer[J]. Acta Phys. -Chim. Sin., 2013,29(03): 559-568
23. CAO Chun-Hui, LIN Rui, ZHAO Tian-Tian, HUANG Zhen, MA Jian-Xin.Preparation and Characterization of Core-Shell Co@Pt/C Catalysts for Fuel Cell[J]. Acta Phys. -Chim. Sin., 2013,29(01): 95-101
24. WANG Wan-Li, MA Zi-Feng.Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2012,28(12): 2879-2884
25. LI Guo-Hua, CHEN Dan, ZHENG Xiang, XIE Wei-Miao, CHENG Yuan.Preparation and Electrocatalytic Activity of WC/W2C Nanocomposite with Core-Shell Structure[J]. Acta Phys. -Chim. Sin., 2012,28(09): 2077-2083
26. LI Qiang, ZHAO Hui, JIANG Rui, GUO Li-Fan.Synthesis and Electrochemical Properties of La1.6Sr0.4Ni1-xCuxO4 as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells[J]. Acta Phys. -Chim. Sin., 2012,28(09): 2065-2070
27. YIN Shi-Bin, LUO Lin, JING Sheng-Yu, ZHU Qiang-Qiang, QIANG Ying-Huai.Effect of Intermittent Microwave Heating on the Performance of Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2012,28(01): 85-89
28. HU Xian-Chao, CHEN Dan, SHI Bin-Bin, LI Guo-Hua.Preparation of Tungsten Carbide and Titania Nanocomposite and Its Electrocatalytic Activity for Methanol[J]. Acta Phys. -Chim. Sin., 2011,27(12): 2863-2871
29. DANG Dai, GAO Hai-Li, PENG Liang-Jin, SU Yun-Lan, LIAO Shi-Jun, WANG Ye.Preparation of High Performance Core-Shell PdRu@Pt/CNT Electrocatalyst[J]. Acta Phys. -Chim. Sin., 2011,27(10): 2379-2384
30. XU Li, QIAO Jin-Li, DING Lei, HU Long-Yu, LIU Ling-Ling, WANG Hai-Jiang.Electrocatalytic Activity of CoPy/C Catalyst for the Oxygen Reduction Reaction in Alkaline Electrolyte[J]. Acta Phys. -Chim. Sin., 2011,27(10): 2251-2254
31. WANG Jian-Tao, ZHANG Xiao-Hong, WANG Hui, OU Xue-Mei.Super-Hydrophobic Silicon/Silica Hierarchical Structure Film[J]. Acta Phys. -Chim. Sin., 2011,27(09): 2233-2238
32. ZHANG Min, LI Jing-Jian, PAN Mu, XU Dong-Sheng.Catalytic Performance of Pt Nanowire Arrays for Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2011,27(07): 1685-1688
33. WANG Xi-Zhao, ZHENG Jun-Sheng, FU Rong, MA Jian-Xin.Pulse-Microwave Assisted Chemical Reduction Synthesis of Pt/C Catalyst and Its Electrocatalytic Oxygen Reduction Activity[J]. Acta Phys. -Chim. Sin., 2011,27(01): 85-90
34. ZHANG Dong-Feng, NIU Li-Ya, GUO Lin.Solution Synthesis Strategies for Hierarchical Nanostructures[J]. Acta Phys. -Chim. Sin., 2010,26(11): 2865-2876
35. SUN Dun, HE Jian-Ping, ZHOU Jian-Hua, WANG Tao, DI Zhi-Yong, DING Xiao-Chun.Galvanic Replacement Strategy for a Core-Shell Like Ni-Pt Electrocatalyst with High Pt Utilization[J]. Acta Phys. -Chim. Sin., 2010,26(05): 1219-1224
36. LIANG Peng, XU Hong-Feng, LIU Ming, LU Lu, FU Jie.Electrochemical Performance Testing and Characterization of Silver-Plated and Graphite-Coated 316L Stainless Steel Bipolar Plates[J]. Acta Phys. -Chim. Sin., 2010,26(03): 595-600
37. LV Yong, LU Wen-Cong, ZHANG Liang-Miao, YUE Bao-Hua, SHANG Xing-Fu, NI Ji-Peng.Synthesis, Characterization and Growth Mechanism of Core/Shell AlOOH Microspheres[J]. Acta Phys. -Chim. Sin., 2009,25(07): 1391-1396
38. ZHENG Gen-Wen, GONG Chun-Li, WEN Sheng, ZHOU Huan-Bo, XIE Xiao-Lin.Preparation and Properties of Sulfonated Poly(ether sulfone)/Boron Phosphate Composite Proton Exchange Membranes[J]. Acta Phys. -Chim. Sin., 2009,25(03): 575-582
39. ZHANG Xiao-Di; LI Wei-Shan; HUANG You-Ju; PENG Hai-Yan.Promotion of Oxygen Reduction Reaction on Vitreous Carbon Electrode by DTAB[J]. Acta Phys. -Chim. Sin., 2008,24(04): 691-694
40. TIAN Juan;ZHENG Dan;ZHANG Xi-Gui;ZHANG Bao-Hong;XIA Bao-Jia;YANG Hui.Preparation of Pt Nanoparticle Modified Porous Silicon Electrode and Its Electrocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2007,23(01): 68-72
41. HUANG Jian-Shu;ZHANG Xiao-Gang.Microwave Synthesis of Pt-Au/MWCNTs Electrocatalyst and Its Catalytic Properties for Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2006,22(12): 1551-1554
42. ZHAO Feng-Ming;MA Chun-An;CHU You-Qun;XU Ying-Hua.Oxygen Reduction on Ni-MnO2 Electrode in Alkaline Solution[J]. Acta Phys. -Chim. Sin., 2006,22(06): 716-720
43. LI Li;WU Gang;YE Qing;DENG Wei;XU Bo-Qing.Electrochemical Modification of Pt/C Catalyst by Silicomolybdic Acid[J]. Acta Phys. -Chim. Sin., 2006,22(04): 419-423
44. LI Li; XU Bo-qing.Electrooxidation of CO Adsorbed on PtMo/C Catalyst:Effect of Catalyst Preparation[J]. Acta Phys. -Chim. Sin., 2005,21(10): 1132-1137
45. Chu You-Qun;Ma Chun-An;Zhu Ying-Hong.Electrocatalytic Reduction of Oxygen on Carbon Nanotubes Electrode[J]. Acta Phys. -Chim. Sin., 2004,20(03): 331-335
46. Duan Chun-Ying;Zhou Jing-Fang;Wu Zhi-Shen;Dang Hong-Xin.Preparation and Characterization of the Polystyrene/silver Core-shell Structure Nanospheres[J]. Acta Phys. -Chim. Sin., 2003,19(11): 1049-1053
47. Li Xu-Guang;Han Fei;Xing Wei;Tang Ya-Wen;Lu Tian-Hong.Influence of Methanol on the Kinetics of Oxygen Reduction on Pt/C and CoPcTc/C[J]. Acta Phys. -Chim. Sin., 2003,19(04): 380-384
48. Li Li;Wang Heng-Xiu;Xu Bo-Qing;Li Jin-Lu;Xing Wei;Mao Zong-Qiang.Studies on PEMFC Electrocatalysts: Physicochemical Characterization of Homemade Pt/C Electrocatalyst[J]. Acta Phys. -Chim. Sin., 2003,19(04): 342-346
49. Kuang Han-Mao;Deng Zhao-Xiang;Li Chun-Hui;Sun Xiao-Ming;Zhuang Jing;Li Ya-Dong.Synthesis and Photoluminescent Properties of CdS/SiO2 Nanorod[J]. Acta Phys. -Chim. Sin., 2002,18(05): 477-480
50. XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li.Recent Progress of Metal Organic Frameworks Based NanoMaterials for Electrocatalysis[J]. Acta Phys. -Chim. Sin., 0,(): 0-0
51. CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua.Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 0,(): 0-0
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top