Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (10): 2563-2573    DOI: 10.3866/PKU.WHXB201607122
ARTICLE     
Ultrasonic-Assisted Synthesis of a Superabsorbent Composite Hydrogel for the Responsive and Removal Properties of Pb(Ⅱ)
Yin WANG*(),Yang XIONG,Feng-Ling SUN,Yi-Qiong YANG,Xiao-Dong ZHANG*()
Download: HTML     PDF(2565KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A new kind of cellulose-lignin composite hydrogel (UCHy) was prepared under ultrasonic irradiation using cellulose and lignin as raw materials. The resulting material was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) analysis. The swelling properties of UCHy were also investigated at a variety of different Pb(Ⅱ) concentrations, whilst its adsorption capacity was studied as a function of pH, reaction time, temperature, and concentration of the Pb (Ⅱ) solution under ambient conditions. The results showed that cellulose and lignin were beneficial to the formation of a denser structure, and that the ultrasonic treatment promoted the formation of the continuous pore microstructure of the hydrogel, resulting in a high swelling ratio and pollutant adsorption capacity. The swelling kinetics indicated that the initial solution intake of the composite hydrogel followed a non-Fickian type diffusion, and that the whole swelling process was fit for the Schott's model well. The adsorption capacity of Pb(Ⅱ) increased as the pH of the solution increased, and decreases with increasing temperature. The adsorption isotherm data followed the Langmuir and Freundlich models, with an optimum adsorption value of 786.16 mg·g-1. The adsorption rate closely followed a pseudo-second order model. As a result, UCHy showed good responsive and adsorption properties towards heavy metal ions, and therefore represents a promising material for the detection and removal of heavy metal ions from aqueous solutions.



Key wordsComposite hydrogel      Ultrasonic-assisted      Pb(Ⅱ)      Adsorption      Heavy metal-responsive     
Received: 31 May 2016      Published: 12 July 2016
MSC2000:  O647  
Fund:  the Shanghai Sailing Program, China(16YF1408100,14YF1409900);National Natural Science Foundation of China(21507086)
Corresponding Authors: Yin WANG,Xiao-Dong ZHANG     E-mail: 625xiaogui@163.com;fatzhxd@126.com
Cite this article:

Yin WANG,Yang XIONG,Feng-Ling SUN,Yi-Qiong YANG,Xiao-Dong ZHANG. Ultrasonic-Assisted Synthesis of a Superabsorbent Composite Hydrogel for the Responsive and Removal Properties of Pb(Ⅱ). Acta Physico-Chimica Sinca, 2016, 32(10): 2563-2573.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201607122     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2563

Fig 1  Scanning electron micrographs of the hydrogels (a) Hy,(b) CHy,(c) UCHy
Fig 2  FT-IR spectra of the hydrogels
Fig 3  XRD patterns of the hydrogels
Fig 4  Curve of swelling ratio variation with time of the hydrogels SRt: swelling ratio at time t
SRexp/(g?g-1)Intial sewlling kinetic parametersSchott′s sewlling kinetic parameters
nK/(g?g-1?s-1)R2SRcal/(g?g-1)Kis/(g?g-1?s-1)R2
Hy13.570.5763.951 × 10-40.996414.710.1380.9990
CHy29.900.6237.813 × 10-40.997531.750.4420.9976
UCHy48.220.5291.316 × 10-30.996349.911.1050.9989
Table 1  Swelling kinetic parameters for the hydrogels
Fig 5  Curves of swelling ratio variation with Pb(Ⅱ) concentration of the hydrogels SR: equilibrium swelling ratio
Fig 6  Effect of pH on the removal of Pb(Ⅱ) on the hydrogels
Fig 7  Adsorption isotherms of Pb(Ⅱ) onto the hydrogels
Adsorbent T/℃ Langmuir model Freundlich model
qm(mg.gl) 103b/(L.mg1) R2 Kf/(mg.gl) n R2
Hy 15 232.88 5.731 0.9950 1.666 1.095 0.9993
15 187.83 5.103 0.9973 1.291 1.083 0.9993
15 106.47 4.812 0.9932 0.894 1.081 0.9993
CHy 25 749.06 6.721 0.9923 4.555 1.120 0.9994
25 637.35 6.420 0.9972 3.690 1.107 0.9993
25 515.10 5.173 0.9934 2.727 1.092 0.9996
UCHy 35 831.26 10.90 0.9937 8.110 1.202 0.9987
35 786.16 8.731 0.9992 6.448 1.162 0.9983
35 663.13 7.752 0.9969 5.005 1.143 0.9987
Table 2  Langmuir and Freundlich isotherm parameters for adsorption of Pb(Ⅱ) onto the hydrogels at different temperatures
Adsorbent Adsorption capacity/(mg ? g1) Optimum pH T/℃ Ref.
chitosan/poly (acrylic acid) 294.1 4.0 25 38
linear low-density polyethylene-g-poly (acrylic acid)-co 430.0 4.5 27 39
starch/organo-montmorillonite
PVA/gelatin hydrogel 211.9 3.0 35 40
carboxylated cellulose nanofibrils-filled magnetic 171.0 4.5 25 29
chitosan hydrogel
hydrolyzed polyacrylamide-chitosan beads 353.1 4.2 35 41
Hy 187.8 4.0 25 present study
CHy 637.3 4.0 25 present study
UCHy 786.2 4.0 25 present study
Table 3  Comparison of the maximum adsorption of Pb(Ⅱ) onto various hydrogels
Fig 8  Adsorption kinetics of Pb(Ⅱ) onto the hydrogels
Adsorbentqe,expPseudo-first-orderPseudo-second-orderR2
(mg?g-1)qe/(mg?g-1)103k1/min-1R2qe/(mg?g-1)103k2/(g?mg-1?min-1)h/(mg?g-1?min-1)
Hy25.8616.247.0470.936826.281.1890.8220.9996
CHy38.9618.291.0970.958639.321.9493.1920.9998
UCHy43.6618.241.3920.932043.942.5524.9270.9999
Table 4  Pseudo-first-order and pseudo-second-order kinetic parameters of Pb(Ⅱ) adsorption onto the hydrogels
Fig 9  Intraparticle diffusion kinetics for adsorption of Pb(Ⅱ) onto the hydrogels
AdsorbentIntraparticle diffusion model
kp1/(mg?g-1?h-1/2)kp2/(mg?g-1?h-1/2)kp3/(mg?g-1?h-1/2)C1C2C3(R1)2(R2)2(R3)2
Hy2.1860.6380.023-1.07613.23924.6620.99030.88250.7479
CHy3.4770.3150.0155.96435.01641.0040.97430.86300.7754
UCHy3.8070.2790.0127.49038.46543.1050.96430.83800.7926
Table 5  Intraparticle diffusion model constants and correlation coefficients for adsorption of Pb(Ⅱ) onto the hydrogels
AdsorbentT/KΔG0/(kJ?mol-1)ΔH0/(kJ?mol-1)ΔS0/(J?mol-1?K-1)
Hy288-16.939-6.35636.689
298-17.252
308-17.676
CHy288-17.327-18.790-209.912
298-17.815
308-17.831
UCHy288-18.492-14.436-203.550
298-18.575
308-18.886
Table 6  Values of thermodynamic parameters for adsorption of Pb(Ⅱ) onto the hydrogels
1 Arienzo M. ; Masuccio A. A. ; Ferrara L Arch. Environ. Con. Tox 2013, 65, 396.
2 He J. ; Chen J. P Bioresour. Technol 2014, 160, 67.
3 Kim N. ; Park M. ; Park D Bioresour. Technol 2015, 175, 629.
4 Wang H. ; Gao B. ; Wang S. ; Fang J. ; Xue Y. ; Yang K Bioresour. Technol 2015, 197, 356.
5 Hodgson E. ; Lewys-James A. ; Ravella S. R. ; Thomas-Jones S. ; Perkins W. ; Gallagher J Bioresource. Technol. 2016, 214, 547.
6 Xu X. ; Gao B. Y. ; Tang X. ; Yue X. T. ; Zhong Q. Q. ; Li Q J. Hazard. Mater. 2011, 189, 420.
7 Wang Y. ; Sun F. L. ; Zhang X. D. ; Tao H. ; Yang Y. Q Acta Phys. -Chim. Sin 2016, 32, 753.
7 王吟; 孙凤玲; 张晓东; 陶红杨一琼. 物理化学学报, 2016, 32, 753.
8 Zhao K. Y. ; Chen T. ; Lin B. B. ; Cui W. K. ; Kan B. H. ; Yang N. ; Zhou X. Y. ; Zhang X. X. ; Wei J. F React. Funct. Polym 2015, 87, 7.
9 Li Y. J. ; Sin X. F. ; Ye Q. ; Liu B. C. ; Wu Y. G Acta Phys. -Chim. Sin. 2014, 30, 111.
9 李亚婧; 孙晓锋; 叶青; 刘柏辰吴耀国. 物理化学学报, 2014, 30, 111.
10 Chen J. J. ; Ahmad A. L. ; Ooi B. S J. Membrane. Sci 2014, 469, 73.
11 Wen X. ; Tang L. M. ; Lin W. X Chem. J. Chin. Univ 2015, 36, 180.
11 温幸; 唐黎明林晚心. 高等学校化学学报, 2015, 36, 180.
12 Yildiz U. ; Kemik O. F. ; Hazer B J. Hazard. Mater 2010, 183, 521.
13 Zhou Y. M. ; Fu S. Y. ; Zhang L. L. ; Zhang H. Y. ; Levit M. V Carbohyd. Polym 2014, 101, 75.
14 Huang Y. P. Research on Preparation and properties of SensitiveHydrogel to Heavy Metal Ions. Master Dissertation, NorthUniversity of China, Taiyuan, 2009.
14 黄玉萍.重金属离子敏感性高分子水凝胶的合成及性能研究[D.太原:中北大学, 2009.]
15 Zhang X. F. ; Wang Y. R. ; Lu C. H. ; Zhang W Carbohyd. Polym 2014, 114, 166.
16 Zhong Q. Q. ; Yue Q. Y. ; Gao B. Y. ; Li Q. ; Xu X Chem. Eng. J 2013, 229, 90.
17 Zhang R. D. ; Zhang J. H. ; Zhang X. N. ; Dou C. C. ; Han R. P J. Taiwan Inst. Chem. En 2014, 45, 2578.
18 Liu J. ; Li Q. ; Su Y. ; Yue Q. Y. ; Gao B. Y Carbohyd. Polym 2014, 107, 232.
19 Liu W. T. ; Liu X.W. ; Zhu S. ; Liu X. Y. ; Han G. Z Acta Chim. Sin 2012, 70, 272.
19 刘炜涛; 刘学文; 朱沈; 刘忻沂韩国志. 化学学报, 2012, 70, 272.
20 Bhanvase B. A. ; Pinjari D. V. ; Gogate P. R. ; Sonawane S. H. ; Pandit A. B Chem. Eng. J. 2012, 181, 770.
21 Jung S. J. ; Kim S. H. ; Chung I. M Biomass. Bioenerg 2015, 83, 322.
22 Shirsath S. R. ; Patil A. P. ; Bhanvase B. A. ; Sonawane S. H J. Environ. Chem. Eng. 2015, 3, 1152.
23 Jiang Y. P. ; Li R. Y. ; Sun K.W. ; Liu X Chem. Ind. Eng. Prog 2014, 33, 1796.
23 姜跃平; 李如燕; 孙可伟刘璇. 化工进展, 2014, 33, 1796.
24 Saber S. S. ; Saber S. S. ; Gazi M React. Funct. Polym 2013, 73, 1523.
25 Salama A. ; Shukry N. ; El-Sakhawy M Int. J. Biol. Macromol. 2015, 73, 72.
26 Shi Y. R. ; Xue Z. H. ; Wang X. M. ; Wang L. ; Wang A. Q Polym. Bull. 2013, 70, 1163.
27 Qin Z.Y. ; Ji L. ; Yin X. Q. ; Zhu L. ; Lin Q. ; Qin J. M Carbohyd. Polym. 2014, 101, 947.
28 Bao Y. ; Ma J. Z. ; Li N Carbohyd. Polym 2011, 84, 76.
29 Zhou Y. M. ; Fu S. Y. ; Zhang L. L. ; Zhan H. Y. ; Levit M. V Carbohyd. Polym 2014, 101, 75.
30 Horkay F. ; Tasaki I. ; Basser P. J Biomacromolecules 2000, 1, 84.
31 Feng L. G. ; Jia Y. X. ; Li X. ; An L. J J. Mech. Behav. Biomed. 2011, 4, 1328.
32 Feng L. G. ; Jia Y. X. ; Chen X. L. ; Li X. ; An L. J J. Chem. Phys 2010, 133, 10334.
33 Schott H J. Macromol. Sci. B 1992, 31, 1.
34 Zheng Y. ; Liu Y. ; Wang A. Q Chem. Eng. J 2011, 171, 1201.
35 Huang Z. ; Liu S. ; Zhang B. ; Wu Q Carbohyd. Polym 2014, 113, 430.
36 Kong J. ; Huang L. ; Yue Q. ; Gao B Desalin. Water Treat 2014, 52, 2440.
37 Foo K. Y. ; Hameed B. H Bioresour. Technol 2012, 111, 425.
38 Li N. ; Bai R. B Ind. Eng. Chem. Res 2006, 45, 7897.
39 Irani M. ; Ismail H. ; Ahmad Z. ; Fan M J. Environ. Sci 2015, 27, 9.
40 Hui B. ; Zhang Y. ; Ye L J. Ind. Eng. Chem 2015, 21, 868.
41 Cao J. ; Tan Y. B. ; Che Y. J. ; Xin H. P Bioresource. Technol. 2010, 101, 2558.
42 Li S Biores. Technol 2010, 101, 2197.
43 Zhu H. Y. ; Jiang R. ; Xiao L. ; Li W J. Hazard. Mater 2010, 179, 251.
44 Wang Z. ; Yin P. ; Qu R. ; Chen H. ; Wang C. ; Ren S Food. Chem 2013, 136, 1508.
45 Liu Y J. Chem. Eng. Data 2009, 54, 1981.
46 Kong J. ; Yue Q. ; Sun S. ; Gao B. ; Kan Y. ; Li Q. ; Wang Y Chem. Eng. J 2014, 241, 393.
47 Albadarin A. B. ; Mangwand C. ; Ala'a H. ; Walker G. M. ; Allen S. J. ; Ahmad M. N. M Chem. Eng. J. 2012, 179, 193.
48 Sag Y. ; Kutsal T Biochem. Eng. J 2000, 35, 801.
[1] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 537-542.
[2] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 286-295.
[3] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1846-1854.
[4] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1898-1904.
[5] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1236-1241.
[6] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 960-967.
[7] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 709-728.
[8] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 426-434.
[9] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2013-2021.
[10] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2029-2034.
[11] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2022-2028.
[12] Yan-Ting LI,Xin-Min LIU,Rui TIAN,Wu-Quan DING,Wei-Ning XIU,Ling-Ling TANG,Jing ZHANG,Hang LI. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1998-2003.
[13] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2264-2270.
[14] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2133-2145.
[15] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1933-1940.