Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (10): 2511-2517    DOI: 10.3866/PKU.WHXB201607131
Article     
Theoretical Study of the Interfacial Structure and Properties of a CdS/FeP Composite Photocatalyst
ZHAO Zong-Yan1,2, TIAN Fan1
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China;
2 Yunnan Key Laboratory of Micro/Nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650504, P. R. China
Download:   PDF(2611KB) Export: BibTeX | EndNote (RIS)      

Abstract  

An effective method for improving the performance of a photocatalyst is to construct a suitable hetero-/homo-structure. This strategy can also lead to improvements in the stability of the photocatalysts that suffer with photo-corrosion (such as CdS). The preparation of CdS-based composite photocatalysts has therefore been widely studied. Unfortunately, however, some of the fundamental and more significant aspects of this strategy still need to be evaluated in greater detail. In this study, we have evaluated the interfacial microstructure and properties of a CdS/FeP composite photocatalyst with a hetero-structure using a series of the firstprinciples calculations. The results revealed that the electronic structure of the interface model exhibited different features compared with the bulk and surface models, because of the partially saturated dangling bonds. However, several obvious interfacial states were observed. At the interface of the CdS/FeP hetero-structure, the energy bands of CdS and FeP were relatively down-shifted, whereas the energy band of FeP was inserted below the conduction band of CdS. Furthermore, the direction of the built-in electric field of the hetero-structure projected out from the FeP layer towards the CdS layer under the equilibrium conditions. The photo-generated electron-hole pairs were therefore spatially separated by the CdS/FeP interface, which was favorable for improving the photocatalytic performance. The construction of a CdS/FeP hetero-structure can also lead to further improvements in the absorption properties of CdS in the visible-light region. The results of this study have provided mechanical explanations and theoretical support for the construction of highly efficient composite photocatalyst with hetero-structures.



Key wordsPhotocatalysis      Cadmium sulfide      Hetero-structure      Interfacial micro-structure      Interfacial property      Density functional theory calculation     
Received: 19 April 2016      Published: 13 July 2016
MSC2000:  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (21473082), and 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project (2015HB015).

Corresponding Authors: ZHAO Zong-Yan     E-mail: zzy@kmust.edu.cn
Cite this article:

ZHAO Zong-Yan, TIAN Fan. Theoretical Study of the Interfacial Structure and Properties of a CdS/FeP Composite Photocatalyst. Acta Phys. -Chim. Sin., 2016, 32(10): 2511-2517.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201607131     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2016/V32/I10/2511

(1) Guo, Q.; Zhou, C. Y.; Ma, Z. B.; Ren, Z. F.; Fan, H. J.; Yang, X.M. Acta Phys. -Chim. Sin. 2016, 32, 28. [郭庆, 周传耀, 马志博, 任泽峰, 樊红军, 杨学明. 物理化学学报, 2016, 32, 28.]doi: 10.3866/PKU.WHXB201512081
(2) Chang, X. X.; Gong, J. L. Acta Phys. -Chim. Sin. 2016, 32, 2.[常晓侠, 巩金龙. 物理化学学报, 2016, 32, 2.] doi: 10.3866/PKU.WHXB201510192
(3) Hamakawa, Y. Renew. Energy 1994, 5, 34. doi: 10.1016/0960-1481(94)90352-2
(4) Kamat, P. V. J. Phys. Chem. C 2007, 111, 2834. doi: 10.1021/jp066952u
(5) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176. doi: 10.1126/science.1239176
(6) Qu, Y.; Duan, X. Chem. Soc. Rev. 2013, 42, 2568. doi: 10.1039/C2CS35355E
(7) Fujishima, A.; Honda, K. 1972, 238, 37. doi:10.1038/238037a0
(8) Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M.J. Am. Chem. Soc. 2008, 130, 1124. doi: 10.1021/ja0777741
(9) Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C.J. Am. Chem. Soc. 2008, 130, 7176. doi: 10.1021/ja8007825
(10) Yang, S.; Wen, X.; Zhang, W.; Yang, S. J. Electrochem. Soc. 2005, 152, G220. doi: 10.1149/1.1859991
(11) Sathish, M.; Viswanathan, B.; Viswanath, R. P. Int. J. Hydrog. Energy 2006, 31, 891. doi: 10.1016/j.ijhydene.2005.08.002
(12) Guan, G.; Kida, T.; Kusakabe, K.; Kimura, K.; Fang, X.; Ma, T.; Abe, E.; Yoshida, A. Chem. Phys. Lett. 2004, 385, 319. doi: 10.1016/j.cplett.2004.01.002
(13) Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024
(14) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S.W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326
(15) Song, H.; Wang, J.; Wang, Z.; Song, H.; Li, F.; Jin, Z. J. Catal. 2014, 311, 257. doi: 10.1016/j.jcat.2013.11.021
(16) Cao, S.; Chen, Y.; Wang, C. J.; He, P.; Fu, W. F. Chem. Commun. 2014, 50, 10427. doi: 10.1039/C4CC05026F
(17) Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. ACS Nano 2014, 8, 11101. doi: 10.1021/nn5048553
(18) Zhang, Z.; Hao, J.; Yang, W.; Lu, B.; Tang, J. Nanoscale 2015, 7, 4400. doi: 10.1039/C4NR07436J
(19) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. Z. Kristallogr. 2005, 220, 567. doi: 10.1524/zkri.220.5.567.65075
(20) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892
(21) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Phys. Rev. Lett. 2008, 100, 136406. doi: 10.1103/PhysRevLett.100.136406
(22) Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Phys. Rev. B 1991, 44, 943. doi: 10.1103/PhysRevB.44.943
(23) Pfrommer, B. G.; Câté, M.; Louie, S. G.; Cohen, M. L.J. Comput. Phys. 1997, 131, 233. doi: 10.1006/jcph.1996.5612
(24) Yeh, C. Y.; Lu, Z.W.; Froyen, S.; Zunger, A. Phys. Rev. B 1992, 46, 10086. doi: 10.1103/PhysRevB.46.10086
(25) Rundqvist, S.; Nawapong, P. C. Acta Chem. Scand. 1965, 19, 1006. doi: 10.3891/acta.chem.scand.19-1006
(26) Lin, C. M.; Tsai, M. H.; Yang, T. J.; Chuu, D. S. Phys. Rev. B 1997, 56, 9209. doi: 10.1103/PhysRevB.56.9209
(27) Schröer, P.; Krüger, P.; Pollmann, J. Phys. Rev. B 1993, 48, 18264. doi: 10.1103/PhysRevB.48.18264
(28) Xu, X.; Sun, X.; Sun, B.; Peng, H.; Liu, W.; Wang, X. J. Colloid Interface Sci. 2016, 473, 100. doi: 10.1016/j.jcis.2016.03.059
(29) Zhang, S. B.; Wei, S. H.; Zunger, A. J. Appl. Phys. 1998, 83, 3192. doi: 10.1063/1.367120
(30) Chen, S.; Yang, J. H.; Gong, X. G.; Walsh, A.; Wei, S. H. Phys. Rev. B 2010, 81, 245204. doi: 10.1103/PhysRevB.81.245204

[1] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[2] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[3] KONG Wei-Wei, GUO Shuang, ZHANG Yong-Min, LIU Xue-Feng. Redox-Responsive Interfacial Properties of Se-Containing Sulfobetaine Surfactant[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1205-1213.
[4] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[5] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[6] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[7] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[8] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[9] GAO Yi-Fen, ZHUANG Gui-Lin, BAI Jia-Qi, ZHONG Xing, WANG Jian-Guo. Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn(II)-Based Metal-Organic Framework[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 242-248.
[10] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[11] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[12] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2264-2270.
[13] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[14] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[15] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.