Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (10): 2511-2517    DOI: 10.3866/PKU.WHXB201607131
Theoretical Study of the Interfacial Structure and Properties of a CdS/FeP Composite Photocatalyst
Zong-Yan ZHAO1,2,*(),Fan TIAN1
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
2 Yunnan Key Laboratory of Micro/Nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650504, P. R. China
Download: HTML     PDF(2611KB) Export: BibTeX | EndNote (RIS)      


An effective method for improving the performance of a photocatalyst is to construct a suitable hetero-/homo-structure. This strategy can also lead to improvements in the stability of the photocatalysts that suffer with photo-corrosion (such as CdS). The preparation of CdS-based composite photocatalysts has therefore been widely studied. Unfortunately, however, some of the fundamental and more significant aspects of this strategy still need to be evaluated in greater detail. In this study, we have evaluated the interfacial microstructure and properties of a CdS/FeP composite photocatalyst with a hetero-structure using a series of the firstprinciples calculations. The results revealed that the electronic structure of the interface model exhibited different features compared with the bulk and surface models, because of the partially saturated dangling bonds. However, several obvious interfacial states were observed. At the interface of the CdS/FeP hetero-structure, the energy bands of CdS and FeP were relatively down-shifted, whereas the energy band of FeP was inserted below the conduction band of CdS. Furthermore, the direction of the built-in electric field of the hetero-structure projected out from the FeP layer towards the CdS layer under the equilibrium conditions. The photo-generated electron-hole pairs were therefore spatially separated by the CdS/FeP interface, which was favorable for improving the photocatalytic performance. The construction of a CdS/FeP hetero-structure can also lead to further improvements in the absorption properties of CdS in the visible-light region. The results of this study have provided mechanical explanations and theoretical support for the construction of highly efficient composite photocatalyst with hetero-structures.

Key wordsPhotocatalysis      Cadmium sulfide      Hetero-structure      Interfacial micro-structure      Interfacial property      Density functional theory calculation     
Received: 19 April 2016      Published: 13 July 2016
MSC2000:  O647  
Fund:  The project was supported by the National Natural Science Foundation of China(21473082);and 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project(2015HB015)
Corresponding Authors: Zong-Yan ZHAO     E-mail:
Cite this article:

Zong-Yan ZHAO,Fan TIAN. Theoretical Study of the Interfacial Structure and Properties of a CdS/FeP Composite Photocatalyst. Acta Phys. -Chim. Sin., 2016, 32(10): 2511-2517.

URL:     OR

Fig 2 Caculated total and partial density of states of (a) CdS and (b) FeP in different systems: bulk, surface, and interface
Fig 3 Caculated layer-resolution total density of states of CdS (a) and FeP (b) in the CdS/FeP model compared with the total density of states of bulk phase
Fig 4 Prposed energy band diagram of CdS/FeP hetero-structure
Fig 5 Caculated absorption spectra of CdS or FeP in different systems: bulk, surface, and interface
1 Guo Q. ; Zhou C. Y. ; Ma Z. B. ; Ren Z. F. ; Fan H. J. ; Yang X M. Acta Phys. -Chim. Sin. 2016, 32, 28.
1 郭庆; 周传耀; 马志博; 任泽峰; 樊红军; 杨学明. 物理化学学报, 2016, 32, 28d.
2 Chang X. X. ; Gong J. L Acta Phys. -Chim. Sin. 2016, 32, 2.
2 常晓侠; 巩金龙. 物理化学学报, 2016, 32, 2.
3 Hamakawa Y Renew. Energy 1994, 5, 34.
4 Kamat P. V J. Phys. Chem. C 2007, 111, 2834.
5 Schultz D. M. ; Yoon T. P Science 2014, 343, 1239176.
6 Qu Y. ; Duan X Chem. Soc. Rev. 2013, 42, 2568.
7 Fujishima A. ; Honda K 1972, 238, 37.
8 Sun W. T. ; Yu Y. ; Pan H. Y. ; Gao X. F. ; Chen Q. ; Peng L. M J. Am. Chem. Soc. 2008, 130, 1124.
9 Zong X. ; Yan H. ; Wu G. ; Ma G. ; Wen F. ; Wang L. ; Li C J. Am. Chem. Soc. 2008, 130, 7176.
10 Yang S. ; Wen X. ; Zhang W. ; Yang S J. Electrochem. Soc. 2005, 152
11 Sathish M. ; Viswanathan B. ; Viswanath R. P Int. J. Hydrog. Energy 2006, 31, 891.
12 Guan G. ; Kida T. ; Kusakabe K. ; Kimura K. ; Fang X. ; Ma T. ; Abe E. ; Yoshida A Chem. Phys. Lett. 2004, 385, 319.
13 Yan H. ; Yang J. ; Ma G. ; Wu G. ; Zong X. ; Lei Z. ; Shi J. ; Li C J. Catal. 2009, 266, 165.
14 Walter M. G. ; Warren E. L. ; McKone J. R. ; Boettcher S.W. ; Mi Q. ; Santori E. A. ; Lewis N. S Chem. Rev. 2010, 110, 6446.
15 Song H. ; Wang J. ; Wang Z. ; Song H. ; Li F. ; Jin Z J. Catal. 2014, 311, 257.
16 Cao S. ; Chen Y. ; Wang C. J. ; He P. ; Fu W. F Chem. Commun. 2014, 50, 10427.
17 Callejas J. F. ; McEnaney J. M. ; Read C. G. ; Crompton J. C. ; Biacchi A. J. ; Popczun E. J. ; Gordon T. R. ; Lewis N. S. ; Schaak R. E ACS Nano 2014, 8, 11101.
18 Zhang Z. ; Hao J. ; Yang W. ; Lu B. ; Tang J Nanoscale 2015, 7, 4400.
19 Clark S. J. ; Segall M. D. ; Pickard C. J. ; Hasnip P. J. ; Probert M. J. ; Refson K. ; Payne M. C Z. Kristallogr. 2005, 220, 567.
20 Vanderbilt D Phys. Rev. B 1990, 41, 7892.
21 Perdew J. P. ; Ruzsinszky A. ; Csonka G. I. ; Vydrov O. A. ; Scuseria G. E. ; Constantin L. A. ; Zhou X. ; Burke K Phys. Rev. Lett. 2008, 100, 136406.
22 Anisimov V. I. ; Zaanen J. ; Andersen O. K Phys. Rev. B 1991, 44, 943.
23 Pfrommer B. G. ; Caté M. ; Louie S. G. ; Cohen M. L J. Comput. Phys. 1997, 131, 233.
24 Yeh C. Y. ; Lu Z.W. ; Froyen S. ; Zunger A Phys. Rev. B 1992, 46, 10086.
25 Rundqvist S. ; Nawapong P. C Acta Chem. Scand. 1965, 19, 1006.
26 Lin C. M. ; Tsai M. H. ; Yang T. J. ; Chuu D. S Phys. Rev. B 1997, 56, 9209.
27 Schr?er P. ; Krüger P. ; Pollmann J Phys. Rev. B 1993, 48, 18264.
28 Xu X. ; Sun X. ; Sun B. ; Peng H. ; Liu W. ; Wang X J. Colloid Interface Sci. 2016, 473, 100.
29 Zhang S. B. ; Wei S. H. ; Zunger A J. Appl. Phys. 1998, 83, 3192.
30 Chen S. ; Yang J. H. ; Gong X. G. ; Walsh A. ; Wei S. H Phys. Rev. B 2010, 81, 245204.
[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[3] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[4] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[5] Wei-Wei KONG,Shuang GUO,Yong-Min ZHANG,Xue-Feng LIU. Redox-Responsive Interfacial Properties of Se-Containing Sulfobetaine Surfactant[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1205-1213.
[6] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[7] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[8] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[9] Hao ZHANG,Xin-Gang LI,Jin-Meng CAI,Ya-Ting WANG,Mo-Qing WU,Tong DING,Ming MENG,Ye TIAN. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[10] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[11] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[12] Yi-Fen GAO,Gui-Lin ZHUANG,Jia-Qi BAI,Xing ZHONG,Jian-Guo WANG. Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn (Ⅱ)-Based Metal-Organic Framework[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 242-248.
[13] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[14] Kui LI,Yao-Lin ZHAO,Jia DENG,Chao-Hui HE,Shu-Jiang DING,Wei-Qun SHI. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2264-2270.
[15] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.