Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (10): 2390-2398    DOI: 10.3866/PKU.WHXB201607132
FEATURE ARTICLE     
Graphenal Polymers: 3D Carbon-Rich Polymers as Energy Materials with Electronic and Ionic Transport Pathways
Jia-Xu LIANG1,2,Zhi-Chang XIAO1,2,Lin-Jie ZHI1,2,*()
1 CAS Center of Excellence for Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(13144KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene and its derivatives have attracted increasing attention during the last decade as efficient materials for the storage and conversion of energy. In most cases, however, these graphene materials possess large numbers of structural defects such as cavities, heteroatoms and functional groups, making them quite different from the precisely-defined "single carbon layer of graphite" observed for graphene. These materials also differ considerably in terms of their electrochemical properties because of their variable structures, which are strongly influenced by the methods used during their preparation. Structural analyses have indicated that these materials consist of graphene subunits, which are interconnected by organic linkers with properties lying between those of graphene and polymers, which we have defined as "graphenal polymers". The thermal crosslinking reactions of porous polymer networks fabricated from small organic molecules using a bottom-up strategy also result in graphene-like subunits, which are covalently interconnected by polymeric fractions. These materials cover a series of transitional intermediates belonging to the "graphenal polymers" family, where polymers and graphene sit at opposite ends of family spectrum. Moreover, the special structures and properties of these materials make them ideal electrode materials for the storage and conversion of energy via electronic and ionic transport pathways, allowing for a deeper evaluation of the structure-property relationships of different electrode materials.



Key wordsGraphenal polymer      Carbon-rich polymer      Energy material      Electrochemistry      Energy storage and conversion     
Received: 02 June 2016      Published: 13 July 2016
MSC2000:  O646  
Fund:  Ministry of Science and Technology of China(2012CB933403);National Natural Science Foundation forDistinguished Young Scholars, China(51425302)
Corresponding Authors: Lin-Jie ZHI     E-mail: zhlj@nanoctr.cn
Cite this article:

Jia-Xu LIANG,Zhi-Chang XIAO,Lin-Jie ZHI. Graphenal Polymers: 3D Carbon-Rich Polymers as Energy Materials with Electronic and Ionic Transport Pathways. Acta Phys. -Chim. Sin., 2016, 32(10): 2390-2398.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201607132     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2390

Fig 1 Graphenal polymers appearing as transitional intermediates lying between the traditional polymers and graphene
Fig 2 Porous reduced graphene oxide8, 9 (a) schematic showing the microwave exfoliation/reduction of graphite oxide (GO) and the following chemical activation of microwave exfoliated graphite oxide (MEGO) with KOH that creates pores while retaining high electrical conductivity; (b) high-resolution scanning electron microscopy (SEM) image of a different sample region that demonstrates the porous morphology; (c) annular dark field scanning transmission electron microscopy (ADF-STEM) image of the same area as (b),acquired simultaneously. As seen,a-MEGO contains micro- and mesopores with a distribution of sizes between ?1 and ?10 nm; (d) schematic illustration of the holey graphene frameworks as an ideal material for EC electrodes
Fig 3 Schematic illustration for the synthesis of a-FG11 a-GO: acid-incorporated graphene oxide; a-FG: acid-incorporated functionalized graphene
Fig 4 C-Si electrode design and fabrication19 (a) schematic of the configuration of silicon nanoparticle-impregnated assemblies of templated carbon bridged oriented graphene; (b) schematic illustration showing the structure of templated carbon bridged oriented grapheme (TCG) obtained by removing the Si template from the TCG-Si
Fig 5 Polycyclic aromatic hydrocarbons as precursors for graphenal polymers formation21, 24, 27 (a) the formation of carbon nanotubes with controlled orientation of graphene layers; (b) high-resolution transmission electron microscopy (HR-TEM) image of as-prepared carbon nanotubes with highly ordered graphene layers oriented perpendicularly to the tube axis. The arrow indicates the tube axis. (c) The structure of the carbonaceous product is closely related to the structure of the precursors.
Fig 6 Conjugated microporous polymers as precursors for graphenal polymers formation30, 36 (a) atomistic simulations and microscopy for polyyne networks; (b) synthesis of cross-linked conjugated polymers
Fig 7 Structural evolution of 2D microporous covalent triazine-based framework toward 3D nitrogen-containing porous graphenal polymer50 CTFs: covalent triazine-based frameworks
1 Winter M. ; Brodd R. J Chem. Rev. 2004, 104, 4245.
2 Bonaccorso F. ; Colombo L. ; Yu G. ; Stoller M. ; Tozzini V. ; Ferrari A. C. ; Ruoff R. S. ; Pellegrini V Science 2015, 347, 41.
3 Luo B. ; Zhi L Energy Environ. Sci. 2015, 8, 456.
4 Ambrosi A. ; Chua C. K. ; Bonanni A. ; Pumera M Chem. Rev. 2014, 114, 7150.
5 Liang M. ; Zhi L J. Mater. Chem. 2009, 19, 5871.
6 Liang M. ; Luo B. ; Zhi L Int. J. Energy Res. 2009, 33, 1161.
7 Li X. ; Song Q. ; Hao L. ; Zhi L Small 2014, 10, 2122.
8 Zhu Y. ; Murali S. ; Stoller M. D. ; Ganesh K. J. ; Ruoff R. S Science 2011, 332, 1537.
9 Xu Y. ; Lin Z. ; Zhong X. ; Huang X. ; Weiss N. O. ; Huang Y. ; Duan X Nat. Commun. 2014, 5, 4554.
10 Fan Z. ; Yan J. ; Zhi L. ; Zhang Q. ; Wei T. ; Feng J. ; Zhang M. ; Qian W. ; Wei F Adv. Mater. 2010, 22, 3723.
11 Fang Y. ; Luo B. ; Jia Y. ; Li X. ; Wang B. ; Song Q. ; Kang F. ; Zhi L Adv. Mater. 2012, 24, 6348.
12 Liang M. ; Wang J. ; Luo B. ; Qiu T. ; Zhi L Small 2012, 8, 1180.
13 Wang B. ; Li X. ; Zhang X. ; Luo B. ; Jin M. ; Liang M. ; Dayeh S. A. ; Picraux S. T. ; Zhi L ACS Nano 2013, 7, 1437.
14 Luo B. ; Wang B. ; Li X. ; Jia Y. ; Liang M. ; Zhi L Adv. Mater. 2012, 24, 3538.
15 Luo B. ; Wang B. ; Liang M. ; Ning J. ; Li X. ; Zhi L Adv. Mater. 2012, 24, 1405.
16 Wang J. ; Liang M. ; Fang Y. ; Qiu T. ; Zhang J. ; Zhi L Adv. Mater. 2012, 24, 2874.
17 Kong D. ; He H. ; Song Q. ; Wang B. ; Lv W. ; Yang Q. H. ; Zhi L Energy Environ. Sci. 2014, 7, 3320.
18 Luo B. ; Fang Y. ; Wang B. ; Zhou J. ; Song H. ; Zhi L Energy Environ. Sci. 2012, 5, 5226.
19 Zhou M. ; Li X. ; Wang B. ; Zhang Y. ; Ning J. ; Xiao Z. ; Zhang X. ; Chang Y. ; Zhi L Nano Lett. 2015, 15, 6222.
20 Wang B. ; Li X. ; Luo B. ; Yang J. ; Wang X. ; Song Q. ; Chen S. ; Zhi L Small 2013, 9, 2399.
21 Zhi L. ; Muellen K J. Mater. Chem. 2008, 18, 1472.
22 Zhi L. ; Wu J. ; Li J. ; Stepputat M. ; Kolb U. ; Müllen K Adv. Mater. 2005, 17, 1492.
23 Zhi L. J. ; Gorelik T. ; Friedlein R. ; Wu J. S. ; Kolb U. ; Salaneck W. R. ; Mullen K Small 2005, 1, 798.
24 Zhi L. J. ; Wu J. S. ; Li J. X. ; Kolb U. ; Mullen K Angew. Chem. Int. Ed. 2005, 44, 2120.
25 Cui G. ; Zhi L. ; Thomas A. ; Kolb U. ; Lieberwirth I. ; Muellen K Angew. Chem. Int. Ed. 2007, 46, 3464.
26 Wu D. ; Zhi L. ; Bodwell G. J. ; Cui G. ; Tsao N. ; Muellen K Angew. Chem. Int. Ed. 2007, 46, 5417.
27 Zhi L. ; Wang J. ; Cui G. ; Kastler M. ; Schmaltz B. ; Kolb U. ; Jonas U. ; Muellen K Adv. Mater. 2007, 19, 1849.
28 Liu R. ; Wu D. ; Feng X. ; Mullen K Angew. Chem. Int. Ed. 2010, 49, 2565.
29 Yang S. ; Feng X. ; Zhi L. ; Cao Q. ; Maier J. ; Muellen K Adv. Mater. 2010, 22, 838.
30 Feng X. ; Liang Y. ; Zhi L. ; Thomas A. ; Wu D. ; Lieberwirth I. ; Kolb U. ; Muellen K Adv. Funct. Mater. 2009, 19, 2125.
31 Liang Y. ; Feng X. ; Zhi L. ; Kolb U. ; Muellen K Chem. Commun. 2009, 809
32 Vilela F. ; Zhang K. ; Antonietti M Energy Environ. Sci. 2012, 5, 7819.
33 Song Q. ; Jia Y. ; Luo B. ; He H. ; Zhi L Small 2013, 9, 2460.
34 Zhuang X. ; Gehrig D. ; Forler N. ; Liang H. ; Wagner M. ; Hansen M. R. ; Laquai F. ; Zhang F. ; Feng X Adv. Mater. 2015, 27, 3789.
35 Xu C. ; Hedin N Mater. Today 2014, 17, 397.
36 Jiang J. X. ; Su F. ; Trewin A. ; Wood C. D. ; Campbell N. L. ; Niu H. ; Dickinson C. ; Ganin A. Y. ; Rosseinsky M. J. ; Khimyak Y. Z. ; Cooper A. I Angew. Chem. Int. Ed. 2007, 46, 8574.
37 Wood C. D. ; Tan B. ; Trewin A. ; Niu H. ; Bradshaw D. ; Rosseinsky M. J. ; Khimyak Y. Z. ; Campbell N. L. ; Kirk R. ; Stockel E. ; Cooper A. I Chem. Mater. 2007, 19, 2034.
38 Wood C. D. ; Tan B. ; Trewin A. ; Su F. ; Rosseinsky M. J. ; Bradshaw D. ; Sun Y. ; Zhou L. ; Cooper A. I Adv. Mater. 2008, 20, 1916.
39 Chen L. ; Honsho Y. ; Seki S. ; Jiang D J. Am. Chem. Soc. 2010, 132, 6742.
40 Li B. ; Guan Z. ; Yang X. ; Wang W. D. ; Wang W. ; Hussain I. ; Song K. ; Tan B. ; Li T J. Mater. Chem. A 2014, 2, 11930.
41 Luo Y. ; Li B. ; Wang W. ; Wu K. ; Tan B Adv. Mater. 2012, 24, 5703.
42 Kuhn P. ; Antonietti M. ; Thomas A Angew. Chem. Int. Ed. 2008, 47, 3450.
43 Kou Y. ; Xu Y. ; Guo Z. ; Jiang D Angew. Chem. Int. Ed. 2011, 50, 8753.
44 Chen Y. Z. ; Wang C. ; Wu Z. Y. ; Xiong Y. ; Xu Q. ; Yu S. H. ; Jiang H. L Adv. Mater. 2015, 27, 5010.
45 Sakaushi K. ; Antonietti M Accounts Chem. Res. 2015, 48, 1591.
46 Kuhn P. ; Forget A. ; Su D. ; Thomas A. ; Antonietti M J. Am. Chem. Soc. 2008, 130, 13333.
47 Hao L. ; Luo B. ; Li X. ; Jin M. ; Fang Y. ; Tang Z. ; Jia Y. ; Liang M. ; Thomas A. ; Yang J. ; Zhi L Energy Environ. Sci. 2012, 5, 9747.
48 Zhu X. ; Tian C. ; Mahurin S. M. ; Chai S. H. ; Wang C. ; Brown S. ; Veith G. M. ; Luo H. ; Liu H. ; Dai S J. Am. Chem. Soc. 2012, 134, 10478.
49 Su Y. ; Liu Y. ; Liu P. ; Wu D. ; Zhuang X. ; Zhang F. ; Feng X Angew. Chem. Int. Ed. 2015, 54, 1812.
50 Hao L. ; Ning J. ; Luo B. ; Wang B. ; Zhang Y. ; Tang Z. ; Yang J. ; Thomas A. ; Zhi L J. Am. Chem. Soc. 2015, 137, 219.
[1] Chunhe YANG,Aiwei TANG,Feng TENG,Kejian JIANG. Electrochemistry of Perovskite CH3NH3PbI3 Crystals[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1197-1201.
[2] Yi-Fan RUAN,Nan ZHANG,Yuan-Cheng ZHU,Wei-Wei ZHAO,Jing-Juan XU,Hong-Yuan CHEN. New Developments in Photoelectrochemical Bioanalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 476-485.
[3] Wei-Xin SONG,Hong-Shuai HOU,Xiao-Bo JI. Progress in the Investigation and Application of Na3V2(PO4)3 for Electrochemical Energy Storage[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 103-129.
[4] Lin LIU,Zhi-Sheng LI,Hui-Dong HU,Wei-Li SONG. Insight into Macroscopic Metal-Assisted Chemical Etching for Silicon Nanowires[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 1019-1028.
[5] Jing-Mei LÜ,Xuan CHENG. Electrochemical Behavior of Porous and Flat Silicon Electrode Interfaces[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 711-716.
[6] Juan XU,Jia-Qin LIU,Jing-Wei LI,Yan WANG,Jun Lü,Yu-Cheng WU. Controlled Synthesis and Supercapacitive Performance of Heterostructured MnO2/H-TiO2 Nanotube Arrays[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2545-2554.
[7] Qing-Gong ZHU,Xiao-Fu SUN,Xin-Chen KANG,Jun MA,Qing-Li QIAN,Bu-Xing HAN. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 261-266.
[8] XU Zhen, CHEN Yu, ZHANG Zhao, ZHANG Jian-Qing. Progress of Research on Underpotential Deposition—— I. Theory of Underpotential Deposition[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1219-1230.
[9] LI Wen-You, HE Yun-Qiu, LI Yi-Ming. Photoelectric Properties of Graphene Oxide Film Prepared with the Electrochemical Method Using Varying Levels of Reduction[J]. Acta Phys. -Chim. Sin., 2015, 31(3): 457-466.
[10] ZHAO Wei-Rong, ZENG Wan-Yun, XI Hai-Ping, YU Xian-Xian. Photocatalytic Degradation of Gas-Phase Toluene over CuO Loaded BiVO4 Hollow Nanospheres under Visible-light Irradiation[J]. Acta Phys. -Chim. Sin., 2014, 30(4): 761-767.
[11] LI Wen-Zhang, LIU Yang, LI Jie, YANG Ya-Hui, CHEN Qi-Yuan. Synthesis and Interfacial Electron Transfer of a Composite Film of Graphene and Tungsten Oxide[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1957-1962.
[12] CHEN Qiang, NULI Yan-Na, GUOWei, YANG Jun, WANG Jiu-Lin, GUO Yu-Guo. PTMA/Graphene as a Novel Cathode Material for Rechargeable Magnesium Batteries[J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2295-2299.
[13] SHANGGUAN Peng-Peng, TONG Shao-Ping, LI Hai-Li, LENG Wen-Hua. Influence of the Potential on the Charge-Transfer Rate Constant of Photooxidation of Water over α-Fe2O3 and Ti-Doped α-Fe2O3[J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1954-1960.
[14] CAI Feng, LIU Wei, FAN Xue-Hua, ZHANG Jing, LU Min-Xu. Electrochemical Corrosion Behavior of X70 Pipeline Steel in Turbulence Zone under Jet Impingement at High Temperature and High Pressure CO2 Environment[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 1003-1012.
[15] YU Zhi-Hui, SU Ting-Ting, REN Cui-Hua, LI Fan, XIA Ding-Guo, CHENG Shui-Yuan. Direct Electrochemistry and Immobilization of Glucose Oxidase on Nano-Carbon Aerogels[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2867-2873.