Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (10): 2447-2461    DOI: 10.3866/PKU.WHXB201607141
REVIEW     
Preparation and Optoelectronic Applications of Two-Dimensional Nanocrystals Based on Metallo-Porphyrins
SHI Nai-En1, SONG Chuan-Yuan1, ZHANG Jun1, HUANG Wei1,2
1 Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, P. R. China;
2 Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
Download:   PDF(6099KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Metalloporphyrins are a class of metal-organic complexes that exhibit a wide range of interesting properties with prosperous applications in photoelectric conversion devices, catalysis, sensors and medicines. Besides inorganic two-dimensional (2D) materials (e.g., graphene and transitional metal dichalcogenide nanosheets), two-dimensional metal-organic nanosheets have also attracted considerable attention in recent years as interesting materials. Based on the rapid progress of two-dimensional metal-organic and porphyrinoid nanomaterials, this review aims to provide a brief review of the history of two-dimensional metal-organic nanomaterials, followed by a detailed summary of the synthetic methods used to prepare free-standing 2D nanosheets as well as 2D thin film of metalloporphyrins. We have also provided an up-to-date review of the applications of these materials in solar cells, photo- and electric catalysts as well as optical sensors, and a discussion pertaining to the problems associated with the synthesis, properties, and possible applications of metalloporphyrin 2D materials.



Key wordsPorphyrin      Two-dimensional material      Nanosheet      Nano-thin film      Optoelectric property     
Received: 31 May 2016      Published: 14 July 2016
MSC2000:  O648  
Fund:  

The project was supported by the National Natural Science Foundation of China (21471082, 21101095, 61136003), Priority Academic Program Development of Jiangsu Higher Education Institutions, China (YX03001), Ministry of Education of China (IRT1148), Natural Science Foundation of Jiangsu Province, China (BM2012010), and Synergetic Innovation Center for Organic Electronics and Information Displays, China.

Corresponding Authors: SHI Nai-En, HUANG Wei     E-mail: iamneshi@njupt.edu.cn;wei-huang@njtech.edu.cn
Cite this article:

SHI Nai-En, SONG Chuan-Yuan, ZHANG Jun, HUANG Wei. Preparation and Optoelectronic Applications of Two-Dimensional Nanocrystals Based on Metallo-Porphyrins. Acta Phys. -Chim. Sin., 2016, 32(10): 2447-2461.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201607141     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2016/V32/I10/2447

(1) Maueral, D. C. Clin. Dermatol. 1998, 16, 195. doi: 10.1016/S0738-081X(97)00200-9
(2) Gao, W. Y.; Chrzanowski, M.; Ma, S. Q. Chem. Soc. Rev. 2014, 43, 5841. doi: 10.1039/c4cs00001c
(3) Sun, Q. L.; Dai, Y.; Ma, Y. D.; Li, X. R.; Wei, W.; Huang, B. B.J. Mater. Chem. C 2015, 3, 6901. doi: 10.1039/C5TC01493J
(4) Zhao, Q.; Zhou, X. B.; Cao, T. Y.; Zhang, K. Y.; Yang, L. J.; Liu, S. J.; Liang, H.; Yang, H. R.; Li, F. Y.; Huang, W. Chem. Sci. 2015, 6, 1825. doi: 10.1039/C4SC03062A
(5) Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook; Academic Press: San Diego, 2000; pp 2000-2003.
(6) Fenwick, O.; Sprafke, J. K.; Binas, J.; Kondratuk, D. V.; Stasio, F. D.; Anderson, H. L.; Cacialli, F. Nano Lett. 2011, 11, 2451. doi: 10.1021/nl2008778
(7) Graham, K. R.; Yang, Y. X.; Sommer, J. R.; Shelton, A. H.; Schanze, K. S.; Xue, J. G.; Reynold, J. R. Chem. Mater. 2011, 23, 5305. doi: 10.1021/cm202242x
(8) Vasilopoulou, M.; Douvas, A. M.; Georgiadou, D. G.; Constantoudis, V.; Davazoglou, D.; Kennou, S.; Palilis, L. C.; Daphnomili, D.; Coutsolelos, A. G.; Argitis, P. Nano Res. 2014, 7, 679. doi: 10.1007/s12274-014-0428-9
(9) Li, L. L.; Diau, E.W. G. Chem. Soc. Rev. 2013, 42, 291. doi: 10.1039/c2cs35257e
(10) Ke, X. S.; Chang, Y.; Chen, J. Z.; Tian, J.W.; Mack, J.; Cheng, X.; Shen, Z.; Zhang, J. L. J. Am. Chem. Soc. 2014, 136, 9598. doi: 10.1021/ja502729x
(11) Nierth, A.; Marletta, M. A. Angew. Chem. Int. Edit. 2014, 53, 2611. doi: 10.1002/anie.201310145
(12) Urgel, J. I.; Ecija, D.; Auwrter, W.; Stassen, D.; Bonifazi, D.; Barth, J. V. Angew. Chem. Int. Edit. 2015, 54, 6227. doi: 10.1002/anie.201410802
(13) Furuyama, T.; Ogura, Y.; Yoza, K.; Kobayashi, N. Angew. Chem. Int. Edit. 2012, 51, 11110. doi: 10.1002/anie.201203191
(14) Pistner, A. J.; Lutterman, D. A.; Ghidiu, M. J.; Ma, Y. Z.; Rosenthal, J. J. Am. Chem. Soc. 2013, 135, 6601. doi: 10.1021/ja401391z
(15) (a) Xu, Z. J.; Mei, Q. B.; Weng, J. N.; Huang, W. J. Mol. Struct. 2014, 1074, 687. doi: 10.1016/j.molstruc.2014.05.004
(b) Xu, Z. J.; Mei, Q. B.; Hua, Q. F.; Tian, R. Q.; Weng, J. N.; Shi, Y. J.; Huang, W. J. Mol. Struct. 2015, 1094, 1. doi: 10.1016/j.molstruc.2015.03.005
(16) Huang, W.; Jiang, J. X.; Feng, Z. Q.; Kai, X. X.; Hu, C. J.; Yu, H.; Yang, W. J. Coord. Chem. 2011, 64, 2101. doi: 10.1080/00958972.2011.589002
(17) Papageorgiou, A. C.; Fischer, S.; Oh, S. C.; Saglam, O.; Reichert, J.; Wiengarten, A.; Seufert, K.; Vijayaraghavan, S.; Ecija, D.; Auwarter, W.; Allegretti, F.; Acres, R.; Prince, K. C.; Diller, K.; Klappenberger, F.; Barth, J. V. ACS Nano 2013, 7, 4520. doi: 10.1021/nn401171z
(18) Lin, Q. P.; Bu, X. H.; Kong, A.; Mao, C. Y.; Zhao, X.; Bu, F.; Feng, P. Y. J. Am. Chem. Soc. 2015, 137, 2235. doi: 10.1021/jacs5b00076
(19) Drain, C. M.; Varotto, A.; Radivojevic, I. Chem. Rev. 2009, 109, 1630. doi: 10.1021/cr8002483
(20) Hasobe, T. Phys. Chem. Chem. Phys. 2010, 12, 44. doi: 10.1039/b910564f
(21) Maligaspe, E.; Sandanayaka, A. S. D.; Hasobe, T.; Ito, O.; D'Souza, F. J. Am. Chem. Soc. 2010, 132, 8158. doi: 10.1021/ja101776p
(22) Ariga, K.; Hill, J. P.; Lee, M. V.; Vinu, A.; Charvet, R.; Acharya, S. Sci. Tech. Adv. Mater. 2008, 9 (1), 014109. doi: 10.1088/1468-6996/9/1/014109
(23) Elemans, J. A. A.W.; Hameren, R. V.; Nolte, R. J. M.; Rowan, A. E. Adv. Mater. 2006, 18, 1251. doi: 10.1002/adma.200502498
(24) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
(25) Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M.L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Nano Lett. 2012, 12, 4674. doi: 10.1021/nl302015v
(26) Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Nat. Nanotechnol.2013, 8, 826. doi: 10.1038/NNANO.2013.206
(27) Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J.J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D.W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568. doi: 10.1126/science.1194975
(28) Li, S. Z.; Huang, X.; Zhang, H. Acta Chim. Sin. 2015, 73, 913.[李绍周, 黄晓, 张华. 化学学报, 2015, 73, 913.]doi: 10.6023/A15030221
(29) Huang, X.; Zhang, H. National Sci. Rev. 2015, 2 (1), 19. doi: 10.1093/nsr/nwu069
(30) Tan, C. L.; Zhang, H. Nat. Commun. 2015, 6, 7873. doi: 10.1038/ncomms8873
(31) Zhang, H. ACS Nano 2015, 9, 9451. doi: 10.1021/acsnano.5b05040
(32) Tan, J. C.; Saines, P. J.; Bithell, E. G.; Cheetham, A. K. ACS Nano 2012, 6, 615. doi: 10.1021/nn204054k
(33) Lin, Z. Q.; Liang, J.; Sun, P. J.; Liu, F.; Tay, Y. Y.; Yi, M. D.; Peng, K.; Xia, X. H.; Xie, L. H.; Zhou, X. H.; Zhao, J. F.; Huang, W. Adv. Mater. 2013, 25, 3664. doi: 10.1002/adma.201301280
(34) Li, S. Z.; Yang, K.; Tan, C. L.; Huang, X.; Huang, W.; Zhang, H. Chem. Commun. 2016, 52, 1555. doi: 10.1039/c5cc09127f
(35) (a) Amo-Ochoa, P.; Welte, L.; Gonzalez-Prieto, R.; Miguel, P.J. S.; Gomez-Garc?a, C. J.; Mateo-Mart, E.; Delgado, S.; Gomez-Herrero, J.; Zamora, F. Chem. Commun. 2010, 46, 3262. doi: 10.1039/b919647a
(b) Hermosa, C.; Horrocks, B. R.; Martinez, J. I.; Liscio, F.; Gomez-Herrero, J.; Zamora, F. Chem. Sci. 2015, 6, 2553. doi: 10.1039/c4sc03115f
(36) Li, Z. Q.; Qiu, L. G.; Wang, W.; Xu, T.; Wu, Y.; Xu, X. J.Inorg. Chem. Commun. 2008, 11, 1375. doi: 10.1016/j.inoche.2008.09.010
(37) Li, P. Z.; Maeda, Y.; Xu, Q. Chem. Commun. 2011, 47, 8436. doi: 10.1039/c1cc12510a
(38) Kondo, A.; Tiew, C. C.; Moriguchi, F.; Maeda, K. Dalton Trans. 2013, 42, 15267. doi: 10.1039/c3dt52130c
(39) Kumar, R.; Jayaramulu, K.; Maji, T. K.; Rao, C. N. R. Dalton Trans. 2014, 43, 7383. doi: 10.1039/c3dt53133c
(40) Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Science 2014, 346, 1356. doi: 10.1126/science.1254227
(41) Tan, J. C.; Cheetham, A. K. Chem. Soc. Rev. 2011, 40, 1059. doi: 10.1039/c0cs00163e
(42) Saines, P. J.; Jain, P.; Cheetham, A. K. Chem. Sci. 2011, 2, 1929. doi: 10.1039/c1sc00253h
(43) Li, W.; Barton, P. T.; Burwood, R. P.; Cheetham, A. K. Dalton Trans. 2011, 40, 7147. doi: 10.1039/c0dt01686a
(44) Tan, J. C.; Jain, P.; Cheetham, A. K. Dalton Trans. 2012, 41, 3949. doi: 10.1039/c2dt12300b
(45) Junggeburth, S. C.; Diehl, L.; Werner, S.; Duppel, V.; Sigle, W.; Lotsch, B. V. J. Am. Chem. Soc. 2013, 135, 6157. doi: 10.1021/ja312567v
(46) Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. J. Am. Chem. Soc. 2011, 133, 5640. doi: 10.1021/ja110720f
(47) Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Xamena, F. X. L.; Gascon, J. Nat. Mater.2015, 14, 48. doi: 10.1038/NMAT4113
(48) Wang, Z. C.; Li, Z. Y.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2007, 129, 2440. doi: 10.1021/ja068250o
(49) Shi, N. E.; Xie, L. H.; Sun, H. M.; Duan, J. J.; Yin, G.; Xu, Z.; Huang, W. Chem. Commun. 2011, 47, 5055. doi: 10.1039/c0cc05642a
(50) Lee, S. J.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. Adv. Mater. 2008, 20, 3543. doi: 10.1002/adma.200800003
(51) Shi, N. E.; Du, W.; Jin, X. L.; Zhang, Y.; Han, M.; Xu, Z.; Xie, L. H.; Huang, W. Cryst. Growth Des. 2014, 14, 1251. doi: 10.1021/cg401768u
(52) Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H.; Zhao, Y.L.; Zhang, H. Adv. Mater. 2015, 27, 7372. doi: 10.1002/adma.201503648
(53) Zhong, Y.; Wang, Z. X.; Zhang, R. F.; Bai, F.; Wu, H. M.; Haddad, R.; Fan, H. Y. ACS Nano 2014, 8, 827. doi: 10.1021/nn405492d
(54) Shen, M.; Zhu, X. H.; Bard, A. J. J. Am. Chem. Soc. 2013, 135, 8868. doi: 10.1021/ja312189k
(55) Suk, J.; Wu, Z. Y.; Wang, L.; Bard, A. J. J. Am. Chem. Soc.2011, 133, 14675. doi: 10.1021/ja203731n
(56) Fu, H. B.; Yao, J. N. J. Am. Chem. Soc. 2001, 123, 1434. doi: 10.1021/ja0026298
(57) An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. J. Am. Chem. Soc. 2002, 124, 14410. doi: 10.1021/ja0269082
(58) Gesquiere, A. J.; Uwada, T.; Asahi, T.; Masuhara, H.; Barbara, P. F. Nano Lett. 2005, 5, 71321. doi: 10.1021/nl050567j
(59) Lee, S. J.; Hupp, J. T.; Nguyen, S. T. J. Am. Chem. Soc. 2008, 130, 9632. doi: 10.1021/ja801733t
(60) Hasobe, T.; Oki, H.; Sandanayaka, A. S. D.; Murata, H. Chem. Commun. 2008, No. 6, 724. doi: 10.1039/b713971c
(61) Wang, R. M.; Zhu, R. F.; He, Y. F.; Li, Y.; Mao, C.W.; He, N.P. Prog. Chem. 2010, 22, 1952. [王荣民, 朱永峰, 何玉凤, 李岩, 毛崇武, 何乃普. 化学进展, 2010, 22, 1952.]
(62) Shi, N. E.; Yin, G.; Wei, X.W.; Xu, Z. Carbon 2009, 47, 534. doi: 10.1016/j.carbon.2008.11.016
(63) Drain, C. M.; Batteas, J. D.; Flynn, G.W.; Milic, T.; Chi, N.; Yablon, D. G.; Sommers, H. Proc. Natl. Acad. Sci. U. S. A.2002, 99 (Suppl. 2), 6498. doi: 10.1073/pnas.012521899
(64) Drain, C. M.; Lehn, J. M. J. Chem. Soc., Chem. Commun.1994, 503, 2313. doi: 10.1039/c39950000503
(65) Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas, J. D. Angew. Chem. Int. Edit. 1998, 37, 2344. doi: 10.1002/(SICI)1521-3773(19980918)37:17<2344::AID-ANIE2344>3.0.CO;2-B
(66) Milic, T.; Garno, J. C.; Batteas, J. D.; Smeureanu, G.; Drain, C.M. Langmuir 2004, 20, 3974. doi: 10.1021/la0359023
(67) Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Prog. Mater. Sci. 2011, 56, 1178. doi: 10.1016/j.pmatsci.2011.03.003
(68) Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. J. Am. Chem. Soc. 2009, 131, 13490. doi: 10.1021/ja905032g
(69) Huang, D. K.; Lu, J. F.; Li, S. H.; Luo, Y. P.; Zhao, C.; Hu, B.; Wang, M. K.; Shen, Y. Langmuir 2014, 30, 6990. doi: 10.1021/la501052m
(70) Mao, B. Y.; Calatayud, D. G.; Mirabello, V.; Hodges, B. J.; Martins, J. A. R.; Botchway, S.W.; Mitchels, J. M.; Pascu, S. I.Adv. Funct. Mater. 2016, 26, 687. doi: 10.1002/adfm.201504147
(71) Xu, H.; Wu, P.; Liao, C.; Lv, C. G.; Gu, Z. Z. Chem. Commun.2014, 50, 8951. doi: 10.1039/c4cc03458a
(72) Karuppiah, C.; Sakthinathan, S.; Chen, S. M.; Manibalan, K.; Chen, S. M.; Huang, S. T. Appl. Organometal. Chem. 2016, 30, 40. doi: 10.1002/aoc.3397
(73) Montes, C. J.; Ojeda, M. L.; Gonzalez, F.; García-Sanchez, M.A.; Rojas, F.; Velasquez, C. Nano 2015, 10 (4), 1550057. doi: 10.1142/S1793292015500575
(74) Jahan, M.; Bao, Q. L.; Loh, K. P. J. Am. Chem. Soc. 2012, 134, 6707. doi: 10.1021/ja211433h
(75) Kim, S. J.; Song, W.; Kim, S.; Kang, M. A.; Myung, S.; Lee, S.S.; Lim, J.; An, K. S. Nanotechnology 2016, 27 (7), 075709. doi: 10.1088/0957-4484/27/7/075709
(76) Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Angew. Chem. Int. Edit. 2009, 48, 4739. doi: 10.1002/anie.200901177
(77) Guo, H. L.; Zhu, Y. Z.; Qiu, S. L.; Lercher, J. A.; Zhang, H. J.Adv. Mater. 2010, 22, 4190. doi: 10.1002/adma.201000844
(78) Puzder, A.; Williamson, A. J.; Zaitseva, N.; Galli, G.; Manna, L.; Alivisatos, A. P. Nano Lett. 2004, 4, 2361. doi: 10.1021/nl0485861
(79) Yin, Y. D.; Alivisatos, A. P. Nature 2005, 437, 664. doi: 10.1038/nature04165
(80) Lin, Z. Q.; Sun, P. J.; Tay, Y. Y.; Liang, J.; Liu, Y.; Shi, N. E.; Xie, L. H.; Yi, M. D.; Qian, Y.; Fan, Q. L.; Zhang, H.; Hng, H.H.; Ma, J.; Zhang, Q. C.; Huang, W. ACS Nano 2012, 6, 5309. doi: 10.1021/nn3011398
(81) Yang, S. H.; Lin, Z. Q.; Shi, N. E.; Jin, L. Z.; Yu, M. N.; Xie, L. H.; Yi, M. D.; Huang, W. CrystEngComm 2015, 17, 1448. doi: 10.1039/c4ce02379j
(82) Zhao, J.; Wang, Y. N.; Dong, W.W.; Wu, Y. P.; Li, D. S.; Liu, B.; Zhang, Q. C. Chem. Commun. 2015, 51, 9479. doi: 10.1039/C5CC02043C
(83) Lu, H. S.; Bai, L.; Xiong, W.W.; Li, P. Z.; Ding, J. F.; Zhang, G. D.; Wu, T. Zhao, Y. L.; Lee, J. M.; Yang, Y. H.; Geng, B. Y.; Zhang, Q. C. Inorg. Chem. 2014, 53, 8529. doi: 10.1021/ic5011133
(84) Xiong, W.W.; Zhang, Q. C. Angew. Chem. Int. Edit. 2015, 54, 11616. doi: 10.1002/anie.201502277
(85) Kang, L. T.; Fu, H. B.; Cao, X. Q.; Shi, Q.; Yao, J. N. J. Am. Chem. Soc. 2011, 133, 1895. doi: 10.1021/ja108730u
(86) Qiu, Y. F.; Chen, P. L.; Liu, M. H. J. Am. Chem. Soc. 2010, 132, 9644. doi: 10.1021/ja1001967
(87) Guo, P. P.; Zhao, G. Y.; Chen, P. L.; Lei, B.; Jiang, L.; Zhang, H. T.; Hu, W. P.; Liu, M. H. ACS Nano 2014, 8, 3402. doi: 10.1021/nn406071f
(88) Sun, W.; Wang, H. L.; Qi, D. D.; Wang, L.; Wang, K.; Kan, J.L.; Li, W. J.; Chen, Y. L.; Jiang, J. Z. CrystEngComm 2012, 14, 7780. doi: 10.1039/c2ce25187f
(89) Zhang, Z. G.; Li, X. Y.; Zhao, Q. D.; Ke, J.; Shi, Y.; Ndokoye, P.; Wang, L. Z. J. Colloid Interface Sci. 2014, 432, 229. doi: 10.1016/j.jcis.2014.07.005
(90) Cai, J. H.; Chen, S. R.; Cui, L. Y.; Chen, C. C.; Su, B.; Dong, X.; Chen, P. L.; Wang, J. X.; Wang, D. J.; Song, Y. L.; Jiang, L.Adv. Mater. Interfaces 2015, 2, 1400365. doi: 10.1002/admi.201400365.
(91) Wang, T.; Chen, S. R.; Jin, F.; Cai, J. H.; Cui, L. Y.; Zheng, Y.M.; Wang, J. X.; Song, Y. L.; Jiang, L. Chem. Commun. 2015, 51, 1367. doi: 10.1039/c4cc08045a
(92) Cai, J. H.; Wang, T.; Wang, J. X.; Song, Y.; Jiang, L. J. Mater. Chem. C 2015, 3, 2445. doi: 10.1039/c4tc02860k
(93) Wang, T.; Kuang, M. X.; Jin, F.; Cai, J. H.; Shi, L.; Zheng, Y.M.; Wang, J. X.; Jiang, L. Chem. Commun. 2016, 52, 3619. doi: 10.1039/c5cc10233b
(94) Bétard, A.; Fischer, R. A. Chem. Rev. 2012, 112, 1055. doi: 10.1021/cr200167v
(95) Xu, G.; Yamada, T.; Otsubo, K.; Sakaida, S.; Kitagawa, H.J. Am. Chem. Soc. 2012, 134, 16524. doi: 10.1021/ja307953m
(96) Shekhah, O.; Liu, J.; Fischer, R. A.; Wo?ll, C. Chem. Soc. Rev. 2011, 40, 1081. doi: 10.1039/c0cs00147c
(97) Zacher, D.; Shekhah, O.; Wöll, C.; Fischer, R. A. Chem. Soc. Rev. 2009, 38, 1418. doi: 10.1039/b805038b
(98) Chen, X. D.; Li, L.; Liu, M. H. Langmuir 2002, 18, 4449. doi: 10.1021/la015718m
(99) Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Nat. Mater. 2010, 9, 565. doi: 10.1038/NMAT2769
(100) Makiura, R.; Konovalov, O. Sci. Rep. 2013, 3, 2506. doi: 10.1038/srep02506
(101) Qian, D. J.; Wakayama, T.; Nakamura, C.; Miyake, J. J. Phys. Chem. B 2003, 107, 3333. doi: 10.1021/jp034029b
(102) So, M. C.; Jin, S. Y.; Son, H. J.; Wiederrecht, G. P.; Farha, O.K.; Hupp, J. T. J. Am. Chem. Soc. 2013, 135, 15698. doi: 10.1021/ja4078705
(103) Bhattacharjee, J.; Banik, S.; Hussain, S.; Bhattacharjee, D.Chem. Phys. Lett. 2015, 633, 82. doi: 10.1016/j.cplett.2015.05.021
(104) Zhang, C.; Li, X. Q.; Kang, S. Z.; Qin, L. X.; Li, G. D.; Mu, J.Chem. Commun. 2014, 50, 906. doi: 10.1039/c4cc03683b
(105) Jiang, S. G.; Liu, M. H. J. Phys. Chem. B 2004, 108, 2880. doi: 10.1021/jp036886l
(106) Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R.A.; Wöll, C. J. Am. Chem. Soc. 2007, 129, 15118. doi: 10.1021/ja076210u
(107) Zacher, D.; Yusenko, K.; Betard, A.; Henke, S.; Molon, M.; Ladnorg, T.; Shekhah, O.; Schupbach, B.; Arcos, T. D. L.; Krasnopolski, M.; Meilikhov, M.; Winter, J.; Terfort, A.; Wöll, C.; Fischer, R. A. Chem. Eur. J. 2011, 17, 1448. doi: 10.1002/chem.201002381
(108) Liu, B.; Qian, D. J.; Huang, H. X.; Wakayama, T.; Hara, S.; Huang, W.; Nakamura, C.; Miyake, J. Langmuir 2005, 21, 5079. doi: 10.1021/la050064t
(109) Shi, N. E.; Yin, G.; Han, M.; Jiang, L.; Xu, Z. Chem. Eur. J. 2008, 14, 6255. doi: 10.1002/chem.200702032
(110) Chen, P. L.; Ma, X. G.; Duan, P. F.; Liu, M. H.ChemPhysChem 2006, 7, 2419. doi: 10.1002/cphc.200600402
(111) Zhang, Y. Q.; Chen, P. L.; Liu, M. H. Chem. Eur. J. 2008, 14, 1793. doi: 10.1002/chem.200701333
(112) Yu, W.; Li, Z. S.; Wang, T. Y.; Liu, M. H. J. Colloid Interface Sci. 2008, 326, 460. doi: 10.1016/j.jcis.2008.06.049
(113) Liu, L.; Li, Y. G.; Liu, M. H. J. Phys. Chem. C 2008, 112, 4861. doi: 10.1021/jp709734d
(114) Wilmer, C. E.; Sarjeant, A. A.; Schatz, G. C.; Snurr, R. Q.; Farha, O. K.; Wiederrecht, G. P.; Hupp, J. T. J. Am. Chem. Soc.2013, 135, 862. doi: 10.1021/ja310596a
(115) Cherian, S.; Wamser, C. C. J. Phys. Chem. B 2000, 104, 3624. doi: 10.1021/jp994459v
(116) Wang, Q.; Campbell, W. M.; Bonfantani, E. E.; Jolley, K.W.; Officer, D. L.; Walsh, P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M. K.; Grätzel, M. J. Phys. Chem. B 2005, 109, 15397. doi: 10.1021/jp052877w
(117) Campbell, W. M.; Jolley, K.W.; Wagner, P.; Wagner, K.; Walsh, P. J.; Gordon, K. C.; Schmidt-Mende, L.; Nazeeruddin, M. K.; Wang, Q.; Grätzel, M. Officer, D. L. J. Phys. Chem. C 2007, 111, 11760. doi: 10.1021/jp0750598
(118) Bessho, T.; Zakeeruddin, S. M.; Yeh, C. Y.; Diau, E.W. G.; Grätzel, M. Angew. Chem. Int. Edit. 2010, 49, 6646. doi: 10.1002/anie.201002118
(119) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E.W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
(120) Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Nat. Chem. 2014, 6, 242. doi: 10.1038/NCHEM.1861
(121) Wu, L.; Wang, J. S.; Feng, L. Y.; Ren, J. S.; Wei, W. L.; Qu, X. G. Adv. Mater. 2012, 24, 2447. doi: 10.1002/adma.201200412

[1] WANG Hui, ZOU De-Chun. Polyol-Mediated Synthesis of MoS2 Nanosheets Using Sulfur Powder as the Sulfur Source[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1027-1032.
[2] LING Chong-Yi, WANG Jin-Lan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 869-885.
[3] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[4] ZENG Meng-Qi, ZHANG Tao, TAN Li-Fang, FU Lei. Liquid Metal Catalyst: Philosopher's Stone of Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 464-475.
[5] MA Ren-Jun, GUO Qian-Jin, LI Bo-Xuan, XIA An-Dong. Triplet Excited State Dynamics of Porphyrin in Ionic Liquid [Bmim][BF4][J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2191-2198.
[6] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2022-2028.
[7] HAO Xu-Qiang, YANG Hao, JIN Zhi-Liang, XU Jing, MIN Shi-Xiong, Lü Gong-Xuan. Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2581-2592.
[8] CHEN Cheng-Cheng, ZHANG Ning, LIU Yong-Chang, WANG Yi-Jing, CHEN Jun. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 349-355.
[9] HAO Yan-Zhong, GUO Zhi-Min, SUN Bao, PEI Juan, WANG Shang-Xin, LI Ying-Pin. Photoelectrochemical Properties of Hierarchical ZnO Nanosheets Micro-Nanostructure Modified with Sb2S3 Nanoparticles[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2109-2116.
[10] ZHANG Lan-Lan, SONG Yu, LI Guo-Dong, ZHANG Shao-Long, SHANG Yun-Shan, GONG Yan-Jun. ZSM-5 Zeolite with Micro-Mesoporous Structures Synthesized Using Different Templates for Methanol to Propylene Reaction[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2139-2150.
[11] ZHANG Shao-Long, ZHANG Lan-Lan, WANG Wu-Gang, MIN Yuan-Yuan, MATong, SONG Yu, GONG Yan-Jun, DOU Tao. Methanol to Propylene over Nanosheets of HZSM-5 Zeolite[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 535-543.
[12] CHEN Chan-Juan, HU Zhong-Ai, HU Ying-Ying, LI Li, YANG Yu-Ying, AN Ning, LI Zhi-Min, WU Hong-Ying. SnO2/Graphite Nanosheet Composite Electrodes and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2256-2262.
[13] YANG Jian-Hui, JI Jia-Lin, LI Lin, WEI Shi-Hao. Hydrogen Chemisorption and Physisorption on the Two-Dimensional TiC Sheet Surface[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1821-1826.
[14] LIU Huan, ZANG Na, ZHAO Fang-Yao, LIU Kun, LI Yue, RUAN Wen-Juan. Synthesis and Nonlinear Optical Properties of Porphyrin-Salen Type Homo- and Hetero-Binuclear Metal Complexes[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1801-1809.
[15] YANG Le-Le, LIU Jia, LI Yue, LIU Kun, RUAN Wen-Juan. Molecular Recognition of Glycoconjugated Porphyrin with Chiral Amino Acid Methyl Ester[J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1877-1885.