Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (10): 2447-2461    DOI: 10.3866/PKU.WHXB201607141
REVIEW     
Preparation and Optoelectronic Applications of Two-Dimensional Nanocrystals Based on Metallo-Porphyrins
Nai-En SHI1,*(),Chuan-Yuan SONG1,Jun ZHANG1,Wei HUANG1,2,*()
1 Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, P. R. China
2 Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
Download: HTML     PDF(6099KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Metalloporphyrins are a class of metal-organic complexes that exhibit a wide range of interesting properties with prosperous applications in photoelectric conversion devices, catalysis, sensors and medicines. Besides inorganic two-dimensional (2D) materials (e.g., graphene and transitional metal dichalcogenide nanosheets), two-dimensional metal-organic nanosheets have also attracted considerable attention in recent years as interesting materials. Based on the rapid progress of two-dimensional metal-organic and porphyrinoid nanomaterials, this review aims to provide a brief review of the history of two-dimensional metal-organic nanomaterials, followed by a detailed summary of the synthetic methods used to prepare free-standing 2D nanosheets as well as 2D thin film of metalloporphyrins. We have also provided an up-to-date review of the applications of these materials in solar cells, photo- and electric catalysts as well as optical sensors, and a discussion pertaining to the problems associated with the synthesis, properties, and possible applications of metalloporphyrin 2D materials.



Key wordsPorphyrin      Two-dimensional material      Nanosheet      Nano-thin film      Optoelectric property     
Received: 31 May 2016      Published: 14 July 2016
MSC2000:  O648  
Fund:  National Natural Science Foundation of China(21471082);National Natural Science Foundation of China(21101095);National Natural Science Foundation of China(61136003);Priority Academic Program Development of Jiangsu Higher Education Institutions, China(PAPD,YX03001);Ministry of Education of China(IRT1148);Natural Science Foundation of Jiangsu Province, China(BM2012010);Synergetic Innovation Center for Organic Electronics and Information Displays, China
Corresponding Authors: Nai-En SHI,Wei HUANG     E-mail: iamneshi@njupt.edu.cn;wei-huang@njtech.edu.cn
Cite this article:

Nai-En SHI,Chuan-Yuan SONG,Jun ZHANG,Wei HUANG. Preparation and Optoelectronic Applications of Two-Dimensional Nanocrystals Based on Metallo-Porphyrins. Acta Phys. -Chim. Sin., 2016, 32(10): 2447-2461.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201607141     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2447

Fig 1 (a) Molecular structure of Sn(OH)2PyTriPP; (b) hydrogen-bonding network structure for the Sn(OH)2PyTriPP nanosheets; (c) atomic force microscope (AFM) image of porphyrin nanosheets adsorbed on Si; (d) height profiles of the lines in panel (c)48 (a) The molecular structure of Sn(OH)2PyTriPP: OH axial ligands are present in neutral aqueous solution; The nanosheets have thicknesses of 7-12 nm. color online
Fig 2 (a) Low and (b) high magnification field emission scanning electron microscopy (FESEM) images of the obtained copper porphyrin nanoplates in the absence of cetyltrimethylammonium bromide (CTAB)49
Fig 3 AFM image of TMPyP@GO composite nanosheets on mica68
Fig 4 Schematic representation of the formation of a new Zn(Ⅱ)-porphyrin@GO complex70
Fig 5 Schematic illustration of graphene-FeTCPP74
Fig 6 (a) Low and (b) high magnification FESEM images of the obtained CuTPyP rectangular nanoplates under the conditions of cCuAc2 = 4.04 mmol?L-1,cTPyP = 0.08 mmol?L-1,and cSDS = 4 mmol?L-1;(c) corresponding transmission electron microscope (TEM) image and selected area electron diffraction (SAED) pattern; (d) corresponding UV-Vis absorption spectrum51
Fig 7 FESEM, TEM, and SAED images of the M-TCPP nanosheets52 (a) scanning transmission electron microscopy (STEM) image of Zn-TCPP nanosheets obtained by SEM with a transmission electron detector.Inset: Tyndall effect of colloidal Zn-TCPP nanosheets in ethanol; (a1) TEM image of a single Zn-TCPP nanosheets; (a2) high resolution transmission electron microscopy (HRTEM) image of Zn-TCPP nanosheet and corresponding fast Fourier transform (FFT) patterns (inset); (a3) SAED pattern ofZn-TCPP nanosheets in (a1); STEM images of (b) Cu-TCPP nanosheets, (c) Cd-TCPP nanosheets, (d) Co-TCPP nanosheets, and (e) Zn-TCPP (Fe) nanosheets obtained by SEM with a transmission electron detector; insets: TEM images and corresponding SAED patterns of the nanosheets
Fig 8 (a) SEM and (b) TEM images of the Sn(IV) 5,10,15,20 meso-tetraphenylporphine dichloride nanosheets53 inset: Sn (IV) 5,10,15,20 meso-tetraphenylporphine dichloride molecular structure
Fig 9 Schematic illustration of the fabrication mechanism of NAFS-199
Fig 10 (a) Schematic diagram for the step-by-step growth of the DA-MOF and L2-MOF structures on idealized 3-aminopropyl-trimethoxysilane (3-APTMS),(b) resulting in a film after N cycles of growth; (c) representations of building blocks used in fabrication of MOF film102 MOF: metal-organic framework
Fig 11 (a) Schematic diagram of preparation of sensitized DA-MOF film; (b) comparison of emission profiles ofDA-MOF (1),S1 (2),and DA-MOF sensitized with S1 (3) upon excitation at 450 nm102
Fig 12 SEM images of (a) film towards water and (b) film towards oil109
Fig 13 (a,b) TEM images of the synthesized Cu-TCPP nanosheets; (c) photograph of the MOF thin film after 15 deposition cycles on a quartz substrate; (d) illustration of the assembly process of this MOF thin film95
Fig 14 (a) Molecular structures of the CuTPPA3,ZnTPPA3,and CuTPPA3-A; (b,c) AFM images of CuTPPA3 LB films: pictures A and B correspond to the film deposited vertically onto mica surface at 5 and 30 mN?m-1,respectively112
Fig 15 TEM images of (a) a Sn(OH)2PyTriPP nanosheet decorated with photodeposited Pt nanoparticles for 6.5 min and (b) a Sn(OH)2PyTriPP nanosheet encased within a thin porous Pt mat of autocatalytically grown Pt dendrites for 14 h48;(c) TEM image of Pt/Sn(IV) meso-tetraphenylporphine dichloride nanosheet composites53
Fig 16 Schematic illustration of 2D MOF (Cu-TCPP,Zn-TCPP(Fe),Co-TCPP) nanosheets based fluorescent DNA assay 52
1 Maueral D. C Clin. Dermatol. 1998, 16, 195.
2 Gao W. Y. ; Chrzanowski M. ; Ma S. Q Chem. Soc. Rev. 2014, 43, 5841.
3 Sun Q. L. ; Dai Y. ; Ma Y. D. ; Li X. R. ; Wei W. ; Huang B. B J. Mater. Chem. C 2015, 3, 6901.
4 Zhao Q. ; Zhou X. B. ; Cao T. Y. ; Zhang K. Y. ; Yang L. J. ; Liu S. J. ; Liang H. ; Yang H. R. ; Li F. Y. ; Huang W Chem. Sci. 2015, 6, 1825.
5 Kadish K. M., Smith K. M., Guilard R.. The Porphyrin Handbook; Academic Press: San Diego, 2000; pp 2000-2003.
6 Fenwick O. ; Sprafke J. K. ; Binas J. ; Kondratuk D. V. ; Stasio F. D. ; Anderson H. L. ; Cacialli F Nano Lett. 2011, 11, 2451.
7 Graham K. R. ; Yang Y. X. ; Sommer J. R. ; Shelton A. H. ; Schanze K. S. ; Xue J. G. ; Reynold J. R Chem. Mater 2011, 23, 5305.
8 Vasilopoulou M. ; Douvas A. M. ; Georgiadou D. G. ; Constantoudis V. ; Davazoglou D. ; Kennou S. ; Palilis L. C. ; Daphnomili D. ; Coutsolelos A. G. ; Argitis P Nano Res. 2014, 7, 679.
9 Li L. L. ; Diau E.W. G Chem. Soc. Rev 2013, 42, 291.
10 Ke X. S. ; Chang Y. ; Chen J. Z. ; Tian J.W. ; Mack J. ; Cheng X. ; Shen Z. ; Zhang J. L J. Am. Chem. Soc 2014, 136, 9598.
11 Nierth A. ; Marletta M. A Angew. Chem. Int. Edit 2014, 53, 2611.
12 Urgel J. I. ; Ecija D. ; Auwrter W. ; Stassen D. ; Bonifazi D. ; Barth J. V Angew. Chem. Int. Edit. 2015, 54, 6227.
13 Furuyama T. ; Ogura Y. ; Yoza K. ; Kobayashi N Angew. Chem. Int. Edit 2012, 51, 11110.
14 Pistner A. J. ; Lutterman D. A. ; Ghidiu M. J. ; Ma Y. Z. ; Rosenthal J J. Am. Chem. Soc 2013, 135, 6601.
15 (a) Xu Z. J., Mei Q. B., Weng J. N., Huang W.. J. Mol. Struct,2014, 1074:687 doi: 10.1016/j.molstruc.2014.05.004
16 Huang W. ; Jiang J. X. ; Feng Z. Q. ; Kai X. X. ; Hu C. J. ; Yu H. ; Yang W J. Coord. Chem 2011, 64, 2101.
17 Papageorgiou A. C. ; Fischer S. ; Oh S. C. ; Saglam O. ; Reichert J. ; Wiengarten A. ; Seufert K. ; Vijayaraghavan S. ; Ecija D. ; Auwarter W. ; Allegretti F. ; Acres R. ; Prince K. C. ; Diller K. ; Klappenberger F. ; Barth J V. ACS Nano 2013, 7, 4520.
18 Lin Q. P. ; Bu X. H. ; Kong A. ; Mao C. Y. ; Zhao X. ; Bu F. ; Feng P. Y J. Am. Chem. Soc 2015, 137, 2235.
19 Drain C. M. ; Varotto A. ; Radivojevic I Chem. Rev 2009, 109, 1630.
20 Hasobe T Phys. Chem. Chem. Phys 2010, 12, 44.
21 Maligaspe E. ; Sandanayaka A. S. D. ; Hasobe T. ; Ito O. ; D'Souza F J. Am. Chem. Soc 2010, 132, 8158.
22 Ariga K. ; Hill J. P. ; Lee M. V. ; Vinu A. ; Charvet R. ; Acharya S Sci. Tech. Adv. Mater 2008, 9 (1), 014109.
23 Elemans J. A. A.W. ; Hameren R. V. ; Nolte R. J. M. ; Rowan A. E Adv. Mater 2006, 18, 1251.
24 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A Science 2004, 306, 666.
25 Wang H. ; Yu L. L. ; Lee Y. H. ; Shi Y. M. ; Hsu A. ; Chin M.L. ; Li L. J. ; Dubey M. ; Kong J. ; Palacios T Nano Lett 2012, 12, 4674.
26 Roy K. ; Padmanabhan M. ; Goswami S. ; Sai T. P. ; Ramalingam G. ; Raghavan S. ; Ghosh A Nat. Nanotechnol 2013, 8, 826.
27 Coleman J. N. ; Lotya M. ; O'Neill A. ; Bergin S. D. ; King P.J. ; Khan U. ; Young K. ; Gaucher A. ; De S. ; Smith R. J. ; Shvets I. V. ; Arora S. K. ; Stanton G. ; Kim H. Y. ; Lee K. ; Kim G. T. ; Duesberg G. S. ; Hallam T. ; Boland J. J. ; Wang J.J. ; Donegan J. F. ; Grunlan J. C. ; Moriarty G. ; Shmeliov A. ; Nicholls R. J. ; Perkins J. M. ; Grieveson E. M. ; Theuwissen K. ; McComb D.W. ; Nellist P. D. ; Nicolosi V Science 2011, 331, 568.
28 Li S. Z. ; Huang X. ; Zhang H Acta Chim. Sin 2015, 73, 913.
28 李绍周; 黄晓; 张华. 化学学报, 2015, 73, 913d.
29 Huang X. ; Zhang H National Sci. Rev 2015, 2 (1), 19.
30 Tan C. L. ; Zhang H Nat. Commun. 2015, 6, 7873.
31 Zhang H ACS Nano 2015, 9, 9451.
32 Tan J. C. ; Saines P. J. ; Bithell E. G. ; Cheetham A. K ACS Nano 2012, 6, 615.
33 Lin Z. Q. ; Liang J. ; Sun P. J. ; Liu F. ; Tay Y. Y. ; Yi M. D. ; Peng K. ; Xia X. H. ; Xie L. H. ; Zhou X. H. ; Zhao J. F. ; Huang W Adv. Mater. 2013, 25, 3664.
34 Li S. Z. ; Yang K. ; Tan C. L. ; Huang X. ; Huang W. ; Zhang H Chem. Commun 2016, 52, 1555.
35 (a) Amo-Ochoa P., Welte L., Gonzalez-Prieto R., Miguel P.J. S., Gomez-Garc?a C. J., Mateo-Mart E., Delgado S., Gomez-Herrero J., Zamora F.. Chem. Commun,2010, 46:3262 doi: 10.1039/b919647a
36 Li Z. Q. ; Qiu L. G. ; Wang W. ; Xu T. ; Wu Y. ; Xu X. J Inorg. Chem. Commun 2008, 11, 1375.
37 Li P. Z. ; Maeda Y. ; Xu Q Chem. Commun. 2011, 47, 8436.
38 Kondo A. ; Tiew C. C. ; Moriguchi F. ; Maeda K Dalton Trans 2013, 42, 15267.
39 Kumar R. ; Jayaramulu K. ; Maji T. K. ; Rao C. N. R Dalton Trans 2014, 43, 7383.
40 Peng Y. ; Li Y. S. ; Ban Y. J. ; Jin H. ; Jiao W. M. ; Liu X. L. ; Yang W. S Science 2014, 346, 1356.
41 Tan J. C. ; Cheetham A. K Chem. Soc. Rev 2011, 40, 1059.
42 Saines P. J. ; Jain P. ; Cheetham A. K Chem. Sci 2011, 2, 1929.
43 Li W. ; Barton P. T. ; Burwood R. P. ; Cheetham A. K Dalton Trans 2011, 40, 7147.
44 Tan J. C. ; Jain P. ; Cheetham A. K Dalton Trans 2012, 41, 3949.
45 Junggeburth S. C. ; Diehl L. ; Werner S. ; Duppel V. ; Sigle W. ; Lotsch B. V J. Am. Chem. Soc 2013, 135, 6157.
46 Motoyama S. ; Makiura R. ; Sakata O. ; Kitagawa H J. Am. Chem. Soc 2011, 133, 5640.
47 Rodenas T. ; Luz I. ; Prieto G. ; Seoane B. ; Miro H. ; Corma A. ; Kapteijn F. ; Xamena F. X. L. ; Gascon J Nat. Mater 2015, 14, 48.
48 Wang Z. C. ; Li Z. Y. ; Medforth C. J. ; Shelnutt J. A J. Am. Chem. Soc 2007, 129, 2440.
49 Shi N. E. ; Xie L. H. ; Sun H. M. ; Duan J. J. ; Yin G. ; Xu Z. ; Huang W Chem. Commun 2011, 47, 5055.
50 Lee S. J. ; Malliakas C. D. ; Kanatzidis M. G. ; Hupp J. T. ; Nguyen S. T Adv. Mater. 2008, 20, 3543.
51 Shi N. E. ; Du W. ; Jin X. L. ; Zhang Y. ; Han M. ; Xu Z. ; Xie L. H. ; Huang W Cryst. Growth Des 2014, 14, 1251.
52 Zhao M. T. ; Wang Y. X. ; Ma Q. L. ; Huang Y. ; Zhang X. ; Ping J. F. ; Zhang Z. C. ; Lu Q. P. ; Yu Y. F. ; Xu H. ; Zhao Y.L. ; Zhang H Adv. Mater 2015, 27, 7372.
53 Zhong Y. ; Wang Z. X. ; Zhang R. F. ; Bai F. ; Wu H. M. ; Haddad R. ; Fan H. Y ACS Nano 2014, 8, 827.
54 Shen M. ; Zhu X. H. ; Bard A. J J. Am. Chem. Soc 2013, 135, 8868.
55 Suk J. ; Wu Z. Y. ; Wang L. ; Bard A. J J. Am. Chem. Soc 2011, 133, 14675.
56 Fu H. B. ; Yao J. N J. Am. Chem. Soc 2001, 123, 1434.
57 An B. K. ; Kwon S. K. ; Jung S. D. ; Park S. Y J. Am. Chem. Soc 2002, 124, 14410.
58 Gesquiere A. J. ; Uwada T. ; Asahi T. ; Masuhara H. ; Barbara P. F Nano Lett 2005, 5, 71321.
59 Lee S. J. ; Hupp J. T. ; Nguyen S. T J. Am. Chem. Soc 2008, 130, 9632.
60 Hasobe T. ; Oki H. ; Sandanayaka A. S. D. ; Murata H Chem. Commun 2008, No. 6, 724.
61 Wang R. M. ; Zhu R. F. ; He Y. F. ; Li Y. ; Mao C.W. ; He N P. Prog. Chem 2010, 22, 1952.
61 王荣民; 朱永峰; 何玉凤; 李岩; 毛崇武; 何乃普. 化学进展, 2010, 22, 1952.
62 Shi N. E. ; Yin G. ; Wei X.W. ; Xu Z Carbon 2009, 47, 534.
63 Drain C. M. ; Batteas J. D. ; Flynn G.W. ; Milic T. ; Chi N. ; Yablon D. G. ; Sommers H Proc. Natl. Acad. Sci. U. S. A 2002, 99 (Suppl. 2), 6498.
64 Drain C. M. ; Lehn J. M J. Chem. Soc., Chem. Commun 1994, 503, 2313.
65 Drain C. M. ; Nifiatis F. ; Vasenko A. ; Batteas J. D Angew. Chem. Int. Edit 1998, 37, 2344.
66 Milic T. ; Garno J. C. ; Batteas J. D. ; Smeureanu G. ; Drain C M. Langmuir 2004, 20, 3974.
67 Singh V. ; Joung D. ; Zhai L. ; Das S. ; Khondaker S. I. ; Seal S Prog. Mater. Sci 2011, 56, 1178.
68 Xu Y. X. ; Zhao L. ; Bai H. ; Hong W. J. ; Li C. ; Shi G. Q J. Am. Chem. Soc 2009, 131, 13490.
69 Huang D. K. ; Lu J. F. ; Li S. H. ; Luo Y. P. ; Zhao C. ; Hu B. ; Wang M. K. ; Shen Y Langmuir 2014, 30, 6990.
70 Mao B. Y. ; Calatayud D. G. ; Mirabello V. ; Hodges B. J. ; Martins J. A. R. ; Botchway S.W. ; Mitchels J. M. ; Pascu S. I Adv. Funct. Mater 2016, 26, 687.
71 Xu H. ; Wu P. ; Liao C. ; Lv C. G. ; Gu Z. Z Chem. Commun 2014, 50, 8951.
72 Karuppiah C. ; Sakthinathan S. ; Chen S. M. ; Manibalan K. ; Chen S. M. ; Huang S. T Appl. Organometal. Chem 2016, 30, 40.
73 Montes C. J. ; Ojeda M. L. ; Gonzalez F. ; García-Sanchez M.A. ; Rojas F. ; Velasquez C Nano 2015, 10 (4), 1550057.
74 Jahan M. ; Bao Q. L. ; Loh K. P J. Am. Chem. Soc 2012, 134, 6707.
75 Kim S. J. ; Song W. ; Kim S. ; Kang M. A. ; Myung S. ; Lee S.S. ; Lim J. ; An K. S Nanotechnology 2016, 27 (7), 075709.
76 Tsuruoka T. ; Furukawa S. ; Takashima Y. ; Yoshida K. ; Isoda S. ; Kitagawa S Angew. Chem. Int. Edit 2009, 48, 4739.
77 Guo H. L. ; Zhu Y. Z. ; Qiu S. L. ; Lercher J. A. ; Zhang H. J Adv. Mater 2010, 22, 4190.
78 Puzder A. ; Williamson A. J. ; Zaitseva N. ; Galli G. ; Manna L. ; Alivisatos A. P Nano Lett. 2004, 4, 2361.
79 Yin Y. D. ; Alivisatos A. P Nature 2005, 437, 664.
80 Lin Z. Q. ; Sun P. J. ; Tay Y. Y. ; Liang J. ; Liu Y. ; Shi N. E. ; Xie L. H. ; Yi M. D. ; Qian Y. ; Fan Q. L. ; Zhang H. ; Hng H.H. ; Ma J. ; Zhang Q. C. ; Huang W ACS Nano 2012, 6, 5309.
81 Yang S. H. ; Lin Z. Q. ; Shi N. E. ; Jin L. Z. ; Yu M. N. ; Xie L. H. ; Yi M. D. ; Huang W CrystEngComm 2015, 17, 1448.
82 Zhao J. ; Wang Y. N. ; Dong W.W. ; Wu Y. P. ; Li D. S. ; Liu B. ; Zhang Q. C Chem. Commun 2015, 51, 9479.
83 Lu H. S. ; Bai L. ; Xiong W.W. ; Li P. Z. ; Ding J. F. ; Zhang G. D. ; Wu T. Zhao ; Y. L. ; Lee J. M. ; Yang Y. H. ; Geng B. Y. ; Zhang Q. C Inorg. Chem 2014, 53, 8529.
84 Xiong W.W. ; Zhang Q. C Angew. Chem. Int. Edit 2015, 54, 11616.
85 Kang L. T. ; Fu H. B. ; Cao X. Q. ; Shi Q. ; Yao J. N J. Am. Chem. Soc 2011, 133, 1895.
86 Qiu Y. F. ; Chen P. L. ; Liu M. H J. Am. Chem. Soc 2010, 132, 9644.
87 Guo P. P. ; Zhao G. Y. ; Chen P. L. ; Lei B. ; Jiang L. ; Zhang H. T. ; Hu W. P. ; Liu M. H ACS Nano 2014, 8, 3402.
88 Sun W. ; Wang H. L. ; Qi D. D. ; Wang L. ; Wang K. ; Kan J.L. ; Li W. J. ; Chen Y. L. ; Jiang J. Z CrystEngComm 2012, 14, 7780.
89 Zhang Z. G. ; Li X. Y. ; Zhao Q. D. ; Ke J. ; Shi Y. ; Ndokoye P. ; Wang L. Z J. Colloid Interface Sci 2014, 432, 229.
90 Cai J. H. ; Chen S. R. ; Cui L. Y. ; Chen C. C. ; Su B. ; Dong X. ; Chen P. L. ; Wang J. X. ; Wang D. J. ; Song Y. L. ; Jiang L Adv. Mater. Interfaces 2015, 2, 1400365.
91 Wang T. ; Chen S. R. ; Jin F. ; Cai J. H. ; Cui L. Y. ; Zheng Y.M. ; Wang J. X. ; Song Y. L. ; Jiang L Chem. Commun 2015, 51, 1367.
92 Cai J. H. ; Wang T. ; Wang J. X. ; Song Y. ; Jiang L J. Mater. Chem. C 2015, 3, 2445.
93 Wang T. ; Kuang M. X. ; Jin F. ; Cai J. H. ; Shi L. ; Zheng Y.M. ; Wang J. X. ; Jiang L Chem. Commun 2016, 52, 3619.
94 Bétard A. ; Fischer R. A Chem. Rev 2012, 112, 1055.
95 Xu G. ; Yamada T. ; Otsubo K. ; Sakaida S. ; Kitagawa H J. Am. Chem. Soc 2012, 134, 16524.
96 Shekhah O. ; Liu J. ; Fischer R. A. ; Wo?ll C Chem. Soc. Rev 2011, 40, 1081.
97 Zacher D. ; Shekhah O. ; W?ll C. ; Fischer R. A Chem. Soc. Rev 2009, 38, 1418.
98 Chen X. D. ; Li L. ; Liu M. H Langmuir 2002, 18, 4449.
99 Makiura R. ; Motoyama S. ; Umemura Y. ; Yamanaka H. ; Sakata O. ; Kitagawa H Nat. Mater 2010, 9, 565.
100 Makiura R. ; Konovalov O Sci. Rep 2013, 3, 2506.
101 Qian D. J. ; Wakayama T. ; Nakamura C. ; Miyake J J. Phys. Chem. B 2003, 107, 3333.
102 So M. C. ; Jin S. Y. ; Son H. J. ; Wiederrecht G. P. ; Farha O.K. ; Hupp J. T J. Am. Chem. Soc 2013, 135, 15698.
103 Bhattacharjee J. ; Banik S. ; Hussain S. ; Bhattacharjee D Chem. Phys. Lett 2015, 633, 82.
104 Zhang C. ; Li X. Q. ; Kang S. Z. ; Qin L. X. ; Li G. D. ; Mu J Chem. Commun 2014, 50, 906.
105 Jiang S. G. ; Liu M. H. J Phys. Chem. B 2004, 108, 2880.
106 Shekhah O. ; Wang H. ; Kowarik S. ; Schreiber F. ; Paulus M. ; Tolan M. ; Sternemann C. ; Evers F. ; Zacher D. ; Fischer R.A. ; W?ll C J. Am. Chem. Soc 2007, 129, 15118.
107 Zacher D. ; Yusenko K. ; Betard A. ; Henke S. ; Molon M. ; Ladnorg T. ; Shekhah O. ; Schupbach B. ; Arcos T. D. L. ; Krasnopolski M. ; Meilikhov M. ; Winter J. ; Terfort A. ; W?ll C. ; Fischer R. A Chem. Eur. J 2011, 17, 1448.
108 Liu B. ; Qian D. J. ; Huang H. X. ; Wakayama T. ; Hara S. ; Huang W. ; Nakamura C. ; Miyake J Langmuir 2005, 21, 5079.
109 Shi N. E. ; Yin G. ; Han M. ; Jiang L. ; Xu Z Chem. Eur. J. 2008, 14, 6255.
110 Chen P. L. ; Ma X. G. ; Duan P. F. ; Liu M. H ChemPhysChem 2006, 7, 2419.
111 Zhang Y. Q. ; Chen P. L. ; Liu M. H Chem. Eur. J 2008, 14, 1793.
112 Yu W. ; Li Z. S. ; Wang T. Y. ; Liu M. H J. Colloid Interface Sci 2008, 326, 460.
113 Liu L. ; Li Y. G. ; Liu M. H J. Phys. Chem. C 2008, 112, 4861.
114 Wilmer C. E. ; Sarjeant A. A. ; Schatz G. C. ; Snurr R. Q. ; Farha O. K. ; Wiederrecht G. P. ; Hupp J. T J. Am. Chem. Soc 2013, 135, 862.
115 Cherian S. ; Wamser C. C J. Phys. Chem. B 2000, 104, 3624.
116 Wang Q. ; Campbell W. M. ; Bonfantani E. E. ; Jolley K.W. ; Officer D. L. ; Walsh P. J. ; Gordon K. ; Humphry-Baker R. ; Nazeeruddin M. K. ; Gr?tzel M J. Phys. Chem. B 2005, 109, 15397.
117 Campbell W. M. ; Jolley K.W. ; Wagner P. ; Wagner K. ; Walsh P. J. ; Gordon K. C. ; Schmidt-Mende L. ; Nazeeruddin M. K. ; Wang Q. ; Gr?tzel ; M. Officer D. L J. Phys. Chem. C 2007, 111, 11760.
118 Bessho T. ; Zakeeruddin S. M. ; Yeh C. Y. ; Diau E.W. G. ; Gr?tzel M Angew. Chem. Int. Edit 2010, 49, 6646.
119 Yella A. ; Lee H.W. ; Tsao H. N. ; Yi C. Y. ; Chandiran A. K. ; Nazeeruddin M. K. ; Diau E.W. G. ; Yeh C. Y. ; Zakeeruddin S. M. ; Gr?tzel M Science 2011, 334, 629.
120 Mathew S. ; Yella A. ; Gao P. ; Humphry-Baker R. ; Curchod B. F. E. ; Ashari-Astani N. ; Tavernelli I. ; Rothlisberger U. ; Nazeeruddin M. K. ; Gr?tzel M Nat. Chem 2014, 6, 242.
121 Wu L. ; Wang J. S. ; Feng L. Y. ; Ren J. S. ; Wei W. L. ; Qu X. G Adv. Mater 2012, 24, 2447.
[1] ZHAO Mingyu, ZHU Lin, FU Bowen, JIANG Suhua, ZHOU Yongning, SONG Yun. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199.
[2] Xi CHEN,Shengli ZHANG. Modulation of Molecular Sensing Properties of Graphdiyne Based on 3d Impurities[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1061-1073.
[3] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 414-423.
[4] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 344-347.
[5] Hui WANG,De-Chun ZOU. Polyol-Mediated Synthesis of MoS2 Nanosheets Using Sulfur Powder as the Sulfur Source[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1027-1032.
[6] Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 869-885.
[7] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[8] Meng-Qi ZENG,Tao ZHANG,Li-Fang TAN,Lei FU. Liquid Metal Catalyst: Philosopher's Stone of Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 464-475.
[9] Ren-Jun MA,Qian-Jin GUO,Bo-Xuan LI,An-Dong XIA. Triplet Excited State Dynamics of Porphyrin in Ionic Liquid [Bmim][BF4][J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2191-2198.
[10] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2022-2028.
[11] Xu-Qiang HAO,Hao YANG,Zhi-Liang JIN,Jing XU,Shi-Xiong MIN,Gong-Xuan Lü. Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2581-2592.
[12] Cheng-Cheng CHEN,Ning ZHANG,Yong-Chang LIU,Yi-Jing WANG,Jun CHEN. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 349-355.
[13] Yan-Zhong. HAO,Zhi-Min. GUO,Bao. SUN,Juan. PEI,Shang-Xin. WANG,Ying-Pin. LI. Photoelectrochemical Properties of Hierarchical ZnO Nanosheets Micro-Nanostructure Modified with Sb2S3 Nanoparticles[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2109-2116.
[14] Lan-Lan. ZHANG,Yu. SONG,Guo-Dong. LI,Shao-Long. ZHANG,Yun-Shan. SHANG,Yan-Jun. GONG. ZSM-5 Zeolite with Micro-Mesoporous Structures Synthesized Using Different Templates for Methanol to Propylene Reaction[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2139-2150.
[15] ZHANG Shao-Long, ZHANG Lan-Lan, WANG Wu-Gang, MIN Yuan-Yuan, MATong, SONG Yu, GONG Yan-Jun, DOU Tao. Methanol to Propylene over Nanosheets of HZSM-5 Zeolite[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 535-543.