Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (10): 2538-2544    DOI: 10.3866/PKU.WHXB201607202
ARTICLE     
Electrochemical Formation of Al-Tb Alloys from Tb4O7 Fluorinated by AlF3 in NaCl-KCl Melts
Wei HAN*(),Nan JI,Mei LI*(),Shan-Shan WANG,Xiao-Guang YANG,Mi-Lin ZHANG,Yong-De YAN
Download: HTML     PDF(3171KB) Export: BibTeX | EndNote (RIS)      

Abstract  

To prepare Al-Tb alloys from Tb4O7 assisted by AlF3 in NaCl-KCl melts, we initially studied the effect of AlF3 on the dissolution of Tb4O7 by analyzing the supernatant and bottom salts. X-ray diffraction (XRD) results revealed that Tb4O7 was fluorinated by AlF3 to form TbF3. The electrochemical behavior of the NaCl-KCl-AlF3-Tb4O7 system was investigated using a Mo electrode at 1073 K. Cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and open circuit chronopotentiometry (OCP) analyses indicated that the under-potential deposition of Tb(III) occurred on pre-deposited Al. The co-deposition of Al-Tb alloys was investigated by galvanostatic electrolysis under different conditions. These samples were characterized by XRD and scanning electron microscopy and energy dispersive spectrometry (SEM-EDS). The Al-Tb alloy obtained by galvanostatic electrolysis at -2.5 A consisted of Al and Al3Tb phases. The effects of the electrolysis conditions on the composition of the alloy and current efficiency were studied by analyzing the compositions of the Al-Tb alloys by inductively coupled plasma-atomic emission spectrometer (ICP-AES). The current efficiency could reach 76.5% under the conditions of galvanostatic electrolysis at -1.5 A for 2 h.



Key wordsElectrochemical behavior      Tb4O7      Co-reduction      NaCl-KCl melt      Al-Tb alloy      Current efficiency     
Received: 19 May 2016      Published: 20 July 2016
MSC2000:  O646  
Fund:  The project was supported by the National Natural Science Foundation of China(21271054,11575047,21173060);Major Research Plan of the National Natural Science Foundation of China(91326113,91226201);and Fundamental Research Funds for the Central Universities, China(HEUCF2016012)
Corresponding Authors: Wei HAN,Mei LI     E-mail: weihan@hrbeu.edu.cn;meili@hrbeu.edu.cn
Cite this article:

Wei HAN,Nan JI,Mei LI,Shan-Shan WANG,Xiao-Guang YANG,Mi-Lin ZHANG,Yong-De YAN. Electrochemical Formation of Al-Tb Alloys from Tb4O7 Fluorinated by AlF3 in NaCl-KCl Melts. Acta Physico-Chimica Sinca, 2016, 32(10): 2538-2544.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201607202     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2538

Fig 1 Cylic voltammograms obtained in NaCl-KCl melts before and after the addition of Tb4O7 or TbCl3 on Mo electrode (S = 0.31 cm2) at 1073 K
Fig 2 Cylic voltammograms obtained in NaCl-KCl-Tb4O7-AlF3 system on a Mo electrode (S = 0.31 cm2)
Fig 3 XR patterns of the bottom salts from NaCl-KCl-Tb4O7 melts after heating 2 h at 1073 K (a); the supernatant salts (b) and bottom salts (c) from NaCl-KCl-AlF3-Tb4O7 system after heating 2 h at 1073 K
Fig 4 Coparison of square wave voltammograms obtained in the NaCl-KCl-TbCl3 3%(w) melts (a), NaCl-KCl-AlF3 5.5%(w) melts (b), and NaCl-KCl-AlF3 5.5%(w)-Tb4O7 3%(w) system (c) potential step: 1 mV; T = 1073 K; electrode: Mo (S = 0.31 cm2); frequency: 20 Hz. color online
Fig 5 Chonopotentiograms obtained at different current intensities on Mo electrode (S = 0.31 cm2) in the NaCl-KCl-AlF3 5.5%(w)-Tb4O7 3%(w) system at 1073 K
Fig 6 Opn circuit chronopotentiogram obtained on Mo electrode (S = 0.31 cm2) after potentiostatic electrolysis at -2.3 V (vs Ag/AgCl) for 35 s in the NaCl-KCl-AlF3 5.5%(w)-Tb4O7 3%(w)system at 1073 K
Fig 7 XR patterns of Al-Tb alloy obtained in the NaCl-KCl-AlF3 5.5%(w)-Tb4O7 3%(w) system by galvanostatic electrolysis at -2.5 A for 2 h at 1073 K on a Mo electrode (S = 0.31 cm2)
Fig 8 SE-EDS analysis of the Al-Tb alloy obtained by galvanostatic electrolysis at -2.5 A for 2 h in the NaCl-KCl-AlF3 5.5%(w)-Tb4O7 3%(w) system at 1073 K on a Mo electrode (S = 0.31 cm2)
Fig 9 ED point analysis of the Al-Tb alloy obtained by galvanostatic electrolysis at -2.5 A for 2 h in the NaCl-KCl-AlF3 5.5%(w)-Tb4O7 3%(w) system at 1073 K on a Mo electrode (S = 0.31 cm2)
SampleT/KCurrent/AElectrolysis time/hAl-Tb alloy compositionCurrent efficie cy/%
wTb/%wAl/%
11023-1.5220.279.852.6
21073-1.0218.881.263.2
31073-1.5223.776.376.5
41073-2.0226.473.670.1
51073-2.5229.670.468.9
61073-3.0231.968.152.1
71073-1.5110.389.748.9
81073-1.51.517.682.467.3
91073-1.52.524.275.868.1
101073-1.5322.677.455.8
111123-1.5236.963.166.7
121173-1.5237.162.956.3
Table 1 IC-AES analyses of all samples obtained by galvanostatic electrolysis under different conditions on a Mo electrode (S = 0.31cm2) in the NaCl-KCl-AlF3 5.5%(w)-Tb4O7 3%(w) system
1 Li Y. M. ; Wang F. L. ; Zhang M. L. ; Han W. Tian Y J. Rare Earths 2011, 29, 378.
2 Uda T. ; Jacob K. T. ; Hirasawa M Science 2000, 289, 2326.
3 Maestro P. ; Huguenin D J. Alloy. Compd. 1995, 225, 520.
4 Lundin R. ; Wilson J. R Adv. Mater. Proce. 2000, 158 (1), 52.
5 Ping D. ; Hono K. ; Inoue A Metall. Mater. Trans. A 2000, 31, 607.
6 Gschneidner K. A. ; Eyring L Handbook on the Physics and Chemistry of Rare Earths; Elsevier: North Holland 1998, Vol.25, pp 83- 99.
7 Konishi H. ; Nohira T. ; Ito Y Electrochim. Acta 2003, 48, 563.
8 Iida T. ; Nohira T. ; Ito Y Electrochim. Acta 2003, 48, 1531.
9 Castrillejo Y. ; Bermejo R. ; Martínez A. M. ; Barrado E. ; DíazArocas P J. Nucl. Mater. 2007, 360, 32.
10 Yang X. N. ; Yan Y. D. ; Zhang M. L. ; Li X. ; Xue Y. ; Han W Acta Phys. -Chim. Sin. 2015, 31 (5), 920.
10 杨晓南; 颜永得; 张密林; 李星; 薛云; 韩伟. 物理化学学报, 2015, 31 (5), 920.
11 Serp J. ; Allibert M. ; Leterrier A. ; Malmbeck R. ; Ougier M. ; Rebizant J. ; Glatz J. P J. Electrochem. Soc. 2005, 152, 167.
12 Castrillejo Y. ; Fernández P. ; Medina J. ; Hernández P. ; Barrado E Electrochim. Acta 2011, 56, 8638.
13 Bermejo M. R. ; Gómez J. ; Medina J. ; Martínez A. M. ; Castrillejo Y J. Electroanal. Chem. 2006, 588, 253.
14 Castrillejo Y. ; Bermejo M. R. ; Barrado E. ; Martínez A. M Electrochim. Acta 2006, 51, 1941.
15 Cassayre L. ; Malmbeck R. ; Masset P. ; Rebizant J. ; Serp J. ; Soucek P. ; Glatz J. P J. Nucl. Mater. 2007, 360, 49.
16 Castrillejo Y. ; Vega A. ; Vega M. ; Hernández P. ; Rodriguez J.A. ; Barrado E Electrochim. Acta 2014, 118, 58.
17 Castrillejo Y. ; Fernndez P. ; Medina J. ; Vega M. ; Barrado E Electroanalysis 2011, 23, 222.
18 Bermejo M. R. ; Barrado E. ; Martínez A. M. ; Castrillejo Y J. Electroanal. Chem. 2008, 617, 85.
19 Li M. ; Gu Q. Q. ; Han W. ; Yan Y. D. ; Zhang M. L. ; Sun Y. ; Shi W. Q Electrochim. Acta 2015, 167, 139.
20 Gibilaro M. ; Massot L. ; Chamelot P. ; Taxil P Electrochim. Acta 2009, 54, 5300.
21 Gibilaro M. ; Massot L. ; Chamelot P. ; Taxil P J. Nucl. Mater. 2008, 382, 39.
22 Gibilaro M. ; Massot L. ; Chamelot P. ; Cassayre L. ; Taxil P Electrochim. Acta 2009, 55, 281.
23 Castrillejo Y. ; Fernández P. ; Medina J. ; Hernández P. ; Barrado E Electrochim. Acta 2011, 56, 8638.
24 Castrillejo Y. ; Fernández P. ; Medina J. ; Vega M. ; Barrado E Electroanalysis 2011, 23, 222.
25 Kuznetsova S. A. ; Gaune-Escard M J. Nucl. Mater. 2009, 389, 108.
26 Liu Y. L. ; Yuan L. Y. ; Ye G. A. ; Liu K. ; Zhu L. ; Zhang M.L. ; Chai Z. F. ; Shi W. Q Electrochim. Acta 2014, 147, 104.
27 Zhang M. ; Wang H. Y. ; Han W. ; Zhang M. L. ; Li Y. N. ; Wang Y. L. ; Xue Y. ; Ma F. Q. ; Zhang X. M Sci. China Chem. 2014, 57 (11), 1477.
28 Tang H. ; Yan Y. D. ; Zhang M. L. ; Li X. ; Huang Y. ; Xu Y. L. ; Xue Y. ; Han W. ; Zhang Z. J Electrochim. Acta 2013, 88, 457.
29 Liu K. ; Liu Y. L. ; Yuan L. Y. ; He H. ; Yang Z. Y. ; Zhao X. L. ; Chai Z. F. ; Shi W. Q Electrochim. Acta 2014, 129, 401.
30 Yan Y. D. ; Tang H. ; Zhang M. L. ; Xue Y. ; Han W. ; Cao D.X. ; Zhang Z. J Electrochim. Acta 2012, 59, 531.
31 Yan Y. D. ; Li X. ; Zhang M. L. ; Tang H. ; Han W. ; Xue Y. ; Zhang Z. J Energy Procedia 2013, 39, 408.
32 Liu K. ; Liu Y. L. ; Yuan L. Y. ; Zhao X. L. ; Chai Z. F. ; Shi W Q. Electrochim. Acta 2013, 109, 732.
33 Luo L. X. ; Liu Y. L. ; Liu N. ; Liu K. ; Yuan L. Y. ; Chai Z. F. ; Shi W. Q RSC Adv. 2015, 5, 69134.
34 Su L. L. ; Liu K. ; Liu Y. L. ; Wang L. ; Yuan L. Y. ; Wang L. ; Li Z. J. ; Zhao X. L. ; Chai Z. F. ; Shi W. Q Electrochim. Acta 2014, 147, 87.
35 Bermejo M. R. ; Gomez J. ; Martinez A. M. ; Barrado E. ; Castrillejo Y Electrochim. Acta 2008, 53, 5106.
36 Kim B. Y. ; Lee D. H. ; Lee J. Y. ; Yun J Electrochem. Commun. 2010, 12, 1005.
37 Rayaprolu D. ; Chidambaram S ECS Trans. 2014, 58, 51.
38 Castrillejo Y. ; Hernández P. ; Fernández R. ; Barrado E Electrochim. Acta 2014, 147, 743.
39 Han W. ; Sheng Q. N. ; Zhang M. L. ; Li M. ; Sun T. T. ; Liu Y.C. ; Ye K. ; Yan Y. D. ; Wang Y. C Metall. Mater. Trans. B 2014, 45, 929.
40 Jia Y. H. ; He H. ; Lin R. H. ; Tang H. B. ; Wang Y. Q J. Rad. Nucl. Chem. 2015, 303, 1763.
41 Kuznetsov S. A. ; Gaune-Escard M Electrochim. Acta 2001, 46, 1101.
42 Sahoo D. K. ; Satpati A. K. ; Krishnamurthy N RSC Adv. 2015, 5, 3163.
43 Kang Z. C. ; Eyring L J. Alloy. Compd. 1997, 249, 206.
[1] JIANG Tao, PENG Shu-Ming, LI Mei, PEI Ting-Ting, HAN Wei, SUN Yang, ZHANG Mi-Lin. Electrochemical Behavior of Pr(Ⅲ) Ions on a Bi-Coated W Electrode in LiCl-KCl Melts[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1708-1714.
[2] CHEN Jun-Jie, XIAO Qian, Lü Zhan-Peng, AHSAN Ejaz, XIA Xiao-Feng, LIU Ting-Guang. Effects of Sulfate Ions on Anodic Dissolution and Passivity of Iron in Slightly Alkaline Solutions[J]. Acta Physico-Chimica Sinca, 2015, 31(6): 1093-1104.
[3] TANG Yan, ZHONG Yan-Jun, OU Qing-Zhu, LIU Heng, ZHONG Ben-He, GUO Xiao-Dong, WANG Xin-Long. Electrochemical Behavior and Reasons for the Decrease in Capacity of the Li3V2(PO4)3/C Cathode Material in Different Voltage Ranges[J]. Acta Physico-Chimica Sinca, 2015, 31(2): 277-284.
[4] LI Mei, SUN Ting-Ting, LIU Bin, HAN Wei, SUN Yang, ZHANG Mi-Lin. Electrochemical Behavior of Dy(Ⅲ) and the Selective Formation of Dy-Ni Intermetallic Compounds in LiCl-KCl Eutectic Melts[J]. Acta Physico-Chimica Sinca, 2015, 31(2): 309-314.
[5] WANG Wan-Li, MA Zi-Feng. Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reduction Reactions[J]. Acta Physico-Chimica Sinca, 2012, 28(12): 2879-2884.
[6] HU Jia-Yuan, CAO Shun-An, XIE Jian-Li. Effect of Rust Layer on the Corrosion Behavior of Carbon Steel in Reverse Osmosis Product Water[J]. Acta Physico-Chimica Sinca, 2012, 28(05): 1153-1162.
[7] SHI Yan-Hua, MENG Hui-Min. Electrochemical Behavior of IrO2 Electrodes in the Anodic Electrodeposition of MnO2[J]. Acta Physico-Chimica Sinca, 2011, 27(02): 461-467.
[8] ZOU Yan, WANG Jia, ZHENG Ying-Ying. Electrochemical Corrosion Behaviors of Rusted Carbon Steel[J]. Acta Physico-Chimica Sinca, 2010, 26(09): 2361-2368.
[9] HU Jia-Qi, KUANG Ya-Fei, ZHOU Hai-Hui, SUN Lu, HAN Xue, ZHANG Ning-Shuang, CHEN Jin-Hua. Conductivity of AOT/Triton X-100 Mixed Reverse Micelles[J]. Acta Physico-Chimica Sinca, 2010, 26(08): 2205-2210.
[10] QU Jun-E; GUO Xing-Peng; ZHANG Jin-Zhi; CAI Shi-Gan. Electrochemical Behavior and Micro Adhesive Force Characteristic of Corrosion Inhibition Film[J]. Acta Physico-Chimica Sinca, 2008, 24(08): 1507-1512.
[11] TU Xiao-Hua; CHU You-Qun; MA Chun-An; MO Yi-Ping; CHEN Zhao-Yang. Electrochemical Behavior of Aluminium Electrode in LiNO3-KNO3 Molten Salt[J]. Acta Physico-Chimica Sinca, 2008, 24(04): 665-669.
[12] HE Wei-Chun; SHAO Hai-Bo; CHEN Quan-Qi; WANG Jian-Ming; ZHANG Jian-Qing. Polarization Characteristic of Iron Anode in the Concentrated NaOH Solution[J]. Acta Physico-Chimica Sinca, 2007, 23(10): 1525-1530.
[13] YU Qing-Hong;ZHOU Ming-Hua;LEI Le-Cheng. Novel Gas Diffusion Electrode System for Effective Production of Hydrogen Peroxide[J]. Acta Physico-Chimica Sinca, 2006, 22(07): 883-887.
[14] MA Chun-An;SHENG Jiang-Feng;WANG Xiao-Juan;ZHANG Cheng;WANG Lian-Bang. Electrochemical Behavior of Nitrobenzene on Pt Micro-disk Electrode in Aprotic Medium[J]. Acta Physico-Chimica Sinca, 2006, 22(05): 635-637.
[15] Tong Ye-Xiang, Kang Bei-Sheng, Su Jing-Yu, Chen Zhong-Ning, Su Cheng-Yong, Zhang Hua-Xin. Electrochemical Behavior of Structural Units Co(PPh3)2Cl2 and Co(PPh3)3Cl[J]. Acta Physico-Chimica Sinca, 1998, 14(03): 254-256.