Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (11): 2685-2692    DOI: 10.3866/PKU.WHXB201607212
ARTICLE     
Anharmonic Effect of the Decomposition Reaction of Methyl Butanoate
Yang DING1,Li-Guo SONG1,Yi-Xuan YU1,Li YAO1,*(),Sheng-Hsien LIN2
1 Marine Engineering College, Dalian Maritime University, Dalian 116026, P. R. China
2 Department of Applied Chemistry, National Chiao-Tung University, Hsin-chu 10764, Taiwan, P. R. China
Download: HTML     PDF(3255KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this paper, we have used the MP2/6-311++G(2d, 2p) method to conduct a detailed investigation of the potential energy surface for the unimolecular dissociation reaction of methyl butanoate (MB). We have also used the Rice-Ramsperger-Kassel-Marcus (RRKM) theory to calculate the rate constants of the canonical and microcanonical systems at temperatures and total energies ranging from 1000 to 5000 K and 451.92 to 1519.52 kJ·mol-1, respectively. The results indicated that there was an obvious anharmonic effect for the TS2, TS4 and TS5 pathways, and that this effect was too pronounced to be neglected for the unimolecular dissociation reactions of MB.



Key wordsAnharmonic effect      Unimolecular decomposition reaction      RRKM theory      Rate constant     
Received: 16 March 2016      Published: 21 July 2016
MSC2000:  O643  
Fund:  the Major Research Plan of the National Natural Science Foundation of China(91441132);Fundamental Research Funds for the Central Universities, China(3132016127);Fundamental Research Funds for the Central Universities, China(3132016326)
Corresponding Authors: Li YAO     E-mail: yaoli@dlmu.edu.cn
Cite this article:

Yang DING,Li-Guo SONG,Yi-Xuan YU,Li YAO,Sheng-Hsien LIN. Anharmonic Effect of the Decomposition Reaction of Methyl Butanoate. Acta Phys. -Chim. Sin., 2016, 32(11): 2685-2692.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201607212     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2685

 
Zero-point energy/hartree Imaginary frequency Energy(MP2)/hartree Single-point energy (CCSD(T))/hartree Barrier/(kJ·mol-1)
CH3CH2CH2(=O)OCH3 0.1490391 -346.2231611 -346.3223002
TS1 0.1411229 -925.2677i -346.1095884 -346.2049041 287.6315798
TS2 0.1428928 -2075.1028i -346.0987134 -346.1952403 317.6708216
TS3 0.1410410 -1731.5605i -346.1053901 -346.1979669 305.6421988
TS4 0.1423861 -1155.0243i -346.0974823 -346.1944147 318.5086531
TS5 0.1429354 -1282.3627i -346.0598490 -346.1580523 415.4850898
TS6 0.1399518 -1605.0067i -346.0483269 -346.1453286 441.0748130
 
Temperature/K Total energy Anharmonic rate
constant/s-1
Harmonic rate
constant/s-1
(kJ·mol-1)
1000 148.51 5.46 × 10-4 2.35 × 10-4
1500 291.61 3.48 × 102 1.05 × 102
2000 452.05 3.14 × 105 7.39 × 104
2500 621.70 2.01 × 107 3.81 × 106
3000 796.62 3.41 × 108 5.33 × 107
3500 974.77 2.70 × 109 3.51 × 108
4000 1155.05 1.33 × 1010 1.45 × 109
4500 1336.80 4.73 × 1010 4.37 × 109
5000 1519.56 1.34 × 1011 1.06 × 1010
 
Total energy/(kJ·mol-1) Anharmonic rate constant/s-1 Harmonic rate constant/s-1
452.05 1.46 × 102 5.10 × 101
621.70 4.60 × 105 9.40 × 104
796.62 3.53 × 107 5.51 × 106
974.77 5.85 × 108 7.60 × 107
1155.05 4.30 × 109 4.84 × 108
1336.80 1.94 × 1010 1.92 × 109
1519.56 6.36 × 1010 5.60 × 109
 
 
Temperature/K TS3 TS4
Anharmonic rate constant/s-1 Harmonic rate constant/s-1 Anharmonic rate constant/s-1 Harmonic rate constant/s-1
1000 8.98 × 10-3 3.78 × 10-3 3.14 × 10-4 1.53 × 10-4
1500 3.49 × 103 1.22 × 103 2.48 × 102 7.10 × 101
2000 2.42 × 106 7.30 × 105 2.86 × 105 5.03 × 104
2500 1.31 × 108 3.41 × 107 2.26 × 107 2.63 × 106
3000 1.94 × 109 4.40 × 108 4.53 × 108 3.71 × 107
3500 1.36 × 1010 2.82 × 109 4.04 × 109 2.47 × 108
4000 5.94 × 1010 1.13 × 1010 2.15 × 1010 1.02 × 109
4500 1.86 × 1011 3.30 × 1010 7.99 × 1010 3.10 × 109
5000 4.63 × 1011 7.90 × 1010 2.30 × 1011 7.50 × 109
 
Total energy/(kJ·mol-1) TS3 TS4
Anharmonic rate constant/s-1 Harmonic rate constant/s-1 Anharmonic rate constant/s-1 Harmonic rate constant/s-1
452.05 2.59 × 103 8.30 × 102 8.10 × 101 3.20 × 101
621.70 4.44 × 106 1.05 × 106 3.24 × 105 6.31 × 104
796.62 2.61 × 108 5.30 × 107 3.27 × 107 3.76 × 106
974.77 3.68 × 109 6.70 × 108 6.78 × 108 5.26 × 107
1155.05 2.38 × 1010 4.00 × 109 5.91 × 109 3.37 × 108
1336.80 9.57 × 1010 1.53 × 1010 2.99 × 1010 1.35 × 109
1519.56 2.79 × 1011 4.32 × 1010 1.06 × 1011 3.98 × 109
 
 
 
Temperature/K TS1 TS5 TS6
Anharmonic
rateconstant/s-1
Harmonic rate
constant/s-1
Anharmonic
rateconstant/s-1
Harmonic rate
constant/s-1
Anharmonic
rateconstant/s-1
Harmonic rate
constant/s-1
1000 1.19 × 10-2 5.59 × 10-3 2.32 × 10-9 7.94 × 10-10 6.15 × 10-10 6.98 × 10-10
1500 1.93 × 103 8.68 × 102 8.51 × 10-2 1.83 × 10-2 4.46 × 10-2 5.89 × 10-2
2000 9.58 × 105 3.61 × 105 6.26 × 102 9.10 × 101 4.28 × 102 5.68 × 102
2500 4.63 × 107 1.37 × 107 1.48 × 105 1.50 × 104 1.14 × 105 1.42 × 105
3000 6.65 × 108 1.56 × 108 6.16 × 106 4.70 × 105 5.01 × 106 5.67 × 106
3500 4.59 × 109 8.87 × 108 9.38 × 107 5.50 × 106 7.81 × 107 7.93 × 107
4000 1.94 × 1010 3.28 × 109 7.51 × 108 3.40 × 107 6.30 × 108 5.74 × 108
4500 4.78 × 1010 9.08 × 109 3.85 × 109 1.43 × 108 3.24 × 109 2.68 × 109
5000 1.33 × 1011 2.05 × 1010 1.44 × 1010 4.50 × 108 1.20 × 1010 9.20 × 109
 
Total energy/(kJ·mol-1) TS1 TS5 TS6
Anharmonic rate
constant/s-1
Harmonic rate
constant/s-1
Anharmonic rate
constant/s-1
Harmonic rate
constant/s-1
Anharmonic rate
constant/s-1
Harmonic rate
constant/s-1
452.05 3.25 × 103 1.16 × 103 2.73 × 10-6 1.62 × 10-6 5.29 × 10-9 3.26 × 10-9
621.70 2.16 × 106 6.79 × 105 4.70 × 101 8.00 1.72 × 101 1.29 × 101
796.62 9.61 × 107 2.43 × 107 5.44 × 104 5.80 × 103 3.38 × 104 2.72 × 104
974.77 1.26 × 109 2.52 × 108 3.94 × 106 3.00 × 105 2.94 × 106 2.38 × 106
1155.05 8.11 × 109 1.33 × 109 7.53 × 107 4.30 × 106 6.07 × 107 4.80 × 107
11336.8 3.23 × 1010 4.63 × 109 6.67 × 108 0.31 × 108 5.55 × 108 4.23 × 108
1519.56 9.14 × 1010 1.22 × 1010 3.59 × 109 1.37 × 108 3.02 × 109 2.22 × 109
 
 
 
 
TS1 TS2 TS3 TS4 TS5 TS6
Total energy Probability Total energy Probability Total energy Probability Total energy Probability otal energy Probability Total energy Probability
(kJ·mol-1) (kJ·mol-1) (kJ·mol-1) (kJ·mol-1) (kJ·mol-1) (kJ·mol-1)
284.70 1.60 × 10-1 293.08 1.74 × 10-3 293.08 2.10 × 10-2 314.01 1.20 × 10-1 397.75 6.41 × 10-4 418.68 6.00 × 10-4
276.33 1.29 × 10-3 272.14 5.52 × 10-6 272.14 2.28 × 10-5 293.08 6.89 × 10-6 376.81 8.09 × 10-8 397.75 4.64 × 10-7
267.96 5.86 × 10-6 251.21 1.24 × 10-8 251.21 1.34 × 10-8 272.14 2.05 × 10-10 355.88 7.22 × 10-12 376.81 2.85 × 10-10
259.58 1.58 × 10-8 230.27 1.82 × 10-11 230.27 3.39 × 10-12 251.21 3.07 × 10-15 334.94 4.36 × 10-16 355.88 1.38 × 10-13
251.21 1.93 × 10-11 209.34 1.55 × 10-14 209.34 2.25 × 10-16 230.27 1.94 × 10-20 314.01 1.67 × 10-20 334.94 4.88 × 10-17
242.83 5.75 × 10-15 188.41 6.37 × 10-18 188.41 8.03 × 10-22 209.34 3.88 × 10-26 293.08 3.80 × 10-25 314.01 1.28 × 10-20
234.46 2.03 × 10-20 167.47 8.69 × 10-22 180.03 3.71 × 10-25 188.41 1.47 × 10-32 272.14 4.61 × 10-30 293.08 2.33 × 10-24
 
1 Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Tignor M.; Miller, H. L."IPCC, Climate Change 2007: The Physical Science Basis. Contribution ofWorking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change"; Cambridge University Press: Cambridge and New York, 2007; p 996.
2 Robert, L. H.; Roger, B.; Robert, W. AIChE J. 2006, 52(1), 2. doi: 10.1002/aic.10747
3 Gail S. ; Thomson M. J. ; Sarathy S. M. ; Syed S. A. ; Dagaut P. ; Diévart P. ; Marchese A. J. ; Dryer F. L. Proc. Combust. Inst 2007, 31 (1), 305.
4 Metcalfe W. K. ; Dooley S. ; Curran H. J. ; Simmie J. M. ; El-Nahas A. M. ; Navarro M. V. J. Phys. Chem. A 4001, 111 (19), 4001.
5 Huynh L. K. ; Violi A. J. Org Chem 2008, 73 (1), 94.
6 Huynh L. K. ; Lin K. C. ; Violi A. J. Phys. Chem. A 2008, 112 (51), 13470.
7 Westbrook C. K. ; Pitz W. J. ; Curran H. J. J. Phys. Chem. A 2006, 110 (21), 6912.
8 Herbinet O. ; Pitz W. J. ; Westbrook C. K. Combustion and Flame 2008, 154 (4), 507.
9 Hill J. ; Nelson E. ; Tilman D. ; Polasky S. ; Tiffany D. Proc. Natl. Acad. Sci 2006, 103 (30), 11206.
10 Farooqa A. ; Davidson D. F. ; Hanson R. K. ; Huynh L. K. ; Violi A. Proc. Combust. Inst 2009, 32, 247.
11 Dooley S. ; Curran H. J. ; Simmie J. M. Combustion and Flame 2008, 153 (1-2), 2.
12 Fisher E. M. ; Pits W. J. ; Curran H. J. ; Westbrook C. K. Proc. Combust. Inst 2000, 28, 1579.
13 Ali M. A. ; Violi A. J. Org. Chem 2013, 78 (12), 5898.
14 Huynh L. K. ; Violi A. J. Org. Chem 2008, 73 (1), 94.
15 (a) Yao, L.; Mebel, A. M.; Lu, H. F.; Neusser, H. J.; Lin, S. H. J. Phys. Chem. A 2007, 111 (29), 6722. doi: 10.1021/jp069012i(b) Yao, L.; Liu, Y. L.; Lin, S. H. Mod. Phys. Lett. B 2008, 22 (31), 3043. doi: 10.1142/S0217984908017552 (c) Yao, L.; Lin, S. H. Sci. China. Ser. B 2008, 51 (12), 1146. doi: 10.1007/s11426-008-0125-1 (d) Yao, L.; He, R. X.; Mebel, A. M.; Lin, S. H. Chem. Phys. Lett. 2009, 470 (4-6), 210. doi: 10.1016/j.cplett.2009.01.074 (e) Shao, Y.; Yao, L.; Lin, S. H. Chem. Phys. Lett. 2009, 478 (4-6), 277. doi: 10.1016/j.cplett.2009.07.051 (f) Yao, L.; Mebel, A. M.; Lin, S. H. J. Phys. Chem. A 2009, 113 (52), 14664. doi: 10.1021/jp9044379 (g) Shao, Y.; Yao, L.; Mao, Y. C.; Zhong, J. J. Chem. Phys. Lett. 2010, 501 (1-3), 134. doi: 10.1016/j.cplett.2010.10.041 (h) Gu, L. Z.; Yao, L.; Shao, Y.; Yung, K.; Zhong, J. J. J. Theor. Comput. Chem. 2010, 9 (1), 813. doi: 10.1142/S0219633610006006 (i) Gu, L. Z.; Yao, L.; Shao, Y.; Liu, W.; Gao, H. Mol. Phys. 2011, 109 (16), 1983. doi: 10.1080/00268976.2011.602648 (j) Li, Q.; Xia, W.W.; Yao, L.; Shao, Y. Can. J. Chem. 2012, 90 (10), 186. doi: 10.1139/v11-137 (k) Li, Q.; Yao, L.; Shao, Y. CheM 2012, 2 (12), 1. doi: 10.5618/chem.2012.v2.n1.1 (l) Li, Q.; Yao, L.; Shao, Y.; Yang, K. J. Chin. Chem. Soc. 2014, 61 (3), 309. doi: 10.1002/jccs.201300277
16 Gonzalez C. ; Schlegel H. B. J. Chem. Phys 1989, 90 (4), 2154.
17 Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision C.02; Gaussian, Inc.:Wallingford, CT, 2009.
18 Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamic; Prentice-Hall: Englewood Cliffs, NJ, 1989.
19 (a) Forst, W.; Prasil, Z. J. Chem. Phys. 1970, 53 (12), 3065. doi: 10.1063/1.1674450 (b) Forst, W. Chem. Rev. 1971, 71 (4), 339. doi: 10.1021/cr60272a001 (c) Forst, W. Theory of Unimolecular Reactions; Academic Press: New York, 1973.
20 Hoare M. R. ; Ruijgrok T. W. J. Chem. Phys 1970, 52 (1), 113.
21 Eyring H. ; Lin S. H. ; Lin S. M. Basic Chemical Kinetics New York: AWiley-interscience Publication, 1980.
22 Baer T. ; Hase W. L. Unimolecular Reaction Dynamic: Theory and Experiment New York: Oxford University Press, 1996.
23 Gilbert R. G. ; Smith S. C. Theory of Unimolecular and Recombination Reactions Oxford: Blackwell, 1990.
24 El-Nahas A. M. ; Navarro M.V. ; Simmie J. M. ; Bosselli J.W. ; Curran H. J. ; Dooley S. ; Metcalfe W. J. Phys. Chem. A 3727, 111 (19), 3727.
25 Zhang L.W. ; Yao L. ; Li Q. ; Wang G. Q. ; Lin S. H. Molecular Physics 2014, 112 (21), 2853.
26 Miller W. H. J. Am. Chem. Soc 1979, 101 (23), 6810.
[1] Qian YAO,Li-Juan PENG,Ze-Rong LI,Xiang-Yuan LI. Accurate Calculation of the Energy Barriers and Rate Constants of Hydrogen Abstraction from Alkanes by Hydroperoxyl Radical[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 763-768.
[2] Hong-Jing YU,Wen-Wen XIA,Li-Guo SONG,Yang DING,Yu HAO,Li-Qiang KANG,Xin-Xiang PAN,Li YAO. Anharmonic Effect of the Decomposition Reaction in High-Temperature Combustion of Monomethylhydrazine Radicals[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2207-2218.
[3] Tian-Lei ZHANG,Chen YANG,Xu-Kai FENG,Zhu-Qing WANG,Rui WANG,Qiu-Li LIU,Peng ZHANG,Wen-Liang WANG. Theoretical Study on the Atmospheric Reaction of HS with HO2: Mechanism and Rate Constants of the Major Channel[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 701-710.
[4] Niao-Feng DU,Hong-Bo NING,Ze-Rong LI,Qi-Yi ZHANG,Xiang-Yuan LI. Kinetic Calculation and Modeling Study of 1, 3-Butadiene Pyrolysis[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 453-464.
[5] LI Shang-Jun, TAN Ning-Xin, YAO Qian, LI Ze-Rong, LI Xiang-Yuan. Calculation of Rate Constants for Intramolecular Hydrogen Migration Reactions of Alkylperoxy Radicals[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 859-865.
[6] XU Qiong, ZHANG Tian-Lei, Lü Wen-Bin, WANG Rui, WANG Zhi-Yin, WANG Wen-Liang, WANG Zhu-Qing. Theoretical Study on the effect of a Single Water Molecule on the H2O2+Cl Gas Reaction[J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1061-1070.
[7] HU Ren-Zhi, XIE Pin-Hua, ZHANG Qun, SI Fu-Qi, CHEN Yang. Temperature Dependence of C2(a3Пu) Radical Reactions with Sulfur Bearing Molecules[J]. Acta Phys. -Chim. Sin., 2014, 30(5): 797-802.
[8] ZHANG Tian-Lei, WANG Wei-Na, LIU Chang, LU Na, CHEN Miao, GUO Sha, WANG Wen-Liang. Computational Study of the Reaction Mechanism and Kinetics of CH3CHC(CH3)COOCH3 Ozonolysis[J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2313-2320.
[9] CAO Jia, WANG Wen-Liang, GAO Lou-Jun, FU Feng. Mechanism and Thermodynamic Properties of CH3SO3 Decomposition[J]. Acta Phys. -Chim. Sin., 2013, 29(06): 1161-1167.
[10] HU Ren-Zhi, XIE Pin-Hua, ZHANG Qun, SI Fu-Qi, CHEN Yang. Temperature Dependence of C2(X1Σg+) in Reactions with Unsaturated Hydrocarbons[J]. Acta Phys. -Chim. Sin., 2013, 29(04): 683-688.
[11] WANG Bi-Yao, TAN Ning-Xin, YAO Qian, LI Ze-Rong, LI Xiang-Yuan. Accurate Calculation of the Reaction Barriers and Rate Constants of the Pyrolysis of Alkyl Radicals in the β Position Using the Isodesmic Reaction Method[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2824-2830.
[12] FENG Li-Xia, JIN Ling-Xia, WANG Wei-Na, WANG Wen-Liang. Mechanism and Kinetics of the Hydrogen Abstraction Reaction of C2H3 with CH3F[J]. Acta Phys. -Chim. Sin., 2012, 28(07): 1623-1629.
[13] KONG Xiang-Lei. Effects of Mode-Mode Coupling on Vibrational Frequency Blue Shift in Improper H-Bonded Systems[J]. Acta Phys. -Chim. Sin., 2012, 28(02): 303-308.
[14] LI Xiao-Yan, LIU Qun, ZHENG Shi-Jun, MENG Ling-Peng. Mechanisms and Kinetics of the HOSO+NO Reaction[J]. Acta Phys. -Chim. Sin., 2011, 27(03): 564-570.
[15] CUI Feng-Chao, YU Hong-Bo, WANG Qin, YE Wan-Li, LIU Jing-Yao. Mechanism and Kinetics of the CH3OCF2CF2OCH3+Cl Reaction[J]. Acta Phys. -Chim. Sin., 2011, 27(02): 337-342.