Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (10): 2427-2446    DOI: 10.3866/PKU.WHXB201607261
REVIEW     
Advances inWearable and Flexible Conductors Based on Nanocarbon Materials
Kai-Lun XIA,Mu-Qiang JIAN,Ying-Ying ZHANG*()
Download: HTML     PDF(4236KB) Export: BibTeX | EndNote (RIS)      

Abstract  

With the rapid development of wearable devices, flexible conductive materials, which are one of the most important components of flexible electronics, have continued to attract increasing attention as important materials. Conventional electrodes mainly consist of rigid metallic materials, and consequently lack flexibility. Some of the strategies commonly used to make flexible metal electrodes include reducing the thickness of the electrode and designing electrodes with unique structural features. However, these techniques are generally complicated and expensive. Nanocarbon materials, especially carbon nanotubes and graphene, are highly flexible and exhibit excellent conductivity, superior thermal stability, good chemical stability, and high transmittance, making them good alternative materials for the preparation of flexible conductors. In this review, we have summarized recent advances towards the development of flexible conductors based on different types of nanocarbon materials, including carbon nanotubes arrays, carbon nanotubes films, carbon nanotubes fibers, graphene prepared using exfoliation or chemical vapor deposition techniques and graphene fibers. We have also provided a brief review of flexible conductive materials based on graphene/carbon nanotube composites, as well as a summary of the synthesis, fabrication and performances of these conductors. Finally, we have discussed the future challenges and possible research directions of flexible conductors based on nanocarbon materials.



Key wordsCarbon nanotube      Graphene      Nanocarbon material      Flexible conductive material      Wearable device     
Received: 06 June 2016      Published: 26 July 2016
MSC2000:  O649  
Fund:  National Natural Science Foundation of China(51422204);National Natural Science Foundation of China(51372132);Specialized Research Fund for the Doctoral Program of Higher Education, China(20120002120038);National Key Basic Research Program of China (973)(2013CB228506)
Corresponding Authors: Ying-Ying ZHANG     E-mail: yingyingzhang@tsinghua.edu.cn
Cite this article:

Kai-Lun XIA,Mu-Qiang JIAN,Ying-Ying ZHANG. Advances inWearable and Flexible Conductors Based on Nanocarbon Materials. Acta Phys. -Chim. Sin., 2016, 32(10): 2427-2446.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201607261     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I10/2427

Fig 1 Horizontally aligned carbon nanotube arrays-based flexible conductor materials34 optical image (a) and SEM (b) of aligned arrays of single-walled carbon nanotube transferred from a quartz growth substrate to the surface of a glass cylinder; optical image (c) and SEM (d) of single-walled carbon nanotube transferred from a quartz growth substrate to the surface of a thin polyimide (Kapton)
Fig 2 Vertical array of carbon nanotube (VACNT)-based flexible conductor materials (a) schematic diagram of the preparation method for the VACNT/polyurethane (PU) composite sheet39; (b) schematic diagram of the preparation process of polydimethylsiloxane (PDMS)/VACNT film based wavy configured stretchable conductors41; (c) photograph of bandage strain sensor; (d) photograph of the sensors adhered to the glove42
Fig 3 Wet method for preparing carbon nanotube (CNT) film and the related application in flexible conductor materials (a) photograph of CNT/PDMS flexible conductor based on carbon nanotube solution45; (b) low resolution and (c) high resolution SEM images of carbon nanotube network46; (d,e) schematic diagrams of energy-harvesting electronic skin device49
Fig 4 Directly spun carbon nanotube film from vertical array of carbon nanotubes and the related application in flexible stretchable conductors (a) optical image of carbon nanotube film from the VACNT56; (b) schematic diagram of embedding carbon nanotube film in PDMS; (c) optical image of CNT/PDMS film59; (d) schematic illustrate the fabrication of the CNT/rubber sheath-core fiber; (e) schematic illustrate the longitudinal section of the fiber; (f) low resolution and (g) high resolution SEM images showing long and short period buckles of the fiber under 100% strain61
Fig 5 Preparation of carbon nanotube fibers by wet spinning method68 (a) schematic of the experimental setup used to preparation of carbon nanotube fiber; (b) optical image of a single folded ribbon,scale bar: 1.5 mm; (c) optical image of freestanding nanotube fiber between two glass substrates,scale bar: 1 mm; (d) optical image of fibers with knots,the fiber shown in the pictures has a radius of about 15 μm
Fig 6 Flexible conductive film prepared from graphene solution photographs of GO thin film on (a) filtration membrane and (b) plastic substrates93; (c) cartoon of spin coating process assisted by nitrogen flow96; (d) rod-coating experimental setup; (e) photograph of large-scale GO film coated on PET substrate106
Fig 7 Flexible conductor based on graphene film synthesized by CVD (a) optical image of graphene film on flexible PDMS substrate; (b,c) PDMS stamp makes conformal contact with a silicon dioxide substrate23; (d) transfer process of graphene film and the optical image on SiO2/Si (285 nm SiO2 layer) and quartz substrates115; (e) photograph of single and multi-layer graphene flexible conductor and electromechanical tensile testing117
Fig 8 Wet-spinning setup used for graphene fiber schematic of (a) a rotating coagulation bath and (b) a rotating collection unit
1 Kim D. H. ; Lu N. ; Ma R. ; Kim Y. S. ; Kim R. H. ; Wang S. ; Wu J. ; Won S. M. ; Tao H. ; Islam A. ; Yu K. J. ; Kim T. I. ; Chowdhury R. ; Ying M. ; Xu L. ; Li M. ; Chung H. J. ; Keum H. ; McCormick M. ; Liu P. ; Zhang Y.W. ; Omenetto F. G. ; Huang Y. ; Coleman T. ; Rogers J. A Science 2011, 333 (6044), 838.
2 Jeong J.W. ; Yeo W. H. ; Akhtar A. ; Norton J. J. S. ; Kwack Y. J. ; Li S. ; Jung S. Y. ; Su Y. ; Lee W. ; Xia J. ; Cheng H. ; Huang Y. ; Choi W. S. ; Bretl T. ; Rogers J. A Adv. Mater. 2013, 25 (47), 6839.
3 Jeong J.W. ; Kim M. K. ; Cheng H. ; Yeo W. H. ; Huang X. ; Liu Y. ; Zhang Y. ; Huang Y. ; Rogers J. A Adv. Healthc. Mater. 2014, 3 (5), 642.
4 Tao H. ; Brenckle M. A. ; Yang M. ; Zhang J. ; Liu M. ; Siebert S. M. ; Averitt R. D. ; Mannoor M. S. ; McAlpine M.C. ; Rogers J. A. ; Kaplan D. L. ; Omenetto F. G Adv. Mater. 2012, 24 (8), 1067.
5 Yeo W. H. ; Kim Y. S. ; Lee J. ; Ameen A. ; Shi L. ; Li M. ; Wang S. ; Ma R. ; Jin S. H. ; Kang Z. ; Huang Y. ; Rogers J. A Adv. Mater. 2013, 25 (20), 2773.
6 Webb R. C. ; Bonifas A. P. ; Behnaz A. ; Zhang Y. ; Yu K. J. ; Cheng H. ; Shi M. ; Bian Z. ; Liu Z. ; Kim Y. S. ; Yeo W. H. ; Park J. S. ; Song J. ; Li Y. ; Huang Y. ; Gorbach A. M. ; Rogers J. A Nat. Mater. 2013, 12 (10), 938.
7 Huang X. ; Yeo W. H. ; Liu Y. Rogers J. A ; Rogers J. A Biointerphases 2012, 7 (1), 52.
8 Huang X. ; Cheng H. ; Chen K. ; Zhang Y. ; Zhang Y. ; Liu Y. ; Zhu C. ; Ouyang S. C. ; Kong G.W. ; Yu C. ; Huang Y. ; Rogers J. A IEEE Trans. Biomed. Eng. 2013, 60 (10), 2848.
9 Huang X. ; Liu Y. ; Cheng H. ; Shin W. J. ; Fan J. A. ; Liu Z. ; Lu C. J. ; Kong G.W. ; Chen K. ; Patnaik D. ; Lee S. H. ; Hage-Ali S. ; Huang Y. ; Rogers J. A Adv. Funct. Mater. 2014, 24 (25), 3846.
10 Hattori Y. ; Falgout L. ; Lee W. ; Jung S. Y. ; Poon E. ; Lee J.W. ; Na I. ; Geisler A. ; Sadhwani D. ; Zhang Y. ; Su Y. ; Wang X. ; Liu Z. ; Xia J. ; Cheng H. ; Webb R. C. ; Bonifas A. P. ; Won P. ; Jeong J.W. ; Jang K. I. ; Song Y. M. ; Nardone B. ; Nodzenski M. ; Fan J. A. ; Huang Y. ; West D. P. ; Paller A. S. ; Alam M. ; Yeo W. H. ; Rogers J. A Adv. Healthc. Mater. 2014, 3 (10), 1597.
11 Huang X. ; Liu Y. ; Chen K. ; Shin W. J. ; Lu C. J. ; Kong G.W. ; Patnaik D. ; Lee S. H. ; Cortes J. F. Rogers J. A Small 2014, 10 (15), 3083.
12 Bian Z. ; Song J. ; Webb R. C. ; Bonifas A. P. ; Rogers J. A. Huang Y RSC Adv. 2014, 4 (11), 5694.
13 Bao Z. Lovinger A. J Chem. Mater. 1999, 11 (9), 2607.
14 Hammock M. L. ; Chortos A. ; Tee B. C. K. ; Tok J. B. H. Bao Z Adv. Mater. 2013, 25 (42), 5997.
15 Heinze J. ; Frontana-Uribe B. A. Ludwigs S Chem. Mater. 2010, 110 (8), 4724.
16 McQuade D. T. ; Pullen A. E. Swager T. M Chem. Mater. 2000, 100 (7), 2537.
17 Arias A. C. ; MacKenzie J. D. ; McCulloch I. ; Rivnay J. Salleo A Chem. Mater. 2010, 110 (1), 3.
18 Park S. ; Vosguerichian M. Bao Z Nanoscale 2013, 5 (5), 1727.
19 Hu L. ; Hecht D. S. Grüner G Chem. Mater. 2010, 110 (10), 5790.
20 Mao H. Y. ; Laurent S. ; Chen W. ; Akhavan O. ; Imani M. ; Ashkarran A. A. Mahmoudi M Chem. Mater. 2013, 113 (5), 3407.
21 Wu W. ; Wen X. Wang Z. L Science 2013, 340 (6135), 952.
22 Takei K. ; Takahashi T. ; Ho J. C. ; Ko H. ; Gillies A. G. ; Leu P.W. ; Fearing R. S. Javey A Nat. Mater. 2010, 9 (10), 821.
23 Kim K. S. ; Zhao Y. ; Jang H. ; Lee S. Y. ; Kim J. M. ; Kim K.S. ; Ahn J. H. ; Kim P. ; Choi J. Y. Hong B. H Nature 2009, 457 (7230), 706.
24 Zu M. ; Li Q. ; Wang G. ; Byun J. H. Chou T W. Adv. Funct. Mater. 2013, 23 (7), 789.
25 Lipomi D. J. ; Vosgueritchian M. ; Tee B. C. K. ; Hellstrom S.L. ; Lee J. A. ; Fox C. H. Bao Z Nat. Nanotechnol. 2011, 6 (12), 788.
26 Guo T. ; Nikolaev P. ; Rinzler A. G. ; Tomanek D. ; Colbert D.T. Smalley R. E.. J Phys. Chem. 1995, 99 (27), 10694.
27 Xie H. ; Zhang R. ; Zhang Y. ; Yin Z. ; Jian M. Wei F Carbon 2016, 98, 157.
28 Huang S. ; Cai X. Liu J.. J Am. Chem. Soc. 2003, 125 (19), 5636.
29 Huang S. ; Cai X. ; Du C. Liu J.. J Phys. Chem. B 2003, 107 (48), 13251.
30 Huang S. ; Woodson M. ; Smalley R. Liu J Nano Lett. 2004, 4 (6), 1025.
31 Joselevich E. Lieber C. M Nano Lett. 2002, 2 (10), 1137.
32 Ismach A. Joselevich E Nano Lett. 2006, 6 (8), 1706.
33 Ural A. ; Li Y. Dai H Appl. Phys. Lett. 2002, 81 (18), 3464.
34 Kang S. J. ; Kocabas C. ; Kim H. S. ; Cao Q. ; Meitl M. A. ; Khang D. Y. Rogers J. A Nano Lett. 2007, 7 (11), 3343.
35 Khang D. Y. ; Xiao J. ; Kocabas C. ; Maclaren S. ; Banks T. ; Jiang H. ; Huang Y. Y. Ja. R Nano Lett. 2008, 8 (1), 124.
36 Kang S. J. ; Kocabas C. ; Ozel T. ; Shim M. ; Pimparkar N. ; Alam M. A. ; Rotkin S. V. Rogers J. A Nat. Nanotechnol. 2007, 2 (4), 230.
37 Qing C. ; Hoon-Sik K. ; Ninad P. ; Kulkarni J. P. ; Congjun W. ; Moonsub S. ; Kaushik R. ; Alam M. A. Rogers J. A Nature 2008, 454 (454), 495.
38 Tsai T. Y. ; Lee C. Y. ; Tai N. H. Tuan W. H Appl. Phys. Lett. 2009, 95 (1), 013103.
39 Kyoon S. M. ; Jiyoung O. ; Marcio L. ; Kozlov M. E. ; SeonJeong K. Baughman R. H Adv. Mater. 2010, 22 (24), 2663.
40 So H. M. ; Jin W. S. ; Kwon J. ; Yun J. ; Baik S. Chang W. S Mater. Res. Bull. 2013, 48 (12), 5036.
41 Shin U. H. ; Jeong D.W. ; Kim S. H. ; Lee H.W. Kim J. M ACS Appl. Mater. Inter. 2014, 6 (15), 12909.
42 Yamada T. ; Hayamizu Y. ; Yamamoto Y. ; Yomogida Y. ; Izadi-Najafabadi A. ; Futaba D. N. Hata K Nat. Nanotechnol. 2011, 6 (5), 296.
43 Camponeschi E. ; Vance R. ; Al-Haik M. ; Garmestani H. Tannenbaum R Carbon 2007, 45 (10), 2037.
44 Dai J. ; Wang Q. ; Li W. ; Wei Z. Xu G Mater. Lett. 2007, 61 (1), 27.
45 Sekitani T. ; Noguchi Y. ; Hata K. ; Fukushima T. ; Aida T. Someya T Science 2008, 321 (5895), 1468.
46 Sekitani T. ; Nakajima H. ; Maeda H. ; Fukushima T. ; Aida T. ; Hata K. Someya T Nat. Mater. 2009, 8 (6), 494.
47 Rogers J. A. ; Someya T. Huang Y Science 2010, 327 (5973), 1603.
48 Lipomi D. J. ; Vosgueritchian M. ; Tee B. C. K. ; Hellstrom S.L. ; Lee J. A. ; Fox C. H. Bao Z Nat. Nanotechnol. 2011, 6 (12), 788.
49 Park S. ; Kim H. ; Vosgueritchian M. ; Cheon S. ; Kim H. ; Koo J. H. ; Kim T. R. ; Lee S. ; Schwartz G. ; Chang H. Bao Z Adv. Mater. 2014, 26 (43), 7324.
50 Chun K. Y. ; Oh Y. ; Rho J. ; Ahn J. H. ; Kim Y. J. ; Choi H.R. Baik S Nat. Nanotechnol. 2010, 5 (12), 853.
51 Ma R. ; Kwon S. ; Zheng Q. ; Kwon H. Y. ; Kim J. I. ; Choi H.R. Baik S Adv. Mater. 2012, 24 (25), 3344.
52 Lee J. ; Woo J. Y. ; Kim J. T. ; Lee B. Y. Han C. S ACS Appl. Mater. Inter. 2014, 6 (14), 10974.
53 Zhang M. ; Fang S. ; Zakhidov A. A. ; Lee S. B. ; Aliev A. E. ; Williams C. D. ; Atkinson K. R. Baughman R. H Science 2005, 309 (5738), 1215.
54 Zhang X. ; Jiang K. ; Feng C. ; Liu P. ; Zhang L. ; Kong J. ; Zhang T. ; Li Q. Fan S Adv. Mater. 2006, 18 (12), 1505.
55 Zhang H. X. ; Feng C. ; Zhai Y. C. ; Jiang K. L. ; Li Q. Q. Fan S. S Adv. Mater. 2009, 21 (22), 2299.
56 Jiang K. ; Wang J. ; Li Q. ; Liu L. ; Liu C. Fan S Adv. Mater. 2011, 23 (9), 1154.
57 Liu K. ; Sun Y. ; Liu P. ; Lin X. ; Fan S. Jiang K Adv. Funct. Mater. 2011, 21 (14), 2721.
58 Feng C. ; Liu K. ; Wu J. S. ; Liu L. ; Cheng J. S. ; Zhang Y. ; Sun Y. ; Li Q. ; Fan S. Jiang K Adv. Funct. Mater. 2010, 20 (6), 885.
59 Zhang Y. ; Sheehan C. J. ; Zhai J. ; Zou G. ; Luo H. ; Xiong J. ; Zhu Y. T. Jia Q. X Adv. Mater. 2010, 22 (28), 3027.
60 Xu F. ; Wang X. ; Zhu Y. Zhu Y Adv. Funct. Mater. 2012, 22 (6), 1279.
61 Liu Z. F. ; Fang S. ; Moura F. A. ; Ding J. N. ; Jiang N. ; Di J. ; Zhang M. ; Lepro X. ; Galvao D. S. ; Haines C. S. ; Yuan N.Y. ; Yin S. G. ; Lee D.W. ; Wang R. ; Wang H. Y. ; Lv W. ; Dong C. ; Zhang R. C. ; Chen M. J. ; Yin Q. ; Chong Y. T. ; Zhang R. ; Wang X. ; Lima M. D. ; Ovalle-Robles R. ; Qian D. ; Lu H. Baughman R. H Science 2015, 349 (6246), 400.
62 Tawfick S. ; O'Brien K. Hart A. J Small 2009, 5 (21), 2467.
63 Cole M. ; Hiralal P. ; Ying K. ; Li C. ; Zhang Y. ; Teo K. ; Ferrari A. Milne W.. J Nanomater. 2012, 272960.
64 In J. B. ; Lee D. ; Fornasiero F. ; Noy A. Grigoropoulos C. P ACS Nano 2012, 6 (9), 7858.
65 Ma W. ; Song L. ; Yang R. ; Zhang T. ; Zhao Y. ; Sun L. ; Ren Y. ; Liu D. ; Liu L. ; Shen J. ; Zhang Z. ; Xiang Y. ; Zhou W. Xie S Nano Lett. 2007, 7 (8), 2307.
66 Cai L. ; Li J. ; Luan P. ; Dong H. ; Zhao D. ; Zhang Q. ; Zhang X. ; Tu M. ; Zeng Q. ; Zhou W. Xie S Adv. Funct. Mater. 2012, 22 (24), 5238.
67 Niu Z. ; Zhou W. ; Chen J. ; Feng G. ; Li H. ; Hu Y. ; Ma W. ; Dong H. ; Li J. Xie S Small 2013, 9 (4), 518.
68 Vigolo B. ; Pénicaud A. ; Coulon C. ; Sauder C. ; Pailler R. ; Journet C. ; Bernier P. Poulin P Science 2000, 290 (5495), 1331.
69 Macroscopic N Science 2004, 305, 1447.
70 Vigolo B. ; Poulin P. ; Lucas M. ; Launois P. Bernier P Appl. Phys. Lett. 2002, 81 (7), 1210.
71 Miaudet P. ; Badaire S. ; Maugey M. ; Derré A. ; Pichot V. ; Launois P. ; Poulin P. Zakri C Nano Lett. 2005, 5 (11), 2212.
72 Kozlov M. E. ; Capps R. C. ; Sampson W. M. ; Ebron V. H. ; Ferraris J. P. Baughman R. H Adv. Mater. 2005, 17 (5), 614.
73 Steinmetz J. ; Glerup M. ; Paillet M. ; Bernier P. Holzinger M Carbon 2005, 43 (11), 2397.
74 Kozlov M. E. ; Capps R. C. ; Sampson W. M. ; Ebron V. H. ; Ferraris J. P. Baughman R. H Adv. Mater. 2005, 17 (5), 614.
75 Jiang K. ; Li Q. Fan S Nature 2002, 419 (6909), 801.
76 Zhang M. ; Atkinson K. R. Baughman R. H Science 2004, 306 (5700), 1358.
77 Xiefei Z. ; Qingwen L. ; Yi T. ; Yuan L. ; Coulter J. Y. ; Lianxi Z. ; Yonghao Z. ; Qianxi J. ; Peterson D. E. Yuntian Z Small 2007, 3 (2), 244.
78 Zhang X. ; Li Q. ; Holesinger T. G. ; Arendt P. N. ; Huang J. ; Kirven P. D. ; Clapp T. G. ; DePaula R. F. ; Liao X. ; Zhao Y. ; Zheng L. ; Peterson D. E. Zhu Y Adv. Mater. 2007, 19 (23), 4198.
79 Li Y. L. ; Kinloch I. A. Windle A. H Science 2004, 304 (5668), 276.
80 Koziol K. ; Vilatela J. ; Moisala A. ; Motta M. ; Cunniff P. ; Sennett M. Windle A Science 2007, 318 (5858), 1892.
81 Zhong X. H. ; Li Y. L. ; Liu Y. K. ; Qiao X. H. ; Feng Y. ; Liang J. ; Jin J. ; Zhu L. ; Hou F. Li J. Y Adv. Mater. 2010, 22 (6), 692.
82 Aleman B. ; Reguero V. ; Mas B. Vilatela J. J ACS Nano 2015, 9 (7), 7392.
83 Qu G. ; Cheng J. ; Li X. ; Yuan D. ; Chen P. ; Chen X. ; Wang B. Peng H Adv. Mater. 2016, 28 (19), 3646.
84 Sun G. ; Zhang X. ; Lin R. ; Yang J. ; Zhang H. Chen P Angew. Chem. Int. Edit. 2015, 127 (15), 4734.
85 Xu R. ; Wei J. ; Guo F. ; Cui X. ; Zhang T. ; Zhu H. ; Wang K. Wu D RSC Adv. 2015, 5 (28), 22015.
86 Hanaei H. ; Assadi M. K. Saidur R Renew. Sust. Energ. Rev. 2016, 59, 620.
87 Shang Y. ; Hua C. ; Xu W. ; Hu X. ; Wang Y. ; Zhou Y. ; Zhang Y. ; Li X. Cao A Nano lett. 2016, 16 (3), 1768.
88 Qiu L. ; He S. ; Yang J. ; Deng J. Peng H Small 2016, 12 (18), 2419.
89 Zhang Y. ; Zhao Y. ; Ren J. ; Weng W. Peng H Adv. Mater. 2016, 28, 4524.
90 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. Firsov A. A Science 2004, 306 (5696), 666.
91 Rogala M. ; Wlasny I. ; Dabrowski P. ; Kowalczyk P. J. ; Busiakiewicz A. ; Kozlowski W. ; Lipinska L. ; Jagiello J. ; Aksienionek M. ; Strupinski W. ; Krajewska A. ; Sieradzki Z. ; Krucinska I. ; Puchalski M. ; Skrzetuska E. Klusek Z Appl. Phys. Lett. 2015, 106 (4), 041901.
92 Jiang W. S. ; Liu Z. B. ; Xin W. ; Chen X. D. Tian J. G Nanotechnology 2016, 27 (9), 095301.
93 Eda G. ; Fanchini G. Chhowalla M Nat. Nanotechnol. 2008, 3 (5), 270.
94 Kim S. H. ; Yu Y. ; Li Y. Z. ; Xu T. Zhi J. F.. J Mater. Chem 2012, 22 (35), 18306.
95 Becerril H. A. ; Mao J. ; Liu Z. ; Stoltenberg R. M. ; Bao Z. Chen Y ACS Nano 2008, 2 (3), 463.
96 Robinson J. T. ; Zalalutdinov M. ; Baldwin J.W. ; Snow E. S. ; Wei Z. ; Sheehan P. Houston B. H Nano Lett. 2008, 8 (10), 3441.
97 Chang H. ; Wang G. ; Yang A. ; Tao X. ; Liu X. ; Shen Y. Zheng Z Adv. Funct. Mater. 2010, 20 (17), 2893.
98 Zheng Q. ; Ip W. H. ; Lin X. ; Yousefi N. ; Yeung K. K. ; Li Z. Kim J. K ACS Nano 2011, 5 (7), 6039.
99 Pei S. ; Zhao J. ; Du J. ; Ren W. Cheng H. M Carbon 2010, 48 (15), 4466.
100 Chen C. ; Yang Q. H. ; Yang Y. ; Lv W. ; Wen Y. ; Hou P. X. ; Wang M. Cheng H. M Adv. Mater. 2009, 21 (29), 3007.
101 Kim J. ; Cote L. J. ; Kim F. ; Huang J J. Am. Chem. Soc. 2010, 132 (1), 260.
102 Li X. ; Zhang G. ; Bai X. ; Sun X. ; Wang X. ; Wang E. ; Dai H Nat. Nanotechnol. 2008, 3 (9), 538.
103 Wu Z. S. ; Pei S. ; Ren W. ; Tang D. ; Gao L. ; Liu B. ; Li F. ; Liu C. ; Cheng H. M Adv. Mater. 2009, 21 (17), 1756.
104 Moon I. K. ; Lee J. ; Ruoff R. S. ; Lee H Nat. Commun. 2010, 1, 73.
105 Wang J. ; Liang M. ; Fang Y. ; Qiu T. ; Zhang J. ; Zhi L Adv. Mater. 2012, 24 (21), 2874.
106 Lv X. ; Huang Y. ; Liu Z. ; Tian J. ; Wang Y. ; Ma Y. ; Liang J. ; Fu S. ; Wan X. ; Chen Y Small 2009, 5 (14), 1682.
107 Tien H.W. ; Hsiao S. T. ; Liao W. H. ; Yu Y. H. ; Lin F. C. ; Wang Y. S. ; Li S. M. ; Ma C. C. M Carbon 2013, 58, 198.
108 Liu Y. ; Chang Q. ; Huang L J. Mater. Chem. C 2013, 1 (17), 2970.
109 Jeong C. ; Nair P. ; Khan M. ; Lundstrom M. ; Alam M. A Nano Lett. 2011, 11 (11), 5020.
110 Choi H. O. ; Kim D.W. ; Kim S. J. ; Yang S. B. ; Jung H. T Adv. Mater. 2014, 26 (26), 4575.
111 Xu Z. ; Liu Z. ; Sun H. ; Gao C Adv. Mater. 2013, 25 (23), 3249.
112 Zhu Y. ; Sun Z. ; Yan Z. ; Jin Z. ; Tour J. M ACS Nano 2011, 5 (8), 6472.
113 Xia K. ; Jian M. ; Zhang W. ; Zhang Y Adv. Mater. Inter. 2016, 3 (6), 1500674.
114 Li X. ; Zhu Y. ; Cai W. ; Borysiak M. ; Han B. ; Chen D. ; Piner R. D. ; Colombo L. ; Ruoff R. S Nano Lett. 2009, 9 (12), 4359.
115 Bae S. ; Kim H. ; Lee Y. ; Xu X. ; Park J. S. ; Zheng Y. ; Balakrishnan J. ; Lei T. ; Kim H. R. ; Song Y. I. ; Kim Y. J. ; Kim K. S. ; Ozyilmaz B. ; Ahn J. H. ; Hong B. H. ; Iijima S Nat. Nanotechnol. 2010, 5 (8), 574.
116 Won S. ; Hwangbo Y. ; Lee S. K. ; Kim K. S. ; Kim K. S. ; Lee S. M. ; Lee H. J. ; Ahn J. H. ; Kim J. H. ; Lee S. B Nanoscale 2014, 6 (11), 6057.
117 Chen T. ; Xue Y. ; Roy A. K. ; Dai L ACS Nano 2014, 8 (1), 1039.
118 Xu Z. ; Gao C Mater. Today 2015, 18 (9), 480.
119 Chen L. L. ; Liu Y. ; Zhao Y. ; Chen N. ; Qu L. T Nanotechnology 2016, 27 (3), 032001.
120 Meng F. ; Lu W. ; Li Q. ; Byun J. H. ; Oh Y. ; Chou T W. Adv. Mater. 2015, 27 (35), 5113.
121 Jalili R. ; Aboutalebi S. H. ; Esrafilzadeh D. ; Shepherd R. L. ; Chen J. ; Aminorroaya-Yamini S. ; Konstantinov K. ; Minett A. I. ; Razal J. M. ; Wallace G. G Adv. Funct. Mater. 2013, 23 (43), 5345.
122 Xu Z. ; Sun H. ; Zhao X. ; Gao C Adv. Mater. 2013, 25 (2), 188.
123 Liu Z. ; Xu Z. ; Hu X. ; Gao C Macromolecules 2013, 46 (17), 6931.
124 Hu X. ; Xu Z. ; Liu Z. ; Gao C Sci. Rep. 2013, 3, 2374.
125 Zhao X. ; Xu Z. ; Zheng B. ; Gao C Sci. Rep. 2013, 3, 3164.
126 Xiang C. ; Young C. C. ; Wang X. ; Yan Z. ; Hwang C. C. ; Cerioti G. ; Lin J. ; Kono J. ; Pasquali M. ; Tour J. M Adv. Mater. 2013, 25 (33), 4592.
127 Cao J. ; Zhang Y. ; Men C. ; Sun Y. ; Wang Z. ; Zhang X. ; Li Q ACS Nano 2014, 8 (5), 4325.
128 Meng F. ; Li R. ; Li Q. ; Lu W. ; Chou T W. Carbon 2014, 72, 250.
129 Kim Y. S. ; Kang J. H. ; Kim T. ; Jung Y. ; Lee K. ; Oh J. Y. ; Park J. ; Park C. R Chem. Mater. 2014, 26 (19), 5549.
130 Kou L. ; Huang T. ; Zheng B. ; Han Y. ; Zhao X. ; Gopalsamy K. ; Sun H. ; Gao C Nat. Commun. 2014, 5, 3754.
131 Zhao Y. ; Jiang C. ; Hu C. ; Dong Z. ; Xue J. ; Meng Y. ; Zheng N. ; Chen P. ; Qu L ACS Nano 2013, 7 (3), 2406.
132 Yu D. ; Goh K. ; Wang H. ; Wei L. ; Jiang W. ; Zhang Q. ; Dai L. ; Chen Y Nat. Nanotechnol. 2014, 9 (7), 555.
133 Acik M. ; Lee G. ; Mattevi C. ; Pirkle A. ; Wallace R. M. ; Chhowalla M. ; Cho K. ; Chabal Y J. Phys. Chem. C 2011, 115 (40), 19761.
134 Hu C. ; Zhao Y. ; Cheng H. ; Wang Y. ; Dong Z. ; Jiang C. ; Zhai X. ; Jiang L. ; Qu L Nano Lett. 2012, 12 (11), 5879.
135 Li J. ; Li J. ; Li L. ; Yu M. ; Ma H. ; Zhang B J. Mater. Chem. A 2014, 2 (18), 6359.
136 Zhang J. ; Zhang Y. ; Zhang D. ; Zhao J J. Appl. Polym. Sci. 2012, 125 (S1), E58.
137 Xiang C. ; Behabtu N. ; Liu Y. ; Chae H. G. ; Young C. C. ; Genorio B. ; Tsentalovich D. E. ; Zhang C. ; Kosynkin D. V. ; Lomeda J. R. ; Hwang C. C. ; Kumar S. ; Pasquali M. ; Tour J M. ACS Nano 2013, 7 (2), 1628.
138 Jang E. Y. ; Carretero-Gonzalez J. ; Choi A. ; Kim W. J. ; Kozlov M. E. ; Kim T. ; Kang T. J. ; Baek S. J. ; Kim D.W. ; Park Y.W. ; Baughman R. H. ; Kim Y. H Nanotechnology 2012, 23 (23), 235601.
139 Cruz-Silva R. ; Morelos-Gomez A. ; Kim H. I. ; Jang H. K. ; Tristan F. ; Vega-Diaz S. ; Rajukumar L. P. ; Elías A. L. ; Perea-Lopez N. ; Suhr J. ; Endo M. ; Terrones M ACS Nano 2014, 8 (6), 5959.
140 Li X. ; Zhao T. ; Wang K. ; Yang Y. ; Wei J. ; Kang F. ; Wu D. ; Zhu H Langmuir 2011, 27 (19), 12164.
141 Li X. ; Zhao T. ; Chen Q. ; Li P. ; Wang K. ; Zhong M. ; Wei J. ; Wu D. ; Wei B. ; Zhu H Phys. Chem. Chem. Phys 2013, 15 (41), 17752.
142 Fang B. ; Peng L. ; Xu Z. ; Gao C ACS Nano 2015, 9 (5), 5214.
143 Xu Z. ; Zhang Y. ; Li P. ; Gao C ACS Nano 2012, 6 (8), 7103.
144 Dong Z. ; Jiang C. ; Cheng H. ; Zhao Y. ; Shi G. ; Jiang L. ; Qu L Adv. Mater. 2012, 24 (14), 1856.
145 Wang Y. ; Bian K. ; Hu C. ; Zhang Z. ; Chen N. ; Zhang H. ; Qu L Electrochem. Commun. 2013, 35, 49.
146 Cheng H. ; Liu J. ; Zhao Y. ; Hu C. ; Zhang Z. ; Chen N. ; Jiang L. ; Qu L Angew. Chem. Int. Edit. 2013, 52 (40), 10482.
147 Chen S. H. ; Ma W. J. ; Cheng Y. H. ; Weng Z. ; Sun B. ; Wang L. ; Chen W. P. ; Li F. ; Zhu M. F. ; Cheng H. M Nano Energy 2015, 15, 642.
148 Ma Y.W. ; Li P. ; Sedloff J.W. ; Zhang X. ; Zhang H. B. ; Liu J ACS Nano 2015, 9 (2), 1352.
149 Chen S. H. ; Ma W. J. ; Xiang H. X. ; Cheng Y. H. ; Yang S.Y. ; Weng W. ; Zhu M. F J. Power Sources 2016, 319, 271.
150 Jia X. L. ; Lu Y. F. ; Wei F Nano Res. 2016, 9 (1), 230.
151 Aboutalebi S. H. ; Jalili R. ; Esrafilzadeh D. ; Salari M. ; Gholamvand Z. ; Yamini S. A. ; Konstantinov K. ; Shepherd R. L. ; Chen J. ; Moulton S. E. ; Innis P. C. ; Minett A. I. ; Razal J. M. ; Wallace G. G ACS Nano 2014, 8 (3), 2456.
152 Cheng H. ; Dong Z. ; Hu C. ; Zhao Y. ; Hu Y. ; Qu L. ; Chen N. ; Dai L Nanoscale 2013, 5 (8), 3428.
153 Cheng H. ; Liang Y. ; Zhao F. ; Hu Y. ; Dong Z. ; Jiang L. ; Qu L Nanoscale 2014, 6 (19), 11052.
154 Liu Y., Xu Z., Zhan J., Li P., Gao C.. Adv. Mater., 2016, doi: 10.1002/adma.201602444
155 Zhang W. ; Xie H. ; Zhang R. ; Jian M. ; Wang C. ; Zheng Q. ; Wei F. ; Zhang Y Carbon 2015, 86, 358.
156 Li C. ; Li Z. ; Zhu H. ; Wang K. ; Wei J. ; Li X. ; Sun P. ; Zhang H. ; Wu D J. Phys. Chem. C 2010, 114 (33), 14008.
157 Shi E. ; Li H. ; Yang L. ; Hou J. ; Li Y. ; Li L. ; Cao A. ; Fang Y Adv. Mater. 2015, 27 (4), 682.
158 Tung V. C. ; Chen L. M. ; Allen M. J. ; Wassei J. K. ; Nelson K. ; Kaner R. B. ; Yang Y Nano Lett. 2009, 9 (5), 1949.
159 Chen M. ; Tao T. ; Zhang L. ; Gao W. ; Li C Chem. Commun. 2013, 49 (16), 1612.
160 Chen M. ; Zhang L. ; Duan S. ; Jing S. ; Jiang H. ; Li C Adv. Funct. Mater. 2014, 24 (47), 7548.
[1] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[2] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[3] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[4] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[5] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[6] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[7] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[8] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[9] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[10] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[11] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[12] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[13] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[14] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[15] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.