Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (11): 2717-2723    DOI: 10.3866/PKU.WHXB201607271
Article     
Synergetic Effect of Mercury Adsorption on the Catalytic Decomposition of CO over Perfect and Reduced Fe2O3[001] Surface
LI Ji-Hong1, LIN Chang-Feng1, QIN Wu1, XIAO Xian-Bin1, WEI Li2
1 National Engineering Laboratory for Biomass Power Generation Equipment, School of Renewable Energy Engineering, North China Electric Power University, Beijing 102206, P. R. China;
2 State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
Download:   PDF(6064KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Mercury emission from coal during chemical-looping combustion (CLC) is an inevitable process, which can lead to adverse interactions with the surface of the oxygen carrier, thereby affecting the interfacial redox reactions. Density functional theory calculations were performed to investigate the mechanism of elemental mercury (Hg0) adsorption and the synergetic effect of Hg0 on the catalytic decomposition of CO over a perfect surface (Fe2O3[001]), as well as a series of reduced surfaces (Fe2O2.75, Fe2O2.5, Fe2O2.25, Fe2O1.625, Fe2O0.875, Fe2O0.375 and Fe) during a deep CLC process. In this study, Hg0 was physically adsorbed on to a perfect Fe2O3 surface, and then chemically adsorbed on to a series of reduced surfaces. The adsorption of Hg0 inhibited the formation of meaningful interactions between CO and Fe2O3[Fe2O2.75, Fe2O2.5 and Fe2O2.25] and hindered the efficient transport of oxygen to oxidize CO into CO2. In contrast, this process promoted the interactions between CO and Fe2O1.625[Fe2O0.875, Fe2O0.375, and Fe], favoring the catalytic decomposition of CO on these surfaces, which accelerated the carbon deposit reducing CLC efficiency. Rationally controlling the reduction degree of the oxygen carrier could therefore be used to either decrease the adsorption of Hg0 or depress the deposition of carbon, which are both crucial for the optimization of CLC processes.



Key wordsChemical looping combustion      Oxygen carrier      Mercury      CO2 capture      Density functional theory     
Received: 03 May 2016      Published: 27 July 2016
MSC2000:  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (51346001, 51106051) and Fundamental Research Funds for the Central Universities, China (2016YQ07, 2014ZD14).

Corresponding Authors: QIN Wu, WEI Li     E-mail: qinwugx@126.com;weilihit@126.com
Cite this article:

LI Ji-Hong, LIN Chang-Feng, QIN Wu, XIAO Xian-Bin, WEI Li. Synergetic Effect of Mercury Adsorption on the Catalytic Decomposition of CO over Perfect and Reduced Fe2O3[001] Surface. Acta Phys. -Chim. Sin., 2016, 32(11): 2717-2723.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201607271     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2016/V32/I11/2717

(1) Horst, J. R.; Karl, F. K. Am. Chem. Soc. 1983, 7, 71.
(2) Ishida, M.; Jin, H. G. Ind. Eng. Chem. Res. 1996, 7, 2469. doi: 10.1021/ie950680s
(3) Fan, L. S.; Zeng, L.; Wang, W.; Luo, S.W. Energy Environ. Sci. 2012, 5, 7254. doi: 10.1039/C2EE03198A
(4) Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayán, P.; de Diego, L. F. Prog. Energy Combust. Sci. 2012, 38, 215. doi: 10.1016/j.pecs.2011.09.001
(5) Zhang, Y.; Doroodchi, E.; Moghtaderi, B. Energy Fuels 2012, 26, 287. doi: 10.1021/ef201156x
(6) He, F.; Li, H. B.; Zhao, Z. L. Int. J. Chem. Eng. 2009, 2009, 1. doi: 10.1155/2009/710515
(7) Lyngfelt, A.; Leckner, B.; Mattisson, T. Chem. Eng. Sci. 2001, 56, 3101. doi: 10.1016/S0009-2509(01)00007-0
(8) Fan, L. S.; Zeng, L.; Luo, S.W. AIChE J. 2015, 61, 2. doi: 10.1002/aic.14695
(9) Tian, M.; Wang, X. D.; Liu, X.; Wang, A. Q.; Zhang, T. AIChE J. 2016, 62, 792. doi: 10.1002/aic.15135
(10) Cho, P.; Mattisson, T.; Lyngfelt, A. Fuel 2004, 83, 1215. doi: 10.1016/j.fuel.2003.11.013
(11) Abad, A.; Adanez, J.; García-Labiano, F.; de Diego, L. F.; Gayan, P.; Celaya, J. Chem. Eng. Sci. 2007, 62, 533. doi: 10.1016/j.ces.2006.09.019
(12) Cao, Y.; Pan, W. P. Energy Fuels 2006, 20, 1836. doi: 10.1021/ef050228d
(13) Abad, A.; Cuadrat, A.; Mendiara, T.; García-Labiano, F.; Gayan, P.; de Diego, L. F.; Adanez, J. Ind. Eng. Chem. Res. 2012, 51, 16230. doi: 10.1021/ie302158q
(14) Zhang, S.; Xiao, R.; Zheng, W. G. Appl. Energy 2014, 130, 181. doi: 10.1016/j.apenergy.2014.05.049
(15) Xiao, R.; Song, Q. L.; Song, M.; Lu, Z. J.; Zhang, S.; Shen, L. H. Combust Flame 2010, 157, 1140. doi: 10.1016/j.combustflame.2010.01.007
(16) Yudovich, Y. E.; Ketris, M. P. Int. J. Coal Geol. 2005, 62, 107. doi: 10.1016/j.coal.2004.11.002
(17) Frandsen, F.; Dam-Johansen, K.; Rasmussen, P. Prog. Energy Combust. Sci. 1994, 20, 115. doi: 10.1016/0360-1285(94)90007-8
(18) Thevuthasan, S.; Kim, Y. J.; Yi, S. I.; Chambers, S. A.; Morais, J.; Denecke, R.; Fadley, C. S.; Liu, P.; Kendelewicz, T.; Brown, G. E, Jr. Surf. Sci. 1999, 425, 276. doi: 10.1016/S0039-6028(99)00200-9
(19) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717. doi: 10.1088/0953-8984/14/11/301
(20) White, J.; Bird, D. Phys. Rev. B. 1994, 50, 4954. doi: 10.1103/PhysRevB.50.4954
(21) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
(22) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892
(23) Guo, H.; Barnard, A. S. Phys. Rev. B 2011, 83, 094112. doi: 10.1103/PhysRevB.83.094112
(24) Bandyopadhyay, A.; Velev, J.; Butler, W. H.; Sarker, S. K.; Bengone, O. Phys. Rev. B 2004, 69, 174429. doi: 10.1103/PhysRevB.69.174429
(25) Huda, M. N.; Walsh, A.; Yan, Y. J. Appl. Phys. 2010, 107, 123712. doi: 10.1063/1.3432736
(26) Dzade, N. Y.; Roldan, A.; de Leeuw, N. H. Minerals 2014, 4, 89. doi: 10.3390/min4010089
(27) Rohrbach, A.; Hafner, J.; Kresse, G. Phys. Rev. B 2004, 70, 125426. doi: 10.1103/PhysRevB.70.125426
(28) Qin, W.; Wang, Y.; Lin, C. F.; Hu, X. Q.; Dong, C. Q. Energy Fuels 2015, 29, 1210. doi: 10.1021/ef5024934
(29) Song, J. J.; Niu, X. Q.; Ling, L. X.; Wang, B. J. Fuel Process Technol. 2013, 115, 26. doi: 10.1016/j.fuproc.2013.04.003
(30) Wong, K.; Zeng, Q. H.; Yu, A. B. J. Phys. Chem. C 2011, 115, 4656. doi: 10.1021/jp1108043
(31) Martin, G. J.; Cutting, R. S.; VauGhan, D. J.; Warren, M. C. Am. Mineral. 2009, 94, 1341. doi: 10.2138/am.2009.3029
(32) Sandratskii, L. M.; Uhl, M.; Kübler, J. J. Phys.: Condens. Matter 1996, 8, 983. doi: 10.1088/0953-8984/8/8/009
(33) Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comput. Mater. Sci. 2003, 28, 250. doi: 10.1016/S0927-0256(03)00111-3
(34) Guo, P.; Guo, X.; Zheng, C. G. Fuel 2011, 90, 1840. doi: 10.1016/j.fuel.2010.11.007
(35) Ji, W. C.; Shen, Z. M.; Fan, M. H.; Su, P. R.; Tang, Q. L.; Zou, C. Y. Chem. Eng. J. 2016, 283, 58. doi: 10.1016/j.cej.2015.06.033
(36) He, F.; Wang, H.; Dai, Y. N. J. Nat. Gas. Chem. 2007, 16, 155. doi: 10.1016/S1003-9953(07)60041-3
(37) Dong, C. Q.; Sheng, S. H.; Qin, W.; Lu, Q.; Zhao, Y.; Wang, X. Q.; Zhang, J. J. Appl. Surf. Sci. 2011, 257, 8647. doi: 10.1016/j.apsusc.2011.05.042
(38) Stibor, A.; Kresse, G.; Eichler, A.; Hafner, J. Surf. Sci. 2002, 507, 99. doi: 10.1016/S0039-6028(02)01182-2
(39) Bromfield, T. C.; Ferré, D. C.; Niemantsverdriet, J.W. ChemPhysChem 2005, 6, 254. doi: 10.1002/cphc.200400452
(40) Claridge, J. B.; Green, M. L. H.; Tsang, S. C.; York, A. P. E.; Ashcroft, A. T.; Battle, P. D. Catal. Lett. 1993, 22, 299. doi: 10.1007/BF00807237
(41) Wang, B.W.; Yan, R.; Lee, D. H.; Liang, D. T.; Zheng, Y.; Zhao, H. B.; Zheng, C. G. Energy Fuels 2008, 22, 1012. doi: 10.1021/ef7005673
(42) Sorescu, D. C.; Thompson, D. L.; Hurley, M. M.; Chabalowski, C. F. Phys. Rev. B 2002, 66, 035416. doi: 10.1103/PhysRevB.66.035416
(43) Moon, D.W.; Bernasek, S. L.; Lu, J. P.; Gland, J. L.; Dwyer, D. J. Surf. Sci. 1987, 184, 90. doi: 10.1016/S0039-6028(87)80274-1
(44) Qin, W.; Lin, C. F.; Long, D. T.; Xiao, X. B.; Dong, C. Q. Acta Phys. -Chim. Sin. 2015, 31, 667. [覃吴, 林常枫, 龙东腾, 肖显斌, 董长青. 物理化学学报, 2015, 31, 667.] doi: 10.3866/PKU.WHXB201502061
(45) Dong, C. Q.; Liu, X. L.; Qin, W.; Lu, Q.; Wang, X. Q.; Shi, S. M.; Yang, Y. P. Appl. Surf. Sci. 2012, 258, 2562. doi: 10.1016/j.apsusc.2011.10.092

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[7] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[8] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[9] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[10] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[11] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 769-779.
[12] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 530-538.
[13] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 548-553.
[14] LI Gui-Xia, JIANG Yong-Chao, LI Peng, PAN Wei, LI Yong-Ping, LIU Yun-Jie. Helium Separation Performance of the Rhombic-Graphyne Monolayer Membrane: Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2219-2226.
[15] YE Bin, ZHANG Jian, GAO Cai, TANG Jing-Chun. Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1978-1988.