Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (11): 2717-2723    DOI: 10.3866/PKU.WHXB201607271
ARTICLE     
Synergetic Effect of Mercury Adsorption on the Catalytic Decomposition of CO over Perfect and Reduced Fe2O3[001] Surface
Ji-Hong LI1,Chang-Feng LIN1,Wu QIN1,*(),Xian-Bin XIAO1,Li WEI2,*()
1 National Engineering Laboratory for Biomass Power Generation Equipment, School of Renewable Energy Engineering, North China Electric Power University, Beijing 102206, P. R. China
2 State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
Download: HTML     PDF(6064KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Mercury emission from coal during chemical-looping combustion (CLC) is an inevitable process, which can lead to adverse interactions with the surface of the oxygen carrier, thereby affecting the interfacial redox reactions. Density functional theory calculations were performed to investigate the mechanism of elemental mercury (Hg0) adsorption and the synergetic effect of Hg0 on the catalytic decomposition of CO over a perfect surface (Fe2O3[001]), as well as a series of reduced surfaces (Fe2O2.75, Fe2O2.5, Fe2O2.25, Fe2O1.625, Fe2O0.875, Fe2O0.375 and Fe) during a deep CLC process. In this study, Hg0 was physically adsorbed on to a perfect Fe2O3 surface, and then chemically adsorbed on to a series of reduced surfaces. The adsorption of Hg0 inhibited the formation of meaningful interactions between CO and Fe2O3[Fe2O2.75, Fe2O2.5 and Fe2O2.25] and hindered the efficient transport of oxygen to oxidize CO into CO2. In contrast, this process promoted the interactions between CO and Fe2O1.625[Fe2O0.875, Fe2O0.375, and Fe], favoring the catalytic decomposition of CO on these surfaces, which accelerated the carbon deposit reducing CLC efficiency. Rationally controlling the reduction degree of the oxygen carrier could therefore be used to either decrease the adsorption of Hg0 or depress the deposition of carbon, which are both crucial for the optimization of CLC processes.



Key wordsChemical looping combustion      Oxygen carrier      Mercury      CO2 capture      Density functional theory     
Received: 03 May 2016      Published: 27 July 2016
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(51346001);the National Natural Science Foundation of China(51106051);Fundamental Research Funds for the Central Universities, China(2016YQ07);Fundamental Research Funds for the Central Universities, China(2014ZD14)
Corresponding Authors: Wu QIN,Li WEI     E-mail: qinwugx@126.com;weilihit@126.com
Cite this article:

Ji-Hong LI,Chang-Feng LIN,Wu QIN,Xian-Bin XIAO,Li WEI. Synergetic Effect of Mercury Adsorption on the Catalytic Decomposition of CO over Perfect and Reduced Fe2O3[001] Surface. Acta Phys. -Chim. Sin., 2016, 32(11): 2717-2723.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201607271     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2717

 
 
 
 
 
 
 
 
 
1 Horst J. R. ; Karl F. K. Am. Chem. Soc 1983, 7, 71.
2 Ishida M. ; Jin H. G. Ind. Eng. Chem. Res 1996, 7, 2469.
3 Fan L. S. ; Zeng L. ; Wang W. ; Luo S. W. Energy Environ. Sci. 2012, 5, 7254.
4 Adanez J. ; Abad A. ; Garcia-Labiano F. ; Gayán P. ; de Diego L. F. Prog. Energy Combust. Sci 2012, 38, 215.
5 Zhang Y. ; Doroodchi E. ; Moghtaderi B. Energy Fuels 2012, 26, 287.
6 He F. ; Li H. B. ; Zhao Z. L. Int. J Chem. Eng 2009, 2009, 1.
7 Lyngfelt A. ; Leckner B. ; Mattisson T. Chem. Eng. Sci. 2001, 56, 3101.
8 Fan L. S. ; Zeng L. ; Luo S. W. AIChE J 2015, 61, 2.
9 Tian M. ; Wang X. D. ; Liu X. ; Wang A. Q. ; Zhang T. AIChE J 2016, 62, 792.
10 Cho P. ; Mattisson T. ; Lyngfelt A. Fuel 2004, 83, 1215.
11 Abad A. ; Adánez J. ; García-Labiano F. ; de Diego L. F. ; Gayán P. ; Celaya J. Chem. Eng. Sci 2007, 62, 533.
12 Cao Y. ; Pan W. P. Energy Fuels 2006, 20, 1836.
13 Abad A. ; Cuadrat A. ; Mendiara T. ; García-Labiano F. ; Gayán P% ; de Diego L. F. ; Adánez J. Ind. Eng. Chem. Res 2012, 51, 16230.
14 Zhang S. ; Xiao R. ; Zheng W. G. Appl. Energy 2014, 130, 181.
15 Xiao R. ; Song Q. L. ; Song M. ; Lu Z. J. ; Zhang S. ; Shen L. H. Combust Flame 2010, 157, 1140.
16 Yudovich Y. E. ; Ketris M. P. Int. J. Coal Geol 2005, 62, 107.
17 Frandsen F. ; Dam-Johansen K. ; Rasmussen P. Prog. Energy Combust. Sci 1994, 20, 115.
18 Thevuthasan S. ; Kim Y. J. ; Yi S. I. ; Chambers S. A. ; Morais J. ; Denecke R. ; Fadley C. S. ; Liu P. ; Kendelewicz T. ; Brown G.E. Jr. Surf. Sci 1999, 425, 276.
19 Segall M. D. ; Lindan P. J. D. ; Probert M. J. ; Pickard C. J. ; Hasnip P. J. ; Clark S. J. ; Payne M. C. J. Phys.: Condens. Matter 2002, 14, 2717.
20 White J. ; Bird D. Phys. Rev. B. 1994, 50, 4954.
21 Perdew J. P. ; Chevary J. A. ; Vosko S. H. ; Jackson K. A. ; Pederson M. R. ; Singh D. J. ; Fiolhais C. Phys. Rev. B: Condens. Matter Mater. Phys 1992, 46, 6671.
22 Vanderbilt D. Phys. Rev. B 1990, 41, 7892.
23 Guo H. ; Barnard A. S. Phys. Rev. B 2011, 83, 094112.
24 Bandyopadhyay A. ; Velev J. ; Butler W. H. ; Sarker S. K. ; Bengone O. Phys. Rev. B 2004, 69, 174429.
25 Huda M. N. ; Walsh A. ; Yan Y. J. Appl. Phys 2010, 107, 123712.
26 Dzade N. Y. ; Roldan A. ; de Leeuw N. H. Minerals 2014, 4, 89.
27 Rohrbach A. ; Hafner J. ; Kresse G. Phys. Rev. B 2004, 70, 125426.
28 Qin W. ; Wang Y. ; Lin C. F. ; Hu X. Q. ; Dong C. Q. Energy Fuels 2015, 29, 1210.
29 Song J. J. ; Niu X. Q. ; Ling L. X. ; Wang B. J. Fuel Process Technol 2013, 115, 26.
30 Wong K. ; Zeng Q. H. ; Yu A. B. J. Phys. Chem. C 2011, 115, 4656.
31 Martin G. J. ; Cutting R. S. ; VauGhan D. J. ; Warren M. C. Am. Mineral 2009, 94, 1341.
32 Sandratskii L. M. ; Uhl M. ; Kübler J. J. Phys.: Condens. Matter 1996, 8, 983.
33 Govind N. ; Petersen M. ; Fitzgerald G. ; King-Smith D. ; Andzelm J. Comput. Mater. Sci 2003, 28, 250.
34 Guo P. ; Guo X. ; Zheng C. G. Fuel 2011, 90, 1840.
35 Ji W. C. ; Shen Z. M. ; Fan M. H. ; Su P. R. ; Tang Q. L. ; Zou C. Y. Chem. Eng. J. 2016, 283, 58.
36 He F. ; Wang H. ; Dai Y. N. J. Nat. Gas. Chem 2007, 16, 155.
37 Dong C. Q. ; Sheng S. H. ; Qin W. ; Lu Q. ; Zhao Y. ; Wang X. Q. ; Zhang J. J. Appl. Surf. Sci 2011, 257, 8647.
38 Stibor A. ; Kresse G. ; Eichler A. ; Hafner J. Surf. Sci. 2002, 507, 99.
39 Bromfield T. C. ; Ferré D. C. ; Niemantsverdriet J. W. ChemPhysChem 2005, 6, 254.
40 Claridge J. B. ; Green M. L. H. ; Tsang S. C. ; York A. P. E. ; Ashcroft A. T. ; Battle P. D. Catal. Lett 1993, 22, 299.
41 Wang B. W. ; Yan R. ; Lee D. H. ; Liang D. T. ; Zheng Y. ; Zhao H. B. ; Zheng C. G. Energy Fuels 2008, 22, 1012.
42 Sorescu D. C. ; Thompson D. L. ; Hurley M. M. ; Chabalowski C. F. Phys. Rev. B 2002, 66, 035416.
43 Moon D. W. ; Bernasek S. L. ; Lu J. P. ; Gland J. L. ; Dwyer D. J. Surf. Sci 1987, 184, 90.
44 Qin W. ; Lin C. F. ; Long D. T. ; Xiao X. B. ; Dong C. Q. Acta Phys. -Chim. Sin 2015, 31, 667.
44 覃吴; 林常枫; 龙东腾; 肖显斌; 董长青. 物理化学学报, 2015, 31, 667.
45 Dong C. Q. ; Liu X. L. ; Qin W. ; Lu Q. ; Wang X. Q. ; Shi S. M. ; Yang Y. P. Appl. Surf. Sci 2012, 258, 2562.
[1] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[6] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[7] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[8] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[9] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[10] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[11] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[12] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[13] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.
[14] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[15] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.