Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (11): 2803-2810    DOI: 10.3866/PKU.WHXB201607291
ARTICLE     
Preparation of Highly Dispersed Ni-Ce-Zr Oxides over Mesoporous γ-Alumina and Their Catalytic Properties for CO2 Methanation
Wang-Xin NIE,Xiu-Jing ZOU*(),Xue-Guang WANG*(),Wei-Zhong DING,Xiong-Gang LU
Download: HTML     PDF(5160KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Highly dispersed Ni-Ce-Zr mixed oxides supported on mesoporous γ-alumina (Ni-Ce-Zr/γ-MA) were prepared by a citric acid (CA)-assisted impregnation method and evaluated as catalysts for the methanation of CO2 with H2. The effects of the CA content of the reaction solution on the physicochemical properties and the catalytic performance of the Ni-Ce-Zr/γ-MA catalysts were investigated in detail. The addition of CA promoted the dispersion of the Ni-Ce-Zr oxide species on the γ-alumina surface and improved the interactions between the Ni oxide species and the support, resulting in the formation of homogeneously dispersed Ni nanoparticles in the γ-MA frameworks upon reduction with H2. The resulting Ni-Ce-Zr/γ-MA catalysts were highly active and showed almost 100% selectivity for CH4 during the methanation of CO2 at temperatures in the range of 150-400℃. Notably, the catalytic activity increased as the molar ratio of CA/(Ni+Ce+Zr) increased in the range of 0-2. This effect was most likely caused by the associated decrease in the Ni particle size and the improved electronic and structural properties of the Ni-Ce-ZrOx species. The results of a stability test for the Ni-Ce-Zr/γ-MA catalyst prepared with a CA/(Ni+Ce+Zr) molar ratio of 1.0 showed that there was only a 7% decrease in the CO2 conversion following a reaction time of 300 h at 300℃ with negligible coke deposition, indicating excellent catalytic stability and good anti-coking ability of these systems for the methanation of CO2.



Key wordsNickel catalyst      Citric acid-assistance      Mixed metal oxide      Carbon dioxide      Methanation     
Received: 02 June 2016      Published: 29 July 2016
MSC2000:  O643  
Fund:  上海市教育委员会科研项目;国家重点基础研究发展规划项目(973)(2014CB643403);国家杰出青年科学基金(51225401);上海市科委基础重点项目(14JC1491400);the Innovation Program of Shanghai Municipal Education Commission;National Key Basic Research Program of China (973)(2014CB643403);National Science Fund for Distinguished Young Scholars, China(51225401);Basic Major Research Program of Science and Technology Commission Foundation of Shanghai, China(14JC1491400)
Corresponding Authors: Xiu-Jing ZOU,Xue-Guang WANG     E-mail: xjzou@shu.edu.cn;wxg228@shu.edu.cn
Cite this article:

Wang-Xin NIE,Xiu-Jing ZOU,Xue-Guang WANG,Wei-Zhong DING,Xiong-Gang LU. Preparation of Highly Dispersed Ni-Ce-Zr Oxides over Mesoporous γ-Alumina and Their Catalytic Properties for CO2 Methanation. Acta Physico-Chimica Sinca, 2016, 32(11): 2803-2810.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201607291     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2803

 
Sample SBET/(m2·g-1) Vp/(cm3·g-1) Dp/nm
γ-MA 348 0.30 3.4
Ni-Ce-Zr/γ-MA-0 172 0.16 3.6
Ni-Ce-Zr/γ-MA-0.5 310 0.25 3.3
Ni-Ce-Zr/γ-MA-1.0 299 0.27 3.6
Ni-Ce-Zr/γ-MA-2.0 312 0.27 3.5
 
 
 
 
 
Sample Ni crystallite size/nm XCO2/% TOF/h-1
XRD TEM
Ni-Ce-Zr/γ-MA-0 11.5 10.5 5.2 67
Ni-Ce-Zr/γ-MA-0.5 5.4 6.9 11.6 76
Ni-Ce-Zr/γ-MA-1.0 5.2 6.4 14.5 92
Ni-Ce-Zr/γ-MA-2.0 5.1 6.2 18.2 114
 
 
 
 
 
 
1 Abe T. ; Tanizawa M. ; Watanabe K. ; Taguchi A. Energy Environ. Sci. 2009, 2, 315.
2 Wang W. ; Wang S. P. ; Ma X. B. ; Gong J. L. Chem. Soc. Rev. 2011, 40, 3703.
3 Gao J. J. ; Liu Q. ; Gu F. N. ; Liu B. ; Zhong Z. Y. ; Su F. B. RSC Adv 2015, 5, 22759.
4 Aziz M. A. A. ; Jalil A. A. ; Triwahyono S. ; Ahmad A. Green Chem 2015, 17, 2647.
5 Chang F.W. ; Kuo M. S. ; Tsay M. T. ; Hsieh M. C. Appl. Catal. A 2003, 247, 309.
6 Perkas N. ; Amirian G. ; Zhong Z. Y. ; Teo J. ; Gofer Y. ; Gedanken A. Catal. Lett 2009, 130, 455.
7 Zhang R. B. ; Liang L. ; Zeng X. R. ; Shang J. Y. ; Wang T. ; Cai J. X. Acta Phys. -Chim. Sin 2012, 28, 1951.
7 张荣斌; 梁蕾; 曾宪荣; 商金艳; 汪涛; 蔡建信. 物理化学学报, 2012, 28, 1951.
8 Song H. L. ; Yang J. ; Zhao J. ; Chou L. J. Chin. J. Catal 2010, 31, 21.
9 Lu B.W. ; Kawamoto K. Fuel 2013, 103, 699.
10 Ocampo F. ; Louis B. ; Kiwi-Minsker L. ; Roger A. C. Appl. Catal. A 2011, 392, 36.
11 Cai W. ; Zhong Q. ; Zhao Y. X. Catal. Commun 2013, 39, 30.
12 Fan Z. G. ; Sun K. H. ; Rui N. ; Zhao B. R. ; Liu C. J. J. Energy Chem 2015, 24, 655.
13 Guo Z. L. ; Huang L. Q. ; Chu W. ; Luo S. Z. Acta Phys. -Chim. Sin 2014, 30, 723.
13 郭章龙; 黄丽琼; 储伟; 罗仕忠. 物理化学学报, 2014, 30, 723.
14 Liu H. Z. ; Zou X. J. ; Wang X. G. ; Lu X. G. ; Ding W. Z. J. Nat. Gas Chem 2012, 21, 703.
15 Luisetto I. ; Tuti S. ; Battocchio C. ; Lo Mastro S. ; Sodo A. Appl. Catal. A 2015, 500, 12.
16 Boullosa-Eiras S. ; Zhao T. J. ; Vanhaecke E. ; Chen D. ; Holmen A. Catal. Today 2011, 178, 12.
17 Villarreal A. ; Ramirez J. ; Caero L. C. ; Villalon P. C. ; Gutierrez-Alejandre A. Catal. Today 2015, 250, 60.
18 Chen J. J. ; Labruyere V. ; Mauge F. ; Quoineaud A. A. ; Hugon A. ; Oliviero L. J. Phys. Chem. C 2014, 118, 30039.
19 Liu X. Q. ; Li S. H. ; Sun M. T. ; Yu C. L. ; Huang B. C. Acta Phys. -Chim. Sin 2016, 32, 1236.
19 刘小青; 李时卉; 孙梦婷; 喻成龙; 黄碧纯. 物理化学学报, 2016, 32, 1236.
20 Hu Y. ; Wang X. G. ; Tan M.W. ; Zou X. J. ; Ding W. Z. ; Lu X. G. ChemCatChem 2016, 8, 1055.
21 Klimova T. E. ; Valencia D. ; Mendoza-Nieto J. A. ; Hernandez-Hipolito P. J. Catal 2013, 304, 29.
22 Castillo-Villalon P. ; Ramirez J. ; Vargas-Luciano J. A. J. Catal 2014, 320, 127.
23 Dik P. P. ; Klimov O. V. ; Koryakina G. I. ; Leonova K. A. ; Pereyma V. Y. ; Budukva S. V. ; Gerasimov E. Y. ; Noskov A. S. Catal. Today 2014, 220-222, 124.
24 Liu G. L. ; Geng Y. X. ; Pan D. M. ; Zhang Y. ; Niu T. ; Liu Y. Fuel Process Technol 2014, 128, 289.
25 Greluk M. ; Rybak P. ; Slowik G. ; Rotko M. ; Machocki A. Catal. Today 2015, 242, 50.
26 Greluk M. ; Rotko M. ; Machocki A. Catal. Lett 2016, 146, 163.
27 Wu H. D. ; Duan A. J. ; Zhao Z. ; Qi D. H. ; Li J. M. ; Liu B. ; Jiang G. Y. ; Liu J. ; Wei Y. C. ; Zhang X. Fuel 2014, 130, 203.
28 Shang X. F. ; Wang X. G. ; Nie W. X. ; Guo X. F. ; Zou X. J. ; Ding W. Z. ; Lu X. G. J. Mater. Chem. 2012, 22, 23806.
29 Mendoza-Nieto J. A. ; Robles-Mendez F. ; Klimova T. E. Catal. Today 2015, 250, 47.
30 Calderon-Magdaleno M. A. ; Mendoza-Nieto J. A. ; Klimova T. E. Catal. Today 2014, 220-222, 78.
31 Li B. T. ; Qian X. Y. ; Wang X. J. Int. J. Hydrog. Energy 2015, 40, 8081.
32 Ye Q. ; Wang R. P. ; Xu B. Q. Acta Phys. -Chim. Sin 2006, 22, 33.
32 叶青; 王瑞璞; 徐柏庆. 物理化学学报, 2006, 22, 33.
[1] Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2388-2403.
[2] JIN Zhen-Yu, LI Tong, LU An-Hui. Nitrogen-Enriched Hierarchical Porous Carbon for Carbon Dioxide Adsorption and Separation[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1602-1608.
[3] LI Zhe-Qi, WANG Te-Hua, LI Xiu-Yuan, ZHANG Ya-Qin, JI Min. Preparation and Catalytic Performances of a Three-Dimensionally Ordered Macroporous MgFe0.1Al1.9O4 Catalyst for Ethylbenzene Oxydehydrogenation with CO2[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 743-749.
[4] WANG Bao-Wei, LIU Si-Han, HU Zong-Yuan, LI Zhen-Hua, MA Xin-Bin. Effect of H2S Concentration on MoO3/Al2O3 and CoO-MoO3/Al2O3 Catalysts for Sulfur-Resistant Methanation[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 545-551.
[5] HE Zhi-Qiao, TONG Li-Li, ZHANG Zhi-Peng, CHEN Jian-Meng, SONG Shuang. Ag/Ag2WO4 Plasmonic Catalyst for Photocatalytic Reduction of CO2 under Visible Light[J]. Acta Physico-Chimica Sinca, 2015, 31(12): 2341-2348.
[6] ZHAO Yi, ZHOU Jin, LIU Hui, ZHUO Shu-Ping. Reaction Mechanism and the Regioselectivity of Cu-Catalyzed Silacarboxylation of Internal Alkynes: a Density Functional Theory Study[J]. Acta Physico-Chimica Sinca, 2015, 31(10): 1864-1871.
[7] WANG Guan-Nan, CHEN Li-Min, GUO Yuan-Yuan, FU Ming-Li, WU Jun-Liang, HUANG Bi-Chun, YE Dai-Qi. Effect of Chromium Doping on the Catalytic Behavior of Cu/ZrO2/CNTs-NH2 for the Synthesis of Methanol from Carbon Dioxide Hydrogenation[J]. Acta Physico-Chimica Sinca, 2014, 30(5): 923-931.
[8] GUO Zhang-Long, HUANG Li-Qiong, CHU Wei, LUO Shi-Zhong. Effects of Promoter on NiMgAl Catalyst Structure and Performance for Carbon Dioxide Reforming of Methane[J]. Acta Physico-Chimica Sinca, 2014, 30(4): 723-728.
[9] ZHANG Hai-Xin, CHEN Shu-Wei, CUI Xing-Yu, PAN Da-Hai, QIN Zhang-Feng, WANG Jian-Guo. Effect of Ce Promoter on Catalytic Performance of V/SiO2 in Oxidative Dehydrogenation of Ethylbenzene with Carbon Dioxide[J]. Acta Physico-Chimica Sinca, 2014, 30(2): 351-358.
[10] LAN Ben-Yue, SHI Hai-Feng. Review of Systems for Photocatalytic Conversion of CO2 to Hydrocarbon Fuels[J]. Acta Physico-Chimica Sinca, 2014, 30(12): 2177-2196.
[11] CHEN Li, ZHU Rong-Jiao, YUAN Ping-Fang, CAO Li-Qian, TIAN Yi-Ling. Vapor-Liquid Equilibrium Data for Carbon Dioxide+Dimethyl Carbonate Binary System[J]. Acta Physico-Chimica Sinca, 2013, 29(01): 11-16.
[12] ZHENG Bin, ZHANG An-Feng, LIU Min, DING Fan-Shu, DAI Cheng-Yi, SONG Chun-Shan, GUO Xin-Wen. Properties of the Nano-Particle Fe-based Catalyst for the Hydrogenation of Carbon Dioxide to Hydrocarbons[J]. Acta Physico-Chimica Sinca, 2012, 28(08): 1943-1950.
[13] ZHANG Rong-Bin, LIANG Lei, ZENG Xian-Rong, SHANG Jin-Yan, WANG Tao, CAI Jian-Xin. Catalytic Properties of Ni /MWCNT and La-Promoted Ni /MWCNT for Methanation of Carbon Dioxide Reaction[J]. Acta Physico-Chimica Sinca, 2012, 28(08): 1951-1956.
[14] ZHAO Jing-Mao, LI Jun. Corrosion Inhibition Performance of Carbon Steel in Brine Solution Containing H2S and CO2by Novel Gemini Surfactants[J]. Acta Physico-Chimica Sinca, 2012, 28(03): 623-629.
[15] LI Gan, LUO Wen-Hua, CHEN Hu-Chi. Adsorption and Dissociation of CO2on the α-U(001) Surface[J]. Acta Physico-Chimica Sinca, 2011, 27(10): 2319-2325.