Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (11): 2663-2670    DOI: 10.3866/PKU.WHXB201607292
ARTICLE     
Evaluation of the Walden Product of Ionic Liquids Using Experiments and a New Theory: An Ion Exchange Transition Model
Ling ZHENG1,Yi PAN1,Hong-Xiang JI1,Xiao-Xue MA1,3,*(),Nan-Nan XING1,Wei GUAN1,2,*()
1 College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
2 School of Environmental Science, Liaoning University, Shenyang 110036, P. R. China
3 Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download: HTML     PDF(4584KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

A new theory has been developed to evaluate the Walden product, W, of ionic liquids using an ion exchange transition model. This model showed that the product (Walden) of molar conductivity and dynamic viscosity is related to the average diameters of the ion pairs and ion clusters of ionic liquids (ILs) with 1:1 charge ratios, namely, different ILs have different W values. Several experiments were conducted to evaluate the validity of this model. Eight different ILs, including five N-alkyl-pyridinium dicyanamide ILs[Cnpy] [DCA] (n=2-6) and three N-alkyl-3-methyllimidazolium serine ILs[Cnmim] [Ser] (n=2-4) were successfully synthesized and evaluated in terms of their conductivity and dynamic viscosity properties. The W values of 33 different ILs were calculated based on their experimentally determined molar conductivity and dynamic viscosity values, and the results revealed that these values were consistent with those of the ion exchange transition model. Taken together, these results demonstrate that W is a key physical parameter for ILs.



Key wordsIonic liquid      Conductivity      Viscosity      Transition model      Walden product     
Received: 14 June 2016      Published: 29 July 2016
MSC2000:  O642  
Fund:  The project was supported by the National Natural Science Foundation of China(21373104);The project was supported by the National Natural Science Foundation of China(21273003);Program for Liaoning Excellent Talents in University, China(LR2015025)
Corresponding Authors: Xiao-Xue MA,Wei GUAN     E-mail: mxx_1985@163.com;guanweiy@sina.com
Cite this article:

Ling ZHENG,Yi PAN,Hong-Xiang JI,Xiao-Xue MA,Nan-Nan XING,Wei GUAN. Evaluation of the Walden Product of Ionic Liquids Using Experiments and a New Theory: An Ion Exchange Transition Model. Acta Physico-Chimica Sinca, 2016, 32(11): 2663-2670.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201607292     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2663

Fig 1 Synthesized process of ionic liquids (ILs) [Cnpy][DCA] (n=2-6) and [Cnmim][Ser] (n=2-4)
T/K σ/(mS?cm-1)
[C2py][DCA] [C3py][DCA] [C4py][DCA] [C5py][DCA] [C6py][DCA] [C2mim][Ser] [C3mim][Ser] [C4mim][Ser]
298.15 17.18±0.23 13.08±0.16 8.700±0.15 5.951±0.20 4.601±0.26 0.6518 0.137±0.005 0.0395±0.0009
303.15 19.59±0.10 15.08±0.09 10.30±0.12 6.922±0.19 5.722±0.22 0.878±0.008 0.234±0.003 0.0670±0.0007
308.15 22.76±0.13 17.66±0.16 12.21±0.12 8.310±0.15 6.911±0.19 1.21±0.04 0.383±0.007 0.0831±0.0004
313.15 26.41±0.09 20.73±0.10 14.59±0.12 9.922±0.20 8.143±0.19 1.58±0.02 0.571±0.012 0.152±0.001
318.15 30.09±0.14 24.41±0.15 17.24±0.10 11.86±0.15 9.752±0.15 2.04±0.04 0.841±0.007 0.218±0.003
323.15 34.36±0.15 28.09±0.11 19.75±0.11 13.91±0.13 11.45±0.14 2.58±0.05 1.16±0.04 0.329±0.007
328.15 38.99±0.17 32.15±0.08 22.55±0.15 16.10±0.14 13.15±0.16 3.29±0.03 1.59±0.02 0.471±0.002
333.15 43.53±0.23 36.37±0.19 25.92±0.13 18.36±0.13 15.14±0.09 4.12±0.06 2.14±0.02 0.650±0.003
338.15 48.55±0.22 40.77±0.12 29.34±0.07 20.72±0.10 17.16±0.11 4.98±0.07 2.82±0.03 0.861±0.004
Table 1 Values of conductivity(σ)for [[Cnpy][DCA](n=2-6)and [Cnmim][Ser](n=2-4)at temperature range of298.15-338.15 Ka and pressure(p)of 0.1 MPa b
T/K η/(mPa?s)
[C2py][DCA] [C3py][DCA] [C4py][DCA] [C5py][DCA] [C6py][DCA] [C2mim][Ser]19 [C3mim][Ser] [C4mim][Ser]
298.15 18.92±0.09 28.10±0.14 35.42±0.18 49.62±0.25 61.08±0.31 410.9 2995±15 5415±27
303.15 16.44±0.08 23.45±0.12 29.28±0.15 39.73±0.20 49.15±0.25 279.8 1901±10 3382±17
308.15 14.31±0.07 20.01±0.10 24.24±0.12 32.58±0.16 40.03±0.20 196.7 1148±6 2129±11
313.15 12.48±0.06 16.86±0.08 20.35±0.10 27.18±0.14 32.70±0.16 142.3 776.5±3.9 1522±8
318.15 10.98±0.05 14.54±0.07 17.60±0.09 22.81±0.11 26.74±0.13 105.8 538.6±2.7 1050±5
323.15 9.480±0.05 12.38±0.06 14.67±0.07 18.85±0.09 22.43±0.11 80.49 407.6±2.0 712.0±3.6
328.15 8.520±0.04 10.93±0.05 12.79±0.06 15.95±0.08 19.13±0.10 62.48 276.6±1.4 540.4±2.7
333.15 7.690±0.04 9.57±0.05 11.23±0.06 13.96±0.07 16.67±0.08 49.31 207.1±1.0 391.7±2.0
338.15 6.910±0.03 8.53±0.04 9.86±0.05 12.29±0.06 14.60±0.07 39.63 150.6±0.8 358.5±1.8
Table 2 Values of dynamic viscosity(η)for [[Cnpy][DCA](n=2-6)and [Cnmim][Ser](n=3-4)at temperature range of 298.15-338.15 Ka and pressure(p)of 0.1 MPab
Fig 2 Plots of σ vs T for [[Cnpy][DCA](n=2-6)and[Cnmim][Ser](n=2-4)Fig.1 Synthesized process of ionic liquids(ILs)[[Cnpy][DCA](n=2-6)and [Cnmim][Ser](n=2-4)
Fig 3 Plots of η vs T for [[Cnpy][DCA](n=2-6)and[Cnmim][Ser](n=2-4)
Ionic liquid ρ/(kg.m_3) 106V/(m3·mol—1) ο/(S·m—1) Λ/(S·m2·mol-1 η/(Pa·s) 106W/(S·m2·mol—1·Pa·s) 106ΔW/(S·m2·mol-1·Pa·s) SD
[C2py][DCA] 1118.4923 155.8 1.718 267.66 0.01901 5.09 —1.24 0.20
[C3py][DCA] 1090.0623 172.7 1.308 225.89 0.02821 6.37 0.04 0.01
[C4py][DCA] 1068.8323 189.3 0.87 164.69 0.03556 5.86 —0.47 0.07
[C5py][DCA] 1053.0723 205.4 0.595 122.21 0.0498 6.09 —0.24 0.04
[C6py][DCA] 1036.4123 222.3 0.46 102.26 0.06195 6.34 0.04 0.00
[C2mim][Ser] 1195.222 179.9 0.06540 11.69 0.4108619 4.8 —1.53 0.24
[C3mim][Ser] 1181.5124 193.8 0.0137 2.66 2.995 7.95 1.62 0.26
[C4mim][Ser] 1156.0424 210.2 0.00395 0.83 5.4149 4.50 —1.83 0.29
[C2mim][DCA] 1101.3225 160.9 2.92811 471.12 0.0150825 7.10 0.77 0.12
[C2mim][DCA] 1101.9826 160.8 2.92827 470.82 0.0149026 7.01 0.68 0.11
[C4mim][DCA] 1063.125 193.1 1.13928 219.94 0.03180229 6.99 0.04 0.10
[C4mim][DCA] 1060.7629 193.5 1.13928 220.4 0.0273425 6.02 —0.31 0.04
[C4mim][DCA] 1058.730 193.8 1.13928 220.74 0.0272630 6.02 —0.31 0.05
[C2mim][OAc] 1097.7821 155 0.23126 35.81 0.132926 4.76 —1.57 0.25
[C2mim][MeSO4] 1229.631 173.3 0.54732 94.8 0.081432 7.72 0.04 0.22
[C4mim][MeSO4] 1212.233 206.3 0.12632 25.99 0.22332 5.80 —0.53 0.08
[C2mim][EtSO4] 1240.18436 190.8 0.380934 72.68 0.1014231 7.37 0.04 0.14
[C2mim][EtSO4] 1238.135 190.8 0.380934 72.68 0.0971935 7.06 0.04 0.12
[C4mim][CF3CO2] 1212.836 207.9 0.45536 94.59 0.052936 4.3 —2.03 0.32
[C4mim][PF6] 1364.536 208.3 0.15736 32.7 0.26136 8.53 2.2 0.35
[C2mim][BF4] 1279.937 154.7 1.55338 240.25 0.0361739 8.69 2.36 0.37
[C2mim][BF4] 1279.936 154.7 1.6338 252.16 0.0369338 9.31 2.98 0.47
[C4mim][BF4] 1182.236 191.2 0.19436 37.09 0.11636 7.20 0.87 0.14
[C4mim][BF4] 1201.240 188.2 0.35238 66.25 0.0992038 6.57 0.04 0.04
[C6mim][BF4] 1146.037 221.7 0.1228 27.22 0.190938 5.20 —1.13 0.18
[C6mim][BF4] 1145.440 221.8 0.126138 27.97 0.190938 5.33 —1 0.16
[C2mmim][NTf2]41 1493.1 269.9 0.389 104.99 0.0722 7.58 1.25 0.2
[C3mmim][NTf2]41 1457.9 278.7 0.258 71.9 0.0889 6.39 0.06 0.01
[C4mmim][NTf2]41 1422.4 288.9 0.212 61.25 0.1016 6.41 0.04 0.01
[C5mmim][NTf2]41 1392.4 302.8 0.156 47.24 0.1246 6.22 —0.11 0.02
[C6mmim][NTf2]41 1366.8 314.1 0.122 38.32 0.1354 5.89 —0.44 0.07
[C7mmim][NTf2]41 1342.8 323 0.096 31.01 0.1523 5.19 —1.14 0.18
[C3mim][NTf2]41 1475.6 313.6 0.531 166.52 0.0437 7.28 0.04 0.15
[C4mim][NTf2]41 1436.6 330.8 0.398 131.66 0.0517 6.81 0.04 0.08
[C4mim][NTf2] 1437.842 291.4 0.3842 111.96 0.051142 5.53 —0.80 0.13
[C5mim][NTf2]41 1405 342.2 0.285 97.53 0.0615 6.00 —0.33 0.05
[C6mim][NTf2]41 1374.7 315.8 0.214 67.58 0.0722 4.88 —1.45 0.23
[C7mim][NTf2]41 1347.1 362.3 0.163 59.05 0.0843 4.98 —1.35 0.21
[C2py][NTf2]41 1560.5 252.1 0.599 151.01 0.0394 5.95 —0.38 0.06
[C4py][NTf2]41 1470.6 286.6 0.321 92 0.0583 5.36 —0.97 0.15
[C5py][NTf2]41 1442.9 301.8 0.222 67.00 0.0791 5.30 —1.03 0.16
267.66 W=6.33
Table 3 Values of relative physical variables and Walden products for different ILs at 298.15 K
Fig 4 Walden products of 33 kinds of ionic liquids color online
1 Kang X. C. ; Sun X. F. ; Zhu Q. G. ; Ma X. X. ; Liu H. Z. ; Ma J. ; Qian Q. L. ; Han B. X. Green Chem. 2016, 18, 1869.
2 Liu Q. S. ; Liu H. ; Mou L. Acta Phys. -Chim. Sin. 2016, 32 (3), 617.
2 刘青山; 刘惠; 牟林. 物理化学学报, 2016, 32 (3), 617.
3 Liu Q. S. ; Yan P. F. ; Yang M. ; Tan Z. C. ; Li C. P. ; Welz-Biermann U. Acta Phys. -Chim. Sin. 2011, 27 (12), 2762.
3 刘青山; 颜佩芳; 杨淼; 谭志诚; 李长平; Welz-BiermannUrs.. 物理化学学报, 2011, 27 (12), 2762.
4 Padró J. M. ; Reta M. J. Mol. Liq. 2016, 213, 107.
5 Yang X. ; Song H. ; Wang J. RSC Adv. 2006, 6, 29172.
6 Calvar N. ; Gomez E. ; Macedo E. A. ; Dominguez A. Thermochim. Acta 2013, 565, 178.
7 Crosthwaite J. M. ; Muldoon M. J. ; Dixon J. K. ; Anderson J. L. ; Brennecke J. F. J. Chem. Thermodyn. 2005, 37, 559.
8 Zhao D. B. ; Fei Z. F. ; Geldbach T. J. ; Scopelliti R. ; Dyson P. J. J. Am. Chem. Soc. 2004, 126 (48), 15876.
9 Yunus N. M. ; Mutalib M. I. A. ; Man Z. ; Bustam M. A. ; Murugesan T. Chem. Eng. J. 2012, 189, 94.
10 Xu W. ; Cooper E. I. ; Angell C. A. J. Phys. Chem. B 2003, 107, 6170.
11 Schreiner C. ; Zugmann S. ; Hartl R. ; Gores H. J. J. Chem. Eng. Data 2010, 55, 4372.
12 Xu A. ; Zhang Y. ; Li Z. ; Wang J. J. J. Chem. Eng. Data 2012, 57, 3102.
13 Zheng L. ; Fan B. H. ; Bu X. X. ; Pan Y. ; Dong J. X. ; Guan W. Acta Phys. -Chim. Sin. 2015, 31 (11), 2036.
13 郑玲; 樊本汉; 卜晓雪; 潘懿; 董家新; 关伟. 物理化学学报, 2015, 31 (11), 2036.
14 Bu X. X. ; Fan B. H. ; Wei J. ; Xing N. N. ; Ma X. X. ; Guan W. Acta Phys. -Chim. Sin. 2016, 32 (1), 267.
14 卜晓雪; 樊本汉; 魏杰; 邢楠楠; 马晓雪; 关伟. 物理化学学报, 2016, 32 (1), 267.
15 Zhang S. G. ; Qi X. J. ; Ma X. Y. ; Lu L. J. ; Deng Y. Q. J. Phys. Chem. B 2010, 114, 3912.
16 Guan W. ; Ma X. X. ; Li L. ; Tong J. ; Fang D.W. ; Yang J. Z. J. Phys. Chem. B 2011, 115, 12915.
17 Ma X. X. ; Wei J. ; Zhang Q. B. ; Tian F. ; Feng Y. Y. ; Guan W. Ind. Eng. Chem. Res. 2013, 52, 9490.
18 Fukumoto K. ; Yoshizawa M. ; Ohno H. J. Am. Chem. Soc. 2005, 127, 2398.
19 Muhammad N. ; Man Z. B. ; Bustam M. A. ; Mutalib M. I. A. ; Wilfred C. D. ; Rafiq S. J. Chem. Eng. Data 2011, 56, 3157.
20 Tokuda H. ; Hayamizu K. ; Ishii K. ; Susan M. A. B. H. ; Watanabe M. J. Phys. Chem. B 2005, 109, 6103.
21 Tokuda H. ; Tsuzuki S. ; Susan M. A. B. H. ; Hayamizu K. ; Watanabe M. J. Phys. Chem. B 2006, 110, 19593.
22 Wu T. Y. ; Su S. G. ; Gung S. T. ; Lin M.W. ; Lin Y. C. ; Lai C. A. ; Sun I. W. Electrochim. Acta 2010, 55, 4475.
23 Ma X. X. ; Wei J. ; Guan W. ; Pan Y. ; Zheng L. ; Wu Y. ; Yang J. Z. J. Chem. Thermodyn. 2015, 89, 51.
24 Wei J. ; Chang C. ; Zhang Y. ; Hou S. ; Fang D. ; Guan W. J. Chem. Thermodyn. 2015, 90, 310.
25 Larriba M. ; Navarro P. ; García J. ; Rodríguez F. Ind. Eng. Chem. Res. 2013, 52, 2714.
26 Quijada-Maldonado E. ; Boogaart S. V. D. ; Lijbers J. H. ; Meindersma G.W. ; Haan A. B. D. J. Chem. Thermodyn. 2012, 51, 51.
27 Villagran C. ; Banks C. E. ; Hardacre C. ; Compton R. G. Anal. Chem. 2004, 76, 1998.
28 Stoppa A. ; Hunger J. ; Buchner R. J. Chem. Eng. Data 2009, 54 (2), 472.
29 Carvalho P. J. ; Regueira T. ; Santos L. M. N. B. F. ; Fernández J. ; Coutinho J. A. P. J. Chem. Eng. Data 2010, 55, 645.
30 Paduszynski K. ; Okuniewski M. ; Domanska U. J. Phys. Chem. B 2013, 117, 7034.
31 Yang J. Z. ; Lu X. M. ; Gui J. S. ; Xu W. G. ; Li H. W. J. Chem. Thermodyn. 2005, 37, 1250.
32 Andanson J. M. ; Traikia M. ; Husson P. J. Chem. Thermodyn. 2014, 77, 214.
33 Pereiro A. B. ; Rodriguez A. J. Chem. Thermodyn. 2007, 39, 978.
34 Li W. J. ; Zhang Z. F. ; Han B. X. ; Yang G. Y. J. Phys. Chem. B 2007, 111, 6452.
35 Calado M. S. ; Diogo J. C. F. ; Correia da Mata J. L. ; Caetano F. J. P. ; Visak Z. P. ; Fareleira J. M. N. A. Int. J. Thermophys. 2013, 34, 1265.
36 Diogo J. C. F. ; Caetano F. J. P. ; Fareleira J. M. N. A. ; Wakeham W. A. Int. J. Thermophys. 2014, 35, 1615.
37 Xu W. G. ; Li L. ; Ma X. X. ; Yang J. Z. J. Chem. Eng. Data 2012, 57, 2177.
38 Rilo E. ; Vila J. ; Pico J. ; Oscar C. J. Chem. Eng. Data 2010, 55, 639.
39 Huddleston J. G. ; Visser A. E. ; Reichert W. M. ; Willauer H. D. ; Broker G. A. ; Rogers R. D. Green Chem. 2001, 3, 156.
40 Rilo E. ; Pico J. ; Garcia-Garabal S. ; Varela L. M. ; Cabeza O. Fluid Phase Equilibr. 2009, 285, 83.
41 Chen Z. J. ; Lee J. M. J. Phys. Chem. B 2014, 118, 2712.
42 Zhao H. ; Liang Z. C. ; Li F. J. Mol. Liq. 2009, 149, 55.
[1] Jing TONG,Ye QU,Liqiang JING,Lu LIU,Chunhui LIU. Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 194-200.
[2] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 99-107.
[3] Yan-Shuang MENG,Chen WANG,Lei WANG,Gong-Rui WANG,Jun XIA,Fu-Liang ZHU,Yue ZHANG. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1915-1922.
[4] Mao-Zhang TIAN,Fan ZHANG,Cheng MA,De-Sheng MA,Ling-Xiang JIANG,Rong-Rong XUE,Ka-Er-Dun LIU,Jian-Bin HUANG. Viscosity Reduction of Heavy Oils of Different Viscosities Based on General Cationic/Anionic Surfactant Systems[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1665-1671.
[5] Qi-Ge ZHENG,Hui LIU,Quan XIA,Qing-Shan LIU,Lin MOU. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 736-744.
[6] Ning-Kai SHU,Zhi-Cheng XU,Zi-Yu LIU,Zhi-Qiang JIN,Jian-Bin HUANG,Lei ZHANG,Lu ZHANG. Effect of Short Alkyl Chain on Interfacial Properties of Poly-Substituted Alkyl Benzene Sulfonate[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 803-809.
[7] Ting ZHANG,Jie SHEN. Aggregation Properties and Thermodynamics of Micellization of Gemini Surfactants with Diester and Rigid Spacers in Organic Alcohol-Water Mixed Media[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 795-802.
[8] Jin BAI,Xin CHEN,Zhao-Yi XI,Xiang WANG,Qiang LI,Shao-Zheng HU. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 611-619.
[9] Jing TONG,Lu LIU,Duo ZHANG,Xu ZHENG,Xia CHEN,Jia-Zhen YANG. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala][J]. Acta Physico-Chimica Sinca, 2017, 33(3): 513-519.
[10] Ren-Jun MA,Qian-Jin GUO,Bo-Xuan LI,An-Dong XIA. Triplet Excited State Dynamics of Porphyrin in Ionic Liquid [Bmim][BF4][J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2191-2198.
[11] Yi-Fen GAO,Gui-Lin ZHUANG,Jia-Qi BAI,Xing ZHONG,Jian-Guo WANG. Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn (Ⅱ)-Based Metal-Organic Framework[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 242-248.
[12] Wen-Hao WU,Xin-Yu HUANG,Rui-Min YAO,Ren-Jie CHEN,Kai LI,Ru-Qiang ZOU. Synthesis and Properties of Polyurethane/Coal-Derived Carbon Foam Phase Change Composites for Thermal Energy Storage[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 255-261.
[13] YUAN Wei-Jin, DONG Zhen, ZHAO Long, YU Tian-Lin, ZHAI Mao-Lin. γ-Ray-Induced Radiolysis of CMPO/[C2mim][NTf2] and Its Effect on Eu3+ Extraction[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2101-2107.
[14] ZHENG Xiao-Di, ZHU Yan-Li, DONG Rui, JIAO Qing-Jie. Effect of Alkyl Imidazole Ionic Liquids CnmimCl (n= 4, 6, 8) on CL-20 Recrystallization[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1950-1959.
[15] WU Yang, YUE Li-Li, LIU Qiao-Zhen, WANG Xia. A Theoretical Study of the Thermodynamic Properties of Imidazolium Acetate Ionic Liquids[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1960-1966.