Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (1): 80-102    DOI: 10.3866/PKU.WHXB201607293
REVIEW     
Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting
Wei-Tao QIU1,Yong-Chao HUANG1,Zi-Long WANG2,Shuang XIAO2,Hong-Bing JI1,*(),Ye-Xiang TONG1,*()
1 School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
2 Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, P. R. China
Download: HTML     PDF(4600KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Photoelectrochemical water splitting is to utilize collected photo-generated carrier for direct water cleavage for hydrogen production. It is a system combining photoconversion and energy storage since converted solar energy is stored as high energy-density hydrogen gas. According to intrinsic properties and band bending situation of a photoelectrode, hydrogen tends to be released at photocathode while oxygen at photoanode. In a tandem photoelectrochemical chemical cell, current passing through one electrode must equals that through another and electrode with lower conversion rate will limit efficiency of the whole device. Therefore, it is also of research interest to look into the common strategies for enhancing the conversion rate at photoanode. Although up to 15% of solar-to-hydrogen efficiency can be estimated according to some semiconductor for solar assisted water splitting, practical conversion ability of state-of-the-art photoanode has yet to approach that theoretical limit. Five major steps happen in a full water splitting reaction at a semiconductor surface:light harvesting with electron excitations, separated electron-hole pairs transferring to two opposite ends due to band bending, electron/hole injection through semiconductor-electrolyte interface into water, recombination process and mass transfer of products/reactants. They are closely related to different proposed parameters for solar water splitting evaluation and this review will first help to give a fast glance at those evaluation parameters and then summarize on several major adopted strategies towards high-efficiency oxygen evolution at photoanode surface. Those strategies and thereby optimized evaluation parameter are shown, in order to disclose the importance of modifying different steps for a photoanode with enhanced output.



Key wordsPhotoelectrochemical catalysis      Water splitting      Photoanode      Photocatalysis step      Modification strategy     
Received: 30 May 2016      Published: 29 July 2016
MSC2000:  O649  
Fund:  the National Science Fund for Distinguished Young Scholars, China(21425627);National Natural Science Foundation of China(21461162003);National Natural Science Foundation of China(21476271);Natural Science Foundation of Guangdong Province, China(2014KTSCX004);Natural Science Foundation of Guangdong Province, China(2014A030308012)
Corresponding Authors: Hong-Bing JI,Ye-Xiang TONG     E-mail: jihb@mail.sysu.edu.cn;chedhx@mail.sysu.edu.cn
Cite this article:

Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201607293     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/80

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Hisatomi T. ; Kubota J. ; Domen K. Chem. Soc. Rev 2014, 43, 7520.
2 Fujishima A. ; Honda K. Nature 1972, 238, 37.
3 Gan J. ; Lu X. ; Tong Y. Nanoscale 2014, 6, 7142.
4 Lu X. ; Xie S. ; Yang H. ; Tong Y. ; Ji H. Chem. Soc. Rev 2014, 43, 7581.
5 Xie S. ; Li M. ; Wei W. ; Zhai T. ; Fang P. ; Qiu R. ; Lu X. ; Tong Y. Nano Energy 2014, 10, 313.
6 Yang Y. ; Ling Y. ; Wang G. ; Liu T. ; Wang F. ; Zhai T. ; Tong Y. ; Li Y. Nano Lett 2015, 15, 7051.
7 Li T. ; He J. ; Pe?a B. ; Berlinguette C. P. Angew. Chem. Int. Edit 2016, 55, 1769.
8 Chen Z. ; Dinh H. N. ; Miller E. Photoelectrochemical Water Splitting Springer: Heidelberg, 2013, pp 1- 15.
9 Miller E. L. Energy Environ. Sci 2015, 8, 2809.
10 Li R. ; Weng Y. ; Zhou X. ; Wang X. ; Mi Y. ; Chong R. ; Han H. ; Li C. Energy Environ. Sci 2015, 8, 2377.
11 Wolcott A. ; Smith W. A. ; Kuykendall T. R. ; Zhao Y. ; Zhang J. Z. Small 2009, 5, 104.
12 Wang H. ; Deutsch T. ; Turner J. A. J.Electrochem. Soc 2008, 155, F91.
13 Feng K. ; Li W. ; Xie S. ; Lu X. Electrochim. Acta 2014, 137, 108.
14 Cesar I. ; Kay A. ; Gonzalez Martinez J. A. ; Gr?tzel M. J.Am. Chem. Soc 2006, 128, 4582.
15 Rahman M. A. ; Bazargan S. ; Srivastava S. ; Wang X. ; Abd-Ellah M. ; Thomas J. P. ; Heinig N. F. ; Pradhan D. ; Leung K.T. Energy Environ. Sci 2015, 8, 3363.
16 Hu Y. S. ; Kleiman-Shwarsctein A. ; Forman A. J. ; Hazen D. ; Park J. N. ; McFarland E.W. Chem. Mater 2008, 20, 3803.
17 Cho S. K. ; Park H. S. ; Lee H. C. ; Nam K. M. ; Bard A. J. J. Phys. Chem. C 2013, 117, 23048.
18 Chen L. ; Toma F. M. ; Cooper J. K. ; Lyon A. ; Lin Y. ; Sharp I. D. ; Ager J.W. ChemSusChem 2015, 8, 1066.
19 Tong L. ; Iwase A. ; Nattestad A. ; Bach Udo. ; Weidelener M. ; Gotz G. ; Mishra A. ; Bauerle P. ; Amal R. ; Wallace G. G. ; Mozer A. J. Energy Environ. Sci 2012, 5, 9472.
20 Su J. ; Guo L. ; Bao N. ; Grimes C. A. Nano Lett 2011, 11, 1928.
21 Rao P. M. ; Cai L. ; Liu C. ; Cho I. S. ; Lee C. H. ; Weisse J.M. ; Yang P. ; Zheng X. Nano Lett 2014, 14, 1099.
22 Higashi M. ; Domen K. ; Abe R.. J.Am. Chem. Soc 2012, 134, 6968.
23 Ding C. ; Shi J. ; Wang D. ; Wang Z. ; Wang N. ; Liu G. ; Xiong F. ; Li C. Phys. Chem. Chem. Phys 2013, 15, 4589.
24 Abdi F. F. ; van de Krol R.. J.Phys. Chem. C 2012, 116, 9398.
25 Abdi F. F. ; Firet N. ; vande Krol R. ChemCatChem 2013, 5, 490.
26 Walter M. G. ; Warren E. L. ; McKone J. R. ; Boettcher S.W. ; Mi Q. ; Santori E. A. ; Lewis N. S. Chem. Rev 2010, 110, 6446.
27 Kim T.W. ; Choi K. S. Science 2014, 343, 990.
28 Qiu W. ; Huang Y. ; Long B. ; Li H. ; Tong Y. ; Ji H. Chem. -Eur. J 2015, 21, 19250.
29 Zhong D. K. ; Choi S. ; Gamelin D. R. J.Am. Chem. Soc 2011, 133, 18370.
30 Dotan H. ; Sivula K. ; Gr?tzel M. ; Rothschild A. ; Warren S.C. Energy Environ. Sci 2011, 4, 958.
31 Shi X. ; Choi I. Y. ; Zhang K. ; Kwon J. ; Kim D. Y. ; Lee J.K. ; Oh S. H. ; Kim J. K. ; Park J. H. Nat. Comm 2014, 5, 4775.
32 Chang X. ; Wang T. ; Zhang P. ; Zhang J. ; Li A. ; Gong J. J. Am. Chem. Soc 2015, 137, 8356.
33 Rettie A. J. ; Lee H. C. ; Marshall L. G. ; Lin J. F. ; Capan C. ; Lindemuth J. ; McCloy J. S. ; Zhou J. ; Bard A. J. ; Mullins C.B. J.Am. Chem. Soc 2013, 135, 11389.
34 Hahn N. T. ; Ye H. ; Flaherty D.W. ; Bard A. J. ; Mullins C. B. ACS Nano 2010, 4, 1977.
35 Pihosh Y. ; Turkevych I. ; Mawatari K. ; Uemura J. ; Kazoe Y. ; Kosar S. ; Makita K. ; Sugaya T. ; Matsui T. ; Fujita D. ; Tosa M. ; Kondo M. ; Kitamori T. Sci. Rep 2015, 5, 11141.
36 Li M. ; Zhang Z. ; Lyu F. ; He X. ; Liang Z. ; Balogun M. S. ; Lu X. ; Fang P. P. ; Tong Y. Electrochim. Acta 2015, 186, 95.
37 Peng Q. ; Kalanyan B. ; Hoertz P. G. ; Miller A. ; Kim D. H. ; Hanson K. ; Alibabaei L. ; Liu J. ; Meyer T. J. ; Parsons G. N. ; Glass J. T. Nano Lett 2013, 13, 1481.
38 Mohapatra S. K. ; John S. E. ; Banerjee S. ; Misra M. Chem. Mater 2009, 21, 3048.
39 Xu M. ; Da P. ; Wu H. ; Zhao D. ; Zheng G. Nano Lett 2012, 12, 1503.
40 Wang G. ; Ling Y. ; Wheeler D. A. ; George K. E. ; Horsley K. ; Heske C. ; Zhang J. Z. ; Li Y. Nano Lett 2011, 11, 3503.
41 Kleiman-Shwarsctein A. ; Hu Y. S. ; Forman A. J. ; Stucky G.D. ; McFarland E.W. J.Phys. Chem. C 2008, 112, 15900.
42 Zhang P. ; Kleiman-Shwarsctein A. ; Hu Y. S. ; Lefton J. ; Sharma S. ; Forman A. J. ; McFarland E. Energy Environ. Sci 2011, 4, 1020.
43 Pilli S. K. ; Deutsch T. G. ; Furtak T. E. ; Brown L. D. ; Turner J. A. ; Herring A. M. Phys. Chem. Chem. Phys 2013, 15, 3273.
44 Liu Q. ; He J. ; Yao T. ; Sun Z. ; Cheng W. ; He S. ; Xie Y. ; Peng Y. ; Cheng H. ; Sun Y. ; Jiang Y. ; Hu F. ; Xie Z. ; Yan W. ; Pan Z. ; Wu Z. ; Wei S. Nat. Commun 2014, 5, 5122.
45 Abdi F. F. ; Han L. ; Smets A. H. ; Zeman M. ; Dam B. ; vande Krol R. Nat. Commun 2013, 4, 2195.
46 Coridan R. H. ; Arpin K. A. ; Brunschwig B. S. ; Braun P. V. ; Lewis N. S. Nano Lett 2014, 14, 2310.
47 Lin F. ; Boettcher S.W. Nat. Mater 2014, 13, 81.
48 Li R. ; Zhang F. ; Wang D. ; Yang J. ; Li M. ; Zhu J. ; Zhou X. ; Han H. ; Li C. Nat. Commun 2013, 4, 1432.
49 Wang G. ; Ling Y. ; Lu X. ; Zhai T. ; Qian F. ; Tong Y. ; Li Y. Nanoscale 2013, 5, 4129.
50 Xie S. ; Lu X. ; Zhai T. ; Li W. ; Yu M. ; Liang C. ; Tong Y. J. Mater. Chem 2012, 22, 14272.
51 Hou Y. ; Zuo F. ; Dagg A. ; Feng P. Angew. Chem 2013, 125, 1286.
52 Li M. ; Zhang Z. ; Lyu F. ; He X. ; Liang Z. ; Balogun M. ; Lu X. ; Fang P. ; Tong Y. Electrochim. Acta 2015, 186, 95.
53 Su J. ; Feng X. ; Sloppy J. D. ; Guo L. ; Grimes C. A. Nano Lett 2011, 11, 203.
54 Hou Y. ; Zuo F. ; Dagg A. P. ; Liu J. ; Feng P. Adv. Mater 2014, 26, 5043.
55 Yu Q. ; Meng X. ; Wang T. ; Li P. ; Ye J. Adv. Funct. Mater 2015, 25, 2686.
56 Li W. ; Da P. ; Zhang Y. ; Wang Y. ; Lin X. ; Gong X. ; Zheng G. ACS Nano 2014, 8, 11770.
57 Mohapatra S. K. ; Misra M. ; Mahajan V. K. ; Raja K. S. J. Phys. Chem. C 2007, 111, 8677.
58 Kim H. I. ; Monllor-Satoca D. ; Kim W. ; Choi W. Energy Environ. Sci 2015, 8, 247.
59 Zhang Z. ; Zhang L. ; Hedhili M. N. ; Zhang H. ; Wang P. Nano Lett 2013, 13, 14.
60 Grigorescu S. ; B?rhausen B. ; Wang L. ; Mazare A. ; Yoo J.E. ; Hahn R. ; Schmuki P. Electrochem. Commun 2015, 51, 85.
61 Reyes-Gil K. R. ; Robinson D. B. ACS Appl. Mater. Inter 2013, 5, 12400.
62 McDonald K. J. ; Choi K. S. Energy Environ. Sci 2012, 5, 8553.
63 Jia Q. ; Lwashina K. ; Kudo A. Proc. Natl. Acad. Sci. U. S. A 2012, 109, 11564.
64 Hodes G. ; Cahen D. ; Manassen J. Nature 1976, 260, 312.
65 Li L. ; Yu Y. ; Meng F. ; Tan Y. ; Hamers R. J. ; Jin S. Nano Lett 2012, 12, 724.
66 Vayssieres L. ; Sathe C. ; Butorin S. M. ; Shuh D. K. ; Nordgren J. ; Guo J. Adv. Mater 2005, 17, 2320.
67 Mor G. K. ; Shankar K. ; Paulose M. ; Varghese O. K. ; Grimes C. A. Nano Lett 2005, 5, 191.
68 Cho I. S. ; Chen Z. ; Forman A. J. ; Kim D. R. ; Rao P. M. ; Jaramillo T. F. ; Zheng X. Nano Lett 2011, 11, 4978.
69 Liang S. ; He J. ; Sun Z. ; Liu Q. ; Jiang Y. ; Cheng H. ; He B. ; Xie Z. ; Wei S. J.Phys. Chem. C 2012, 116, 9049.
70 Cesar I. ; Sivula K. ; Kay A. ; Zboril R. ; Gratzel M. J.Phys. Chem. C 2008, 113, 772.
71 Zhou M. ; Bao J. ; Xu Y. ; Zhang J. ; Xie J. ; Guan M. ; Wang C. ; Wen L. ; Lei Y. ; Xie Y. ACS Nano 2014, 8, 7088.
72 Ma M. ; Kim J. K. ; Zhang K. ; Shi X. ; Kim S. J. ; Moon J.H. ; Park J. H. Chem. Mater 2014, 26, 5592.
73 Xie S. ; Zhai T. ; Zhu Y. ; Li W. ; Qiu R. ; Tong Y. ; Lu X. Int. J.Hydrog. Energy 2014, 39, 4820.
74 Beranek R. ; Kisch H. Electrochem. Commun 2007, 9, 761.
75 Seabold J. A. ; Zhu K. ; Neale N. R. Phys. Chem. Chem. Phys 2014, 16, 1121.
76 Hoang S. ; Berglund S. P. ; Hahn N. T. ; Bard A. J. ; Mullins C. B. J.Am. Chem. Soc 2012, 134, 3659.
77 Seo J. ; Takata T. ; Nakabayashi M. ; Hisatomi T. ; Shibata N. ; Minegishi T. ; Domen K. J.Am. Chem. Soc 2015, 137, 12780.
78 Bjoerksten U. ; Moser J. ; Gr?tzel M. Chem. Mater 1994, 6, 858.
79 Sivula K. ; Zboril R. ; Formal F. L. ; Robert R. ; Weidenkaff A. ; Tucek J. ; Frydrych J. ; Gr?tzel M. J.Am. Chem. Soc 2010, 132, 7436.
80 Ling Y. ; Wang G. ; Wheeler D. A. ; Zhang J. Z. ; Li Y. Nano Lett 2011, 11, 2119.
81 Khan S. U. M. ; Al-Shahry M. ; Ingler W. B. Science 2003, 34, 2243.
82 Yang X. ; Wolcott A. ; Wang G. ; Sobo A. ; Fitzmorris R. C. ; Qian F. ; Zhang J. Z. ; Li Y. Nano Lett 2009, 9, 2331.
83 Park J. H. ; Kim S. ; Bard A. J. Nano Lett 2006, 6, 24.
84 Hoang S. ; Guo S. ; Hahn N. T. ; Bard A. J. ; Mullins C. B. Nano Lett 2012, 12, 26.
85 Yang K. ; Dai Y. ; Huang B. ; Whangbo M. H. J.Phys. Chem. C 2009, 13, 2624.
86 Chen X. ; Burda C. J.Am. Chem. Soc 2008, 130, 5018.
87 Tachikawa T. ; Tojo S. ; Kawai K. ; Endo M. ; Fujitsuka M. ; Ohno T. ; Nishijima K. ; Miyamoto Z. ; Majima T. J.Phys. Chem. B 2004, 108, 19299.
88 Kim T.W. ; Ping Y. ; Galli G. A. ; Choi K. S. Nat. Commun 2015, 6, 8769.
89 Lu G. ; Linsebigler A. ; Yates J.T. Jr. J.Phys. Chem 1994, 98, 11733.
90 Zuo F. ; Wang L. ; Wu T. ; Zhang Z. ; Borchardt D. ; Feng P. J. Am. Chem. Soc 2010, 132, 11856.
91 Wang G. ; Wang H. ; Ling Y. ; Tang Y. ; Yang X. ; Fitzmorris R. C. ; Wang C. ; Zhang J. Z. ; Li Y. Nano Lett 2011, 11, 3026.
92 Kraut E. ; Grant R. ; Waldrop J. ; Kowalczyk S. Phys. Rev. Lett 1980, 44, 1620.
93 Pan K. ; Dong Y. ; Zhou W. ; Pan Q. ; Xie Y. ; Xie T. ; Tian G. ; Wang G. ACS Appl. Mater. Inter 2013, 5, 8314.
94 McDonald K. J. ; Choi K. S. Chem. Mater 2011, 23, 4863.
95 Coridan R. H. ; Shaner M. ; Wiggenhorn C. ; Brunschwig B.S. ; Lewis N. S. J.Phys. Chem. C 2013, 117, 6949.
96 He Z. ; Shi Y. ; Gao C. ; Wen L. ; Chen J. ; Song S. J. J. Phys. Chem. 2014, 118, 389.
97 Yuan W. ; Yuan J. ; Xie J. ; Li C. M. ACS Appl. Mater. Inter 2016, 8, 6082.
98 Deng J. ; Lv X. ; Liu J. ; Zhang H. ; Nie K. ; Hong C. ; Wang J. ; Sun X. ; Zhong J. ; Lee S. T. ACS Nano 2015, 9, 5348.
99 Sivula K. ; Formal F. L. ; Gratzel M. Chem. Mater 2009, 21, 2862.
100 Chen L. ; Yang J. ; Klaus S. ; Lee L. J. ; Woods-Robinson R. ; Ma J. ; Lum Y. ; Cooper J. K. ; Toma F. M. ; Wang L.W. ; Sharp I. D. ; Bell A. T. ; Ager J.W. J.Am. Chem. Soc 2015, 137, 9595.
101 Kim E. S. ; Kang H. J. ; Magesh G. ; Kim J. Y. ; Jang J.W. ; Lee J. S. ACS Appl. Mater. Inter 2014, 6, 17762.
102 Hou Y. ; Zuo F. ; Dagg A. ; Feng P. Nano Lett 2012, 12, 6464.
103 Saito R. ; Miseki Y. ; Sayama K. Chem. Commun 2012, 48, 3833.
104 Cowan A. J. ; Barnett C. J. ; Pendlebury S. R. ; Barroso M. ; Sivula K. ; Gr?tzel M. ; Durrant J. R. ; Klug D. R. J.Am. Chem. Soc 2011, 133, 10134.
105 Klahr B. ; Gimenez S. ; Fabregat-Santiago F. ; Hamann T. ; Bisquert J. J.Am. Chem. Soc 2012, 134, 4294.
106 Le Formal F. ; Tétreault N. ; Cornuz M. ; Moehl T. ; Gr?tzel M. ; Sivula K. Chem. Sci 2011, 2, 737.
107 Tilley S. D. ; Cornuz M. ; Sivula K. ; Gr?tzel M. Angew. Chem 2010, 49, 6405.
108 Pilli S. K. ; Furtak T. E. ; Brown L. D. ; Deutsch T. G. ; Turner J. A. ; Herring A. M. Energy Environ. Sci 2011, 4, 5028.
109 Zhong D. K. ; Cornuz M. ; Sivula K. ; Gr?tzel M. ; Gamelin D. R. Energy Environ. Sci 2011, 4, 1759.
110 Kim J. H. ; Jo Y. ; Kim J. H. ; Jang J.W. ; Kang H. J. ; Lee Y.H. ; Kim D. S. ; Jun Y. ; Lee J. S. ACS Nano 2015, 9, 11820.
111 Gan J. ; Lu X. ; Rajeeva B. B. ; Menz R. ; Tong Y. ; Zheng Y. ChemElectroChem 2015, 2, 1385.
112 Nellist M. R. ; Laskowski F. A. ; Lin F. ; Mills T. J. ; Boettcher S.W. Accounts Chem. Res 2016, 49, 733.
113 Rasiyah P. ; Tseung A. J.Electrochem. Soc 1983, 130, 2384.
114 Nadesan J. B. ; Tseung A. C. C. J.Electrochem. Soc 1985, 132, 2957.
115 McCrory C. C. ; Jung S. ; Peters J. C. ; Jaramillo T. F. J.Am. Chem. Soc 2013, 135, 16977.
116 Steier L. ; Herraiz-Cardona I. ; Gimenez S. ; Fabregat-Santiago F. ; Bisquert J. ; Tilley S. D. ; Gr?tzel M. Adv. Funct. Mater 2014, 24, 7681.
117 Zhong D. K. ; Sun J. ; Inumaru H. ; Gamelin D. R. J.Am. Chem. Soc 2009, 131, 6086.
118 Zhong D. K. ; Gamelin D. R. J.Am. Chem. Soc 2010, 132, 4202.
119 Barroso M. ; Cowan A. J. ; Pendlebury S. R. ; Gr?tzel M. ; Klug D. R. ; Durrant J. R. J.Am. Chem. Soc 2011, 133, 14868.
120 Barroso M. ; Mesa C. A. ; Pendlebury S. R. ; Cowan A. J. ; Hisatomi T. ; Sivula K. ; Gr?tzel M. ; Klug D. R. ; Durrant J.R. Proc. Natl. Acad. Sci. U. S. A 2012, 109, 15640.
121 Rahimnejad S. ; He J. H. ; Chen W. ; Wu K. ; Xu G. Q. RSC Adv 2014, 4, 62423.
122 Liu G. ; Shi J. ; Zhang F. ; Chen Z. ; Han J. ; Ding C. ; Chen S. ; Wang Z. ; Han H. ; Li C. Angew. Chem 2014, 53, 7295.
123 Gui Q. ; Xu Z. ; Zhang H. ; Cheng C. ; Zhu X. ; Yin M. ; Song Y. ; Lu L. ; Chen X. ; Li D. ACS Appl. Mater. Inter 2014, 6, 17053.
124 Kelly J. ; Memming R. J.Electrochem. Soc 1982, 129, 730.
125 Kim J. H. ; Kaneko H. ; Minegishi T. ; Kubota J. ; Domen K. ; Lee J. S. ChemSusChem 2016, 9, 61.
126 Bornoz P. ; Abdi F. F. ; Tilley S. D. ; Dam B. ; van de Krol R. ; Gr?tzel M. ; Sivula K. J.Phys. Chem. C 2014, 118, 16959.
127 Zhang X. ; Liu Y. ; Lee S. T. ; Yang S. ; Kang Z. Energy Environ. Sci 2014, 7, 1409.
128 Thimsen E. ; Le Formal F. ; Gr?tzel M. ; Warren S. C. Nano Lett 2011, 11, 35.
129 Pu Y. C. ; Wang G. ; Chang K. D. ; Ling Y. ; Lin Y. K. ; Fitzmorris B. C. ; Liu C. M. ; Lu X. ; Tong Y. ; Zhang J. Z. ; Hsu Y. J. ; Li Y. Nano Lett 2013, 13, 3817.
130 Osterloh F. E. Chem. Soc. Rev 2013, 42, 2294.
131 Xu Z. ; Lin Y. ; Yin M. ; Zhang H. ; Cheng C. ; Lu L. ; Xue X. ; Fan H. J. ; Chen X. ; Li D. Adv. Mater. Interfaces 2015, 2, 1500169.
132 Xie S. ; Su H. ; Wei W. ; Li M. ; Tong Y. ; Mao Z. J.Mater. Chem. A 2014, 2, 16365.
133 Zhong M. ; Hisatomi T. ; Kuang Y. ; Zhao J. ; Liu M. ; Iwase A. ; Jia Q. ; Nishiyama H. ; Minegishi T. ; Nakabayashi M. ; Shibata N. ; Niishiro R. ; Katayama C. ; Shibano H. ; Katayama M. ; Kudo A. ; Yamada T. ; Domen K. J.Am. Chem. Soc 2015, 137, 5053.
134 Seabold J. A. ; Choi K. S. J.Am. Chem. Soc 2012, 134, 2186.
135 Klepser B. M. ; Bartlett B. M. J.Am. Chem. Soc 2014, 136, 1694.
[1] Li ZHOU,Huan-Huan LIU,Yu-Lin YANG,Liang-Sheng QIANG. Preparation and Performance of a SILAR TiO2/CdS/Co-Pi Water Oxidation Photoanode[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2731-2736.
[2] Xiao-Xia CHANG,Jin-Long GONG. On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 2-13.
[3] Li-Zhen. YAO,De-Sheng. KONG,Jiu-Yao. DU,Ze. WANG,Jing-Wei. ZHANG,Na. WANG,Wen-Juan. LI,Yuan-Yuan. FENG. Enhancement of the Photoelectrochemical Activity of α-Fe2O3 Materials by Surface Modification with Vanadium[J]. Acta Phys. -Chim. Sin., 2015, 31(10): 1895-1904.
[4] WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong, DENG Zan-Hong, SHAO Jing-Zhen, HU Lin-Hua, ZHU Jun. Modification of Single-Crystal TiO2 Nanorod Arrays and Its Application in Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2014, 30(5): 873-880.
[5] GAO Su-Wen, LAN Zhang, WU Wan-Xia, QUE Lan-Fang, WU Ji-Huai, LIN Jian-Ming, HUANG Miao-Liang. Fabrication and Photovoltaic Performance of High Efficiency Front-Illuminated Dye-Sensitized Solar Cell Based on Ordered TiO2 Nanotube Arrays[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 446-452.
[6] CHEN Wei, WANG Hui, CHEN Xiao-Ping, MAO Li-Qun, SHANGGUAN Wen-Feng. Photocatalytic Overall Water Splitting on Perovskite H1.9K0.3La0.5Bi0.1Ta2O7 with Pt/WO3 under the Z Scheme System[J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2101-2106.
[7] LI Jing-Zhe, KONG Fan-Tai, WU Guo-Hua, HUANG Yang, CHEN Wang-Chao, DAI Song-Yuan. TiO2/Dye/Electrolyte Interface Modification for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1851-1864.
[8] YUAN Wen-Hui, LIU Xiao-Chen, LI Li. Improving Photocatalytic Performance for Hydrogen Generation over Co-Doped ZnIn2S4 under Visible Light[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 151-156.
[9] CHEN Wei, GAO Han-Yang, YANG Yu, LIN Pei-Bin, YUAN Jian, SHANGGUAN Wen-Feng, SU Jia-Chun, SUN Yang-Zhou. Polymerizable Complex Synthesis of Protonated Form of Layered Perovskite K0.5La0.5Bi2Ta2O9 for Water Splitting into Hydrogen[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2911-2916.
[10] XIAO Yao-Ming, WU Ji-Huai, YUE Gen-Tian, LIN Jian-Ming, HUANG Miao-Liang, FAN Le-Qing, LAN Zhang. Preparation of Single-Crystalline TiO2 Nanowires and Their Application in Flexible Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2012, 28(03): 578-584.
[11] CHEN Ri-Yao, CHEN Zhen, ZHENG Xi, CHEN Xiao, HUANG Cai-Xia. Preparation and Characterization of CoPc(COOH)8-SA/mCS Bipolar Membranes[J]. Acta Phys. -Chim. Sin., 2009, 25(12): 2438-2444.
[12] WANG Qi-Zhao, JIANG Li, LIU Hui, YUAN Jian, CHEN Ming-Xia, SHI Jian-Wei, SHANGGUAN Wen-Feng. Preparation and Characterization of Bi1-xGdxVO4 Photocatalyst and Its Application toWater Splitting[J]. Acta Phys. -Chim. Sin., 2009, 25(08): 1703-1707.
[13] LI Hong-Jian; CHEN Gang; LI Zhong-Hua; ZHOU Chao. Synthesis and Photocatalytic Decomposition of Water under Visible Light Irradiation of La2Ti2-xCoxO7 with Pyrochlore Structure[J]. Acta Phys. -Chim. Sin., 2007, 23(05): 761-764.
[14] FANG Shu-Mei; OU Yan; LIN Jing-Dong; LIAO Dai-Wei. Preparation of Cu/Sr3Ti2O7 and Its Photocatalytic Activity of Watersplitting for Hydrogen Evolution[J]. Acta Phys. -Chim. Sin., 2007, 23(04): 601-604.
[15] ZOU Ji-Jun;LIU Chang-Jun. Preparation of NiO/SrTiO3 with Cold Plasma Treatment for PhotocatalyticWater Splitting[J]. Acta Phys. -Chim. Sin., 2006, 22(08): 926-931.