Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(1)>> 80-102     doi: 10.3866/PKU.WHXB201607293         中文摘要
REVIEW
Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting
QIU Wei-Tao1, HUANG Yong-Chao1, WANG Zi-Long2, XIAO Shuang2, JI Hong-Bing1, TONG Ye-Xiang1
1 School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China;
2 Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, P. R. China
Full text: PDF (4600KB) HTML Export: BibTeX | EndNote (RIS)

Photoelectrochemical water splitting is to utilize collected photo-generated carrier for direct water cleavage for hydrogen production. It is a system combining photoconversion and energy storage since converted solar energy is stored as high energy-density hydrogen gas. According to intrinsic properties and band bending situation of a photoelectrode, hydrogen tends to be released at photocathode while oxygen at photoanode. In a tandem photoelectrochemical chemical cell, current passing through one electrode must equals that through another and electrode with lower conversion rate will limit efficiency of the whole device. Therefore, it is also of research interest to look into the common strategies for enhancing the conversion rate at photoanode. Although up to 15% of solar-to-hydrogen efficiency can be estimated according to some semiconductor for solar assisted water splitting, practical conversion ability of state-of-the-art photoanode has yet to approach that theoretical limit. Five major steps happen in a full water splitting reaction at a semiconductor surface:light harvesting with electron excitations, separated electron-hole pairs transferring to two opposite ends due to band bending, electron/hole injection through semiconductor-electrolyte interface into water, recombination process and mass transfer of products/reactants. They are closely related to different proposed parameters for solar water splitting evaluation and this review will first help to give a fast glance at those evaluation parameters and then summarize on several major adopted strategies towards high-efficiency oxygen evolution at photoanode surface. Those strategies and thereby optimized evaluation parameter are shown, in order to disclose the importance of modifying different steps for a photoanode with enhanced output.



Keywords: Photoelectrochemical catalysis   Water splitting   Photoanode   Photocatalysis step   Modification strategy  
Received: 2016-05-30 Accepted: 2016-07-29 Publication Date (Web): 2016-07-29
Corresponding Authors: JI Hong-Bing, TONG Ye-Xiang Email: jihb@mail.sysu.edu.cn;chedhx@mail.sysu.edu.cn

Fund: The project was supported by the National Science Fund for Distinguished Young Scholars, China (21425627), National Natural Science Foundation of China (21461162003, 21476271), and Natural Science Foundation of Guangdong Province, China (2014KTSCX004, 2014A030308012).

Cite this article: QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017,33 (1): 80-102.    doi: 10.3866/PKU.WHXB201607293

(1) Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. doi: 10.1039/c3cs60378d
(2) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
(3) Gan, J.; Lu, X.; Tong, Y. Nanoscale 2014, 6, 7142. doi: 10.1039/c4nr01181c
(4) Lu, X.; Xie, S.; Yang, H.; Tong, Y.; Ji, H. Chem. Soc. Rev. 2014, 43, 7581. doi: 10.1039/c3cs60392j
(5) Xie, S.; Li, M.; Wei, W.; Zhai, T.; Fang, P.; Qiu, R.; Lu, X.; Tong, Y. Nano Energy 2014, 10, 313. doi: 10.1016/j.nanoen.2014.09.029
(6) Yang, Y.; Ling, Y.; Wang, G.; Liu, T.; Wang, F.; Zhai, T.; Tong, Y.; Li, Y. Nano Lett. 2015, 15, 7051. doi: 10.1021/acs.nanolett.5b03114
(7) Li, T.; He, J.; Peña, B.; Berlinguette, C. P. Angew. Chem. Int. Edit. 2016, 55, 1769. doi: 10.1002/anie.201509567
(8) Chen, Z.; Dinh, H. N.; Miller, E. Photoelectrochemical Water Splitting; Springer: Heidelberg, 2013; pp 1-15.
(9) Miller, E. L. Energy Environ. Sci. 2015, 8, 2809. doi: 10.1039C5EE90047F
(10) Li, R.; Weng, Y.; Zhou, X.; Wang, X.; Mi, Y.; Chong, R.; Han, H.; Li, C. Energy Environ. Sci. 2015, 8, 2377. doi: 10.1039c5ee01398d
(11) Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Small 2009, 5, 104. doi: 10.1002/smll.200800902
(12) Wang, H.; Deutsch, T.; Turner, J. A. J. Electrochem. Soc. 2008, 155, F91. doi: 10.1149/1.2888477
(13) Feng, K.; Li, W.; Xie, S.; Lu, X. Electrochim. Acta 2014, 137, 108. doi: 10.1016/j.electacta.2014.05.152
(14) Cesar, I.; Kay, A.; Gonzalez Martinez, J. A.; Grätzel, M. J. Am. Chem. Soc. 2006, 128, 4582. doi: 10.1021/ja060292p
(15) Rahman, M. A.; Bazargan, S.; Srivastava, S.; Wang, X.; Abd-Ellah, M.; Thomas, J. P.; Heinig, N. F.; Pradhan, D.; Leung, K.T. Energy Environ. Sci. 2015, 8, 3363. doi: 10.1039c5ee01615k
(16) Hu, Y. S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J. N.; McFarland, E.W. Chem. Mater. 2008, 20, 3803. doi: 10.1021/cm800144q
(17) Cho, S. K.; Park, H. S.; Lee, H. C.; Nam, K. M.; Bard, A. J.J. Phys. Chem. C 2013, 117, 23048. doi: 10.1021/jp408619u
(18) Chen, L.; Toma, F. M.; Cooper, J. K.; Lyon, A.; Lin, Y.; Sharp, I. D.; Ager, J.W. ChemSusChem 2015, 8, 1066. doi: 10.1002cssc.201402984
(19) Tong, L.; Iwase, A.; Nattestad, A.; Bach, Udo.; Weidelener, M.; Gotz, G.; Mishra, A.; Bauerle, P.; Amal, R.; Wallace, G. G.; Mozer, A. J. Energy Environ. Sci. 2012, 5, 9472. doi: 10.1039C2EE22866A
(20) Su, J.; Guo, L.; Bao, N.; Grimes, C. A. Nano Lett. 2011, 11, 1928. doi: 10.1021/nl2000743
(21) Rao, P. M.; Cai, L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J.M.; Yang, P.; Zheng, X. Nano Lett. 2014, 14, 1099. doi: 10.1021/nl500022z
(22) Higashi, M.; Domen, K.; Abe, R. J. Am. Chem. Soc. 2012, 134, 6968. doi: 10.1021/ja302059g
(23) Ding, C.; Shi, J.; Wang, D.; Wang, Z.; Wang, N.; Liu, G.; Xiong, F.; Li, C. Phys. Chem. Chem. Phys. 2013, 15, 4589. doi: 10.1039/c3cp50295c
(24) Abdi, F. F.; van de Krol, R. J. Phys. Chem. C 2012, 116, 9398. doi: 10.1021/jp3007552
(25) Abdi, F. F.; Firet, N.; van de Krol, R. ChemCatChem 2013, 5, 490. doi: 10.1002/cctc.201200472.
(26) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S.W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326
(27) Kim, T.W.; Choi, K. S. Science 2014, 343, 990. doi: 10.1126science.1246913
(28) Qiu, W.; Huang, Y.; Long, B.; Li, H.; Tong, Y.; Ji, H.Chem. -Eur. J. 2015, 21, 19250. doi: 10.1002/chem.201503261
(29) Zhong, D. K.; Choi, S.; Gamelin, D. R. J. Am. Chem. Soc. 2011, 133, 18370. doi: 10.1021/ja207348x
(30) Dotan, H.; Sivula, K.; Grätzel, M.; Rothschild, A.; Warren, S.C. Energy Environ. Sci. 2011, 4, 958. doi: 10.1039/c0ee00570c
(31) Shi, X.; Choi, I. Y.; Zhang, K.; Kwon, J.; Kim, D. Y.; Lee, J.K.; Oh, S. H.; Kim, J. K.; Park, J. H. Nat. Comm. 2014, 5, 4775. doi: 10.1038/ncomms5775
(32) Chang, X.; Wang, T.; Zhang, P.; Zhang, J.; Li, A.; Gong, J.J. Am. Chem. Soc. 2015, 137, 8356. doi: 10.1021/jacs.5b04186
(33) Rettie, A. J.; Lee, H. C.; Marshall, L. G.; Lin, J. F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J.; Bard, A. J.; Mullins, C.B. J. Am. Chem. Soc. 2013, 135, 11389. doi: 10.1021ja405550k
(34) Hahn, N. T.; Ye, H.; Flaherty, D.W.; Bard, A. J.; Mullins, C. B.ACS Nano 2010, 4, 1977. doi: 10.1021/nn100032y
(35) Pihosh, Y.; Turkevych, I.; Mawatari, K.; Uemura, J.; Kazoe, Y.; Kosar, S.; Makita, K.; Sugaya, T.; Matsui, T.; Fujita, D.; Tosa, M.; Kondo, M.; Kitamori, T. Sci. Rep. 2015, 5, 11141. doi: 10.1038/srep11141
(36) Li, M.; Zhang, Z.; Lyu, F.; He, X.; Liang, Z.; Balogun, M. S.; Lu, X.; Fang, P. P.; Tong, Y. Electrochim. Acta 2015, 186, 95. doi: 10.1016/j.electacta.2015.10.048
(37) Peng, Q.; Kalanyan, B.; Hoertz, P. G.; Miller, A.; Kim, D. H.; Hanson, K.; Alibabaei, L.; Liu, J.; Meyer, T. J.; Parsons, G. N.; Glass, J. T. Nano Lett. 2013, 13, 1481. doi: 10.1021/nl3045525
(38) Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. Chem. Mater. 2009, 21, 3048. doi: 10.1021/cm8030208
(39) Xu, M.; Da, P.; Wu, H.; Zhao, D.; Zheng, G. Nano Lett. 2012, 12, 1503. doi: 10.1021/nl2042968
(40) Wang, G.; Ling, Y.; Wheeler, D. A.; George, K. E.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3503. doi: 10.1021/nl202316j
(41) Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G.D.; McFarland, E.W. J. Phys. Chem. C 2008, 112, 15900. doi: 10.1021/jp803775j
(42) Zhang, P.; Kleiman-Shwarsctein, A.; Hu, Y. S.; Lefton, J.; Sharma, S.; Forman, A. J.; McFarland, E. Energy Environ. Sci. 2011, 4, 1020. doi: 10.1039/c0ee00656d
(43) Pilli, S. K.; Deutsch, T. G.; Furtak, T. E.; Brown, L. D.; Turner, J. A.; Herring, A. M. Phys. Chem. Chem. Phys. 2013, 15, 3273. doi: 10.1039/c2cp44577H
(44) Liu, Q.; He, J.; Yao, T.; Sun, Z.; Cheng, W.; He, S.; Xie, Y.; Peng, Y.; Cheng, H.; Sun, Y.; Jiang, Y.; Hu, F.; Xie, Z.; Yan, W.; Pan, Z.; Wu, Z.; Wei, S. Nat. Commun. 2014, 5, 5122. doi: 10.1038/ncomms6122
(45) Abdi, F. F.; Han, L.; Smets, A. H.; Zeman, M.; Dam, B.; vande Krol, R. Nat. Commun. 2013, 4, 2195. doi: 10.1038ncomms3195
(46) Coridan, R. H.; Arpin, K. A.; Brunschwig, B. S.; Braun, P. V.; Lewis, N. S. Nano Lett. 2014, 14, 2310. doi: 10.1021/nl404623t
(47) Lin, F.; Boettcher, S.W. Nat. Mater. 2014, 13, 81. doi: 10.1038/nmat3811
(48) Li, R.; Zhang, F.; Wang, D.; Yang, J.; Li, M.; Zhu, J.; Zhou, X.; Han, H.; Li, C. Nat. Commun. 2013, 4, 1432. doi: 10.1038ncomms2401
(49) Wang, G.; Ling, Y.; Lu, X.; Zhai, T.; Qian, F.; Tong, Y.; Li, Y.Nanoscale 2013, 5, 4129. doi: 10.1039/c3nr00569k
(50) Xie, S.; Lu, X.; Zhai, T.; Li, W.; Yu, M.; Liang, C.; Tong, Y.J. Mater. Chem. 2012, 22, 14272. doi: 10.1039/c2jm32605a
(51) Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Angew. Chem. 2013, 125, 1286. doi: 10.1002/ange.201207578
(52) Li, M.; Zhang, Z.; Lyu, F.; He, X.; Liang, Z.; Balogun, M.; Lu, X.; Fang, P.; Tong, Y. Electrochim. Acta 2015, 186, 95. doi: 00.1016/j.electacta.2015.10.048
(53) Su, J.; Feng, X.; Sloppy, J. D.; Guo, L.; Grimes, C. A. Nano Lett. 2011, 11, 203. doi: 10.1021/nl1034573
(54) Hou, Y.; Zuo, F.; Dagg, A. P.; Liu, J.; Feng, P. Adv. Mater. 2014, 26, 5043. doi: 10.1002/adma.201401032
(55) Yu, Q.; Meng, X.; Wang, T.; Li, P.; Ye, J. Adv. Funct. Mater. 2015, 25, 2686. doi: 10.1002/adfm.201500383
(56) Li, W.; Da, P.; Zhang, Y.; Wang, Y.; Lin, X.; Gong, X.; Zheng, G. ACS Nano 2014, 8, 11770. doi: 10.1021/nn5053684
(57) Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S.J. Phys. Chem. C 2007, 111, 8677. doi: 10.1021/jp071906v
(58) Kim, H. I.; Monllor-Satoca, D.; Kim, W.; Choi, W. Energy Environ. Sci. 2015, 8, 247. doi: 10.1039/c4ee02169J
(59) Zhang, Z.; Zhang, L.; Hedhili, M. N.; Zhang, H.; Wang, P.Nano Lett. 2013, 13, 14. doi: 10.1021/nl3029202
(60) Grigorescu, S.; Bärhausen, B.; Wang, L.; Mazare, A.; Yoo, J.E.; Hahn, R.; Schmuki, P. Electrochem. Commun. 2015, 51, 85. doi: 10.1016/j.elecom.2014.12.019
(61) Reyes-Gil, K. R.; Robinson, D. B. ACS Appl. Mater. Inter. 2013, 5, 12400. doi: 10.1021/am403369p
(62) McDonald, K. J.; Choi, K. S. Energy Environ. Sci. 2012, 5, 8553. doi: 10.1039/c2ee22608a
(63) Jia, Q.; Lwashina, K.; Kudo, A. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 11564. doi: 10.1073/pnas.1204623109
(64) Hodes, G.; Cahen, D.; Manassen, J. Nature 1976, 260, 312. doi: 10.1038/260312a0
(65) Li, L.; Yu, Y.; Meng, F.; Tan, Y.; Hamers, R. J.; Jin, S. Nano Lett. 2012, 12, 724. doi: 10.1021/nl2036854
(66) Vayssieres, L.; Sathe, C.; Butorin, S. M.; Shuh, D. K.; Nordgren, J.; Guo, J. Adv. Mater. 2005, 17, 2320. doi: 10.1002adma.200500992
(67) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2005, 5, 191. doi: 10.1021/nl048301k
(68) Cho, I. S.; Chen, Z.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. Nano Lett. 2011, 11, 4978. doi: 10.1021/nl2029392
(69) Liang, S.; He, J.; Sun, Z.; Liu, Q.; Jiang, Y.; Cheng, H.; He, B.; Xie, Z.; Wei, S. J. Phys. Chem. C 2012, 116, 9049. doi: 10.1021/jp300552s
(70) Cesar, I.; Sivula, K.; Kay, A.; Zboril, R.; Gratzel, M. J. Phys. Chem. C 2008, 113, 772. doi: 10.1021/jp809060p
(71) Zhou, M.; Bao, J.; Xu, Y.; Zhang, J.; Xie, J.; Guan, M.; Wang, C.; Wen, L.; Lei, Y.; Xie, Y. ACS Nano 2014, 8, 7088. doi: 10.1021/nn501996a
(72) Ma, M.; Kim, J. K.; Zhang, K.; Shi, X.; Kim, S. J.; Moon, J.H.; Park, J. H. Chem. Mater. 2014, 26, 5592. doi: 10.1021cm502073d
(73) Xie, S.; Zhai, T.; Zhu, Y.; Li, W.; Qiu, R.; Tong, Y.; Lu, X. Int. J. Hydrog. Energy 2014, 39, 4820. doi: 10.1016/j.ijhydene.2014.01.072
(74) Beranek, R.; Kisch, H. Electrochem. Commun. 2007, 9, 761. doi: 10.1016/j.elecom.2006.11.011
(75) Seabold, J. A.; Zhu, K.; Neale, N. R. Phys. Chem. Chem. Phys. 2014, 16, 1121. doi: 10.1039/c3cp54356k
(76) Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2012, 134, 3659. doi: 10.1021ja211369s
(77) Seo, J.; Takata, T.; Nakabayashi, M.; Hisatomi, T.; Shibata, N.; Minegishi, T.; Domen, K. J. Am. Chem. Soc. 2015, 137, 12780. doi: 10.1021/jacs.5b08329
(78) Bjoerksten, U.; Moser, J.; Grätzel, M. Chem. Mater. 1994, 6, 858. doi: 10.1021/cm00042a026
(79) Sivula, K.; Zboril, R.; Formal, F. L.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. J. Am. Chem. Soc. 2010, 132, 7436. doi: 10.1021/ja101564f
(80) Ling, Y.; Wang, G.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 2119. doi: 10.1021/nl200708y
(81) Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Science 2003, 34, 2243. doi: 10.1021/ja101564f
(82) Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nano Lett. 2009, 9, 2331. doi: 10.1021/nl900772q
(83) Park, J. H.; Kim, S.; Bard, A. J. Nano Lett. 2006, 6, 24. doi: 10.1021/nl051807y
(84) Hoang, S.; Guo, S.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Nano Lett. 2012, 12, 26. doi: 10.1021/nl2028188
(85) Yang, K.; Dai, Y.; Huang, B.; Whangbo, M. H. J. Phys. Chem. C 2009, 113, 2624. doi: 10.1021/jp808483a
(86) Chen, X.; Burda, C. J. Am. Chem. Soc. 2008, 130, 5018. doi: 10.1021/ja711023z
(87) Tachikawa, T.; Tojo, S.; Kawai, K.; Endo, M.; Fujitsuka, M.; Ohno, T.; Nishijima, K.; Miyamoto, Z.; Majima, T. J. Phys. Chem. B 2004, 108, 19299. doi: 10.1021/jp0470593
(88) Kim, T.W.; Ping, Y.; Galli, G. A.; Choi, K. S. Nat. Commun. 2015, 6, 8769. doi: 10.1038/ncomms9769
(89) Lu, G.; Linsebigler, A.; Yates, J. T., Jr. J. Phys. Chem. 1994, 98, 11733. doi: 10.1021/j100096a017
(90) Zuo, F.; Wang, L.; Wu, T.; Zhang, Z.; Borchardt, D.; Feng, P.J. Am. Chem. Soc. 2010, 132, 11856. doi: 10.1021/ja103843d
(91) Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3026. doi: 10.1021/nl201766h.
(92) Kraut, E.; Grant, R.; Waldrop, J.; Kowalczyk, S. Phys. Rev. Lett. 1980, 44, 1620. doi: 10.1103/PhysRevLett.44.1620
(93) Pan, K.; Dong, Y.; Zhou, W.; Pan, Q.; Xie, Y.; Xie, T.; Tian, G.; Wang, G. ACS Appl. Mater. Inter. 2013, 5, 8314. doi: 10.1021am402154k
(94) McDonald, K. J.; Choi, K. S. Chem. Mater. 2011, 23, 4863. doi: 10.1021/cm202399g
(95) Coridan, R. H.; Shaner, M.; Wiggenhorn, C.; Brunschwig, B.S.; Lewis, N. S. J. Phys. Chem. C 2013, 117, 6949. doi: 10.1021/jp311947x
(96) He, Z.; Shi, Y.; Gao, C.; Wen, L.; Chen, J.; Song, S. J. Phys. Chem. C 2014, 118, 389. doi: 10.1021/jp409598s
(97) Yuan, W.; Yuan, J.; Xie, J.; Li, C. M. ACS Appl. Mater. Inter. 2016, 8, 6082. doi: 10.1021/acsami.6b00030
(98) Deng, J.; Lv, X.; Liu, J.; Zhang, H.; Nie, K.; Hong, C.; Wang, J.; Sun, X.; Zhong, J.; Lee, S. T. ACS Nano 2015, 9, 5348. doi: 10.1021/acsnano.5b01028
(99) Sivula, K.; Formal, F. L.; Gratzel, M. Chem. Mater. 2009, 21, 2862. doi: 10.1021/cm900565a
(100) Chen, L.; Yang, J.; Klaus, S.; Lee, L. J.; Woods-Robinson, R.; Ma, J.; Lum, Y.; Cooper, J. K.; Toma, F. M.; Wang, L.W.; Sharp, I. D.; Bell, A. T.; Ager, J.W. J. Am. Chem. Soc. 2015, 137, 9595. doi: 10.1021/jacs.5b03536
(101) Kim, E. S.; Kang, H. J.; Magesh, G.; Kim, J. Y.; Jang, J.W.; Lee, J. S. ACS Appl. Mater. Inter. 2014, 6, 17762. doi: 10.1021am504283t
(102) Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Nano Lett. 2012, 12, 6464. doi: 10.1021/nl303961c
(103) Saito, R.; Miseki, Y.; Sayama, K. Chem. Commun. 2012, 48, 3833. doi: 10.1039/c2cc30713h
(104) Cowan, A. J.; Barnett, C. J.; Pendlebury, S. R.; Barroso, M.; Sivula, K.; Grätzel, M.; Durrant, J. R.; Klug, D. R. J. Am. Chem. Soc. 2011, 133, 10134. doi: 10.1021/ja200800t
(105) Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. J. Am. Chem. Soc. 2012, 134, 4294. doi: 10.1021ja210755h
(106) Le Formal, F.; Tétreault, N.; Cornuz, M.; Moehl, T.; Grätzel, M.; Sivula, K. Chem. Sci. 2011, 2, 737. doi: 10.1039C0SC00578A
(107) Tilley, S. D.; Cornuz, M.; Sivula, K.; Grätzel, M. Angew. Chem. 2010, 49, 6405. doi: 10.1002/anie.201003110
(108) Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. Energy Environ. Sci. 2011, 4, 5028. doi: 10.1039/c1ee02444b
(109) Zhong, D. K.; Cornuz, M.; Sivula, K.; Grätzel, M.; Gamelin, D. R. Energy Environ. Sci. 2011, 4, 1759. doi: 10.1039c1ee01034d
(110) Kim, J. H.; Jo, Y.; Kim, J. H.; Jang, J.W.; Kang, H. J.; Lee, Y.H.; Kim, D. S.; Jun, Y.; Lee, J. S. ACS Nano 2015, 9, 11820. doi: 10.1021/acsnano.5b03859
(111) Gan, J.; Lu, X.; Rajeeva, B. B.; Menz, R.; Tong, Y.; Zheng, Y.ChemElectroChem 2015, 2, 1385. doi: 10.1002/celc.201500091
(112) Nellist, M. R.; Laskowski, F. A.; Lin, F.; Mills, T. J.; Boettcher, S.W. Accounts Chem. Res. 2016, 49, 733. doi: 10.1021/acs.accounts.6b00001
(113) Rasiyah, P.; Tseung, A. J. Electrochem. Soc. 1983, 130, 2384. doi: 10.1149/1.2119592
(114) Nadesan, J. B.; Tseung, A. C. C. J. Electrochem. Soc. 1985, 132, 2957. doi: 10.1149/1.2113700
(115) McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2013, 135, 16977. doi: 10.1021/ja407115p
(116) Steier, L.; Herraiz-Cardona, I.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Tilley, S. D.; Grätzel, M. Adv. Funct. Mater. 2014, 24, 7681. doi: 10.1002/adfm.201402742
(117) Zhong, D. K.; Sun, J.; Inumaru, H.; Gamelin, D. R. J. Am. Chem. Soc. 2009, 131, 6086. doi: 10.1021/ja9016478
(118) Zhong, D. K.; Gamelin, D. R. J. Am. Chem. Soc. 2010, 132, 4202. doi: 10.1021/ja908730h
(119) Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug, D. R.; Durrant, J. R. J. Am. Chem. Soc. 2011, 133, 14868. doi: 10.1021/ja205325v
(120) Barroso, M.; Mesa, C. A.; Pendlebury, S. R.; Cowan, A. J.; Hisatomi, T.; Sivula, K.; Grätzel, M.; Klug, D. R.; Durrant, J.R. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15640. doi: 10.1073/pnas.1212254109
(121) Rahimnejad, S.; He, J. H.; Chen, W.; Wu, K.; Xu, G. Q. RSC Adv. 2014, 4, 62423. doi: 10.1039/c4ra10650d
(122) Liu, G.; Shi, J.; Zhang, F.; Chen, Z.; Han, J.; Ding, C.; Chen, S.; Wang, Z.; Han, H.; Li, C. Angew. Chem. 2014, 53, 7295. doi: 10.1002/anie.201404697
(123) Gui, Q.; Xu, Z.; Zhang, H.; Cheng, C.; Zhu, X.; Yin, M.; Song, Y.; Lu, L.; Chen, X.; Li, D. ACS Appl. Mater. Inter. 2014, 6, 17053. doi: 10.1021/am504662w
(124) Kelly, J.; Memming, R. J. Electrochem. Soc. 1982, 129, 730. doi: 10.1149/1.2123961
(125) Kim, J. H.; Kaneko, H.; Minegishi, T.; Kubota, J.; Domen, K.; Lee, J. S. ChemSusChem 2016, 9, 61. doi: 10.1002cssc.201501401
(126) Bornoz, P.; Abdi, F. F.; Tilley, S. D.; Dam, B.; van de Krol, R.; Grätzel, M.; Sivula, K. J. Phys. Chem. C 2014, 118, 16959. doi: 10.1021/jp500441h
(127) Zhang, X.; Liu, Y.; Lee, S. T.; Yang, S.; Kang, Z. Energy Environ. Sci. 2014, 7, 1409. doi: 10.1039/C3EE43278E
(128) Thimsen, E.; Le Formal, F.; Grätzel, M.; Warren, S. C. Nano Lett. 2011, 11, 35. doi: 10.1021/nl1022354
(129) Pu, Y. C.; Wang, G.; Chang, K. D.; Ling, Y.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X.; Tong, Y.; Zhang, J. Z.; Hsu, Y. J.; Li, Y. Nano Lett. 2013, 13, 3817. doi: 10.1021nl4018385
(130) Osterloh, F. E. Chem. Soc. Rev. 2013, 42, 2294. doi: 10.1039c2cs35266d
(131) Xu, Z.; Lin, Y.; Yin, M.; Zhang, H.; Cheng, C.; Lu, L.; Xue, X.; Fan, H. J.; Chen, X.; Li, D. Adv. Mater. Interfaces 2015, 2, 1500169. doi: 10.1002/admi.20150016
(132) Xie, S.; Su, H.; Wei, W.; Li, M.; Tong, Y.; Mao, Z. J. Mater. Chem. A 2014, 2, 16365. doi: 10.1039/c4ta03203a
(133) Zhong, M.; Hisatomi, T.; Kuang, Y.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M.; Shibata, N.; Niishiro, R.; Katayama, C.; Shibano, H.; Katayama, M.; Kudo, A.; Yamada, T.; Domen, K. J. Am. Chem. Soc. 2015, 137, 5053. doi: 10.1021/jacs.5b00256
(134) Seabold, J. A.; Choi, K. S. J. Am. Chem. Soc. 2012, 134, 2186. doi: 10.1021/ja209001d
(135) Klepser, B. M.; Bartlett, B. M. J. Am. Chem. Soc. 2014, 136, 1694. doi: 10.1021/ja4086808

1. ZHOU Li, LIU Huan-Huan, YANG Yu-Lin, QIANG Liang-Sheng.Preparation and Performance of a SILAR TiO2/CdS/Co-Pi Water Oxidation Photoanode[J]. Acta Phys. -Chim. Sin., 2016,32(11): 2731-2736
2. JIN Huan, WANG Juan, JI Yun, CHEN Mei-Mei, ZHANG Yi, WANG Qi, CONG Yan-Qing.Synthesis of Ta/Al-Fe2O3 Film Electrode and Its Photoelectrocatalytic Performance in Methylene Blue Degradation[J]. Acta Phys. -Chim. Sin., 2015,31(5): 955-964
3. WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong, DENG Zan-Hong, SHAO Jing-Zhen, HU Lin-Hua, ZHU Jun.Modification of Single-Crystal TiO2 Nanorod Arrays and Its Application in Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2014,30(5): 873-880
4. GAO Su-Wen, LAN Zhang, WU Wan-Xia, QUE Lan-Fang, WU Ji-Huai, LIN Jian-Ming, HUANG Miao-Liang.Fabrication and Photovoltaic Performance of High Efficiency Front-Illuminated Dye-Sensitized Solar Cell Based on Ordered TiO2 Nanotube Arrays[J]. Acta Phys. -Chim. Sin., 2014,30(3): 446-452
5. CHEN Wei, WANG Hui, CHEN Xiao-Ping, MAO Li-Qun, SHANGGUAN Wen-Feng.Photocatalytic Overall Water Splitting on Perovskite H1.9K0.3La0.5Bi0.1Ta2O7 with Pt/WO3 under the Z Scheme System[J]. Acta Phys. -Chim. Sin., 2014,30(11): 2101-2106
6. LI Jing-Zhe, KONG Fan-Tai, WU Guo-Hua, HUANG Yang, CHEN Wang-Chao, DAI Song-Yuan.TiO2/Dye/Electrolyte Interface Modification for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(09): 1851-1864
7. YAN Wei-Ping, WANG De-Jun, CHEN Li-Ping, LU Yong-Chun, XIE Teng-Feng, LIN Yan-Hong.Properties and Photoelectrocatalytic Activity of In2O3-Sensitized ZnO Nanorod Array[J]. Acta Phys. -Chim. Sin., 2013,29(05): 1021-1027
8. YUAN Wen-Hui, LIU Xiao-Chen, LI Li.Improving Photocatalytic Performance for Hydrogen Generation over Co-Doped ZnIn2S4 under Visible Light[J]. Acta Phys. -Chim. Sin., 2013,29(01): 151-156
9. GUO Wei, WANG Kai, SHEN Yi-Hua, ZHANG He, WENG Tao, MA Ting-Li.A Simple Template Synthesis of Hierarchically Mesoporous TiO2 Microsphere for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(01): 82-88
10. JIN Tao, XU Di, DIAO Peng, XIANG Min.Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2/CoPi Composite Photoanodes[J]. Acta Phys. -Chim. Sin., 2012,28(10): 2276-2284
11. CONG Yan-Qing, LI Zhe, WANG Qi, ZHANG Yi, XU Qian, FU Fang-Xia.Enhanced Photoeletrocatalytic Activity of TiO2 Nanotube Arrays Modified with Simple Transition Metal Oxides (Fe2O3, CuO, NiO)[J]. Acta Phys. -Chim. Sin., 2012,28(06): 1489-1496
12. XIAO Yao-Ming, WU Ji-Huai, YUE Gen-Tian, LIN Jian-Ming, HUANG Miao-Liang, FAN Le-Qing, LAN Zhang.Preparation of Single-Crystalline TiO2 Nanowires and Their Application in Flexible Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2012,28(03): 578-584
13. LI Hong-Jian; CHEN Gang; LI Zhong-Hua; ZHOU Chao.Synthesis and Photocatalytic Decomposition of Water under Visible Light Irradiation of La2Ti2-xCoxO7 with Pyrochlore Structure[J]. Acta Phys. -Chim. Sin., 2007,23(05): 761-764
14. FANG Shu-Mei; OU Yan; LIN Jing-Dong; LIAO Dai-Wei.Preparation of Cu/Sr3Ti2O7 and Its Photocatalytic Activity of Watersplitting for Hydrogen Evolution[J]. Acta Phys. -Chim. Sin., 2007,23(04): 601-604
15. WANG Gui-Yun;WANG Yan-Ji;ZHAO Xin-Qiang;SONG Bao-Jun.Synthesis and Properties of CoO/SrTiO3 for the Photocatalytic Decomposition of Water[J]. Acta Phys. -Chim. Sin., 2005,21(01): 84-88
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top