Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (11): 2745-2752    DOI: 10.3866/PKU.WHXB201608083
ARTICLE     
In situ Growth of a Pd/Ni(OH)2/NF Composite Catalyst for the Hydrogen Evolution Reaction
Yu WU,Jian LUO*()
Download: HTML     PDF(8014KB) Export: BibTeX | EndNote (RIS)      

Abstract  

We devised and fabricated a Pd/Ni(OH)2 composite catalyst with low noble metal content that grows in situ on nickel foam (NF) using the hydrothermal synthesis method. The morphology and microstructure of the catalyst were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The hydrogen evolution performance of the composite catalyst was evaluated by linear scanning voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CP). The composite catalyst exhibited a special nanostructure consisting of an ultra-thin Ni(OH)2 film growth on the surface of the nickel foam with palladium nanoparticles uniformly embedded in the Ni(OH)2 thin film. The Ni(OH)2 on the surface of the catalyst might considerably promote the dissociation of water and the formation of hydrogen intermediates (Had) that subsequently adsorbed on the nearby Pd and quickly recombined into hydrogen molecules. The composite catalyst exhibits a synergistic effect for the hydrogen evolution reaction (HER), which might decrease the over-potential of hydrogen evolution and enhance the activity of the hydrogen evolution reaction. Growing the composite catalyst in situ on the nickel foam effectively improved the stability of the catalyst for the HER in alkaline solutions.



Key wordsDifunctional system      Hydrogen evolution reaction      Electrolysis of water      Composite catalyst      Nickel hydroxide     
Received: 06 July 2016      Published: 08 August 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(51272297)
Corresponding Authors: Jian LUO     E-mail: agsun2003@163.com
Cite this article:

Yu WU,Jian LUO. In situ Growth of a Pd/Ni(OH)2/NF Composite Catalyst for the Hydrogen Evolution Reaction. Acta Physico-Chimica Sinca, 2016, 32(11): 2745-2752.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201608083     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2745

Fig 1 Scanning electron microscopy (SEM) images of catalysts with different reaction time and synthesis temperatures
Fig 2 Linear scanning voltammetry (LSV) curves of catalysts with different synthesis conditions NF: nickel foam
Fig 3 SEM images of different catalysts (a-c) Pd/Ni(OH)2/NF, (d) Pd/NF, (e) Ni(OH)2/NF, (f) NF
Fig 4 EDS spectrum of Pd/Ni(OH)2/NF
Fig 5 XRD pattern of Pd/Ni(OH)2/NF color online
Fig 6 X-ray photoelectron spectroscopy (XPS) of Pd/Ni(OH)2/NF (a) survey, (b) O 1s, (c) Pd 3d, (d) Ni 2p
Fig 7 LSV curves of different catalysts (a) not iR-corrected data, (b) iR-corrected data (resistance ≈ 1.0 Ω)
Fig 8 Schematic illustration of Pd/Ni(OH)2/NF for catalytic hydrogen evolution color online
Catalyst Electrolyte η/mV j/(mA·cm-2) Tafel slope/(mV·dec-1) Ref.
Pd/Ni(OH)2/NF 1 mol·L-1 NaOH 193 100 41 this work
Pd/Ni(OH)2/NF 1 mol·L-1 NaOH 93 100 - this work (iR corrected)
Ni(OH)2/Pt islands/Pt 0.1 mol·L-1 KOH 150 9 100-130 2
RuO2-NiO/NF 6 mol·L-1 NaOH 100 100 38.5 3
RuO2/P-Ni 6 mol·L-1 NaOH 118 100 43 23
Ni(OH)2/NiCu 1 mol·L-1 KOH 300 75.1 - 24
Pt-Dy(50%(x) Dy) 8 mol·L-1 NaOH 409 100 147 25
NiO/Ni-CNT/NF 1 mol·L-1 KOH 195 100 51 26
NiO/Ni-CNT/NF 1 mol·L-1 KOH 95 100 - 26 (iR corrected)
Table 1 Summary of the HER catalytic activity of representative catalysts
Fig 9 Electrochemical impedance spectra of different catalysts (Nyguist plots)
Fig 10 Chronoamperometry curves of different catalysts (a) and the corresponding SEM image of Pd/Ni(OH)2/NF after 24 h electrolysis (b)
1 Duan Q. H. ; Wang S. L. ; Wang L. P. Acta Phys. -Chim. Sin 2013, 29 (1), 123.
1 段钱花; 王森林; 王丽品. 物理化学学报, 2013, 29 (1), 123.
2 Subbaraman R. ; Tripkovic D. ; Strmcnik D. ; Chang K. C. ; Uchimura M. ; Paulikas A. P. ; Stamenkovic V. ; Markovic N. M. Science 2011, 334, 1256.
3 Zhang L. ; Xiong K. ; Chen S. G. ; Li L. ; Deng Z. H. ; Wei Z. D. J. Power Sources 2015, 274, 114.
4 Liu Q. ; Tian J. Q. ; Cui W. ; Jiang P. ; Cheng N. Y. ; Asiri A. M. ; Sun X. P. Angew. Chem. Int. Ed 2014, 53, 6710.
5 Faber M. S. ; Dziedzic R. ; Lukowski M. A. ; Kaiser N. S. ; Ding Q. ; Jin S. J. Am. Chem. Soc 2014, 136, 10053.
6 Zhuang L. Acta Phys. -Chim. Sin. 2016, 32 (6), 1301.
6 庄林. 物理化学学报, 2016, 32 (6), 1301.
7 Liao L. ; Wang S. N. ; Xiao J. J. ; Bian X. J. ; Zhang Y. H. ; Scanlon M. D. ; Hu X. L. ; Tang Y. ; Liu B. H. ; Girault H. H. Energy Environ. Sci 2014, 7, 387.
8 Wang D. Z. ; Pan Z. ; Wu Z. Z. ; Wang Z. P. ; Liu Z. H. J. Power Sources 2014, 264, 229.
9 Xu Y. F. ; Gao M. R. ; Zheng Y. R. ; Jiang J. ; Yu S. H. Angew. Chem. Int. Ed 2013, 52, 8546.
10 Huang Z. P. ; Chen Z. B. ; Chen Z. Z. ; Lv C. C. ; Meng H. ; Zhang C. ACS Nano 2014, 8, 8121.
11 Gu J. ; Yan Y. ; Krizan J.W. ; Gibson Q. D. ; Detweiler Z. M. ; Cava R. J. ; Bocarsly A. B. J. Am. Chem. Soc. 2014, 136, 830.
12 Deng Z. H. ; Li L. ; Ding W. ; Xiong K. ; Wei Z. D. Chem. Commun 2015, 51, 1893.
13 Rodriguez J. A. ; Ma S. ; Liu P. ; Hrbek J. ; Evans J. ; Pérez M. Science 2007, 318, 1757.
14 Yin Z.W. ; Chen F. Y. J. Power Sources 2014, 265, 273.
15 Drunen J. ; Pilapil B. K. ; Makonnen Y. ; Beauchemin D. ; Gates B. D. ; Jerkiewicz G. ACS Appl. Mater. Interfaces 2014, 6, 12046.
16 Yang G.W. ; Xu C. L. ; Li H. L. Chem. Commun 2008, 48, 6537.
17 Yuan Y. ; Xia X. ; Wu J. ; Yang J. ; Chen Y. ; Guo S. Electrochim. Acta 2011, 56, 2627.
18 Kitakatsu N. ; Maurice V. ; Hinnen C. ; Marcus P. Surf. Sci 1998, 407, 36.
19 Kang J. L. ; Hirata A. ; Qiu H. J. ; Chen L.Y. ; Ge X. B. ; Fujita T. ; Chen M. W. Adv. Mater 2014, 26, 269.
20 Jin Z. ; Nackashi D. ; Lu W. ; Kittrell C. ; Tour J. M. Chem. Mater 2010, 22, 5695.
21 Zhao B. ; Ke X. K. ; Bao J. H. ; Wang C. L. ; Dong L. ; Chen Y. W. ; Chen H. L. J. Phys. Chem. C 2009, 113, 14440.
22 Loglio F. ; Innocenti M. ; Jarek A. ; Caporali S. ; Pasquini I. ; Foresti M. L. J. Electroanal. Chem 2010, 638, 15.
23 Xiong K. ; Li L. ; Deng Z. H. ; Xia M. R. ; Chen S. G. ; Tan S. Y. ; Peng X. J. ; Duan C. Y. ; Wei Z. D. RSC Adv 2014, 4, 20521.
24 Yin Z.W. ; Chen F. Y. Electrochim. Acta 2014, 117, 84.
25 Santos D. M. F. ; Sljukic B. ; Sequeira C. A. C. ; Macciò D. ; Saccone A. ; Figueiredo J. L. Energy 2013, 38, 10178.
26 Gong M. ; Zhou W. ; Tsai M. C. ; Zhou J. ; Guan M. ; Lin M. C. ; Zhang B. ; Hu Y. ; Wang D. Y. ; Yang J. ; Pennycook S. J. ; Hwang B. J. ; Dai H. Nat. Commun 2014, 22, 4695.
27 Faber M. S. ; Dziedzic R. ; Lukowski M. A. ; Kaiser N. S. ; Ding Q. ; Jin S. J. Am. Chem. Soc. 2014, 136, 10053.
[1] Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 869-885.
[2] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.
[3] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2022-2028.
[4] Cui-Juan XUAN,Jie WANG,Jing ZHU,De-Li WANG. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 149-164.
[5] CHANG Jin-Fa, XIAO Yao, LUO Zhao-Yan, GE Jun-Jie, LIU Chang-Peng, XING Wei. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1556-1592.
[6] HE Yuan-Yuan, ZHANG Jin-Jiang, ZHAO Jian-Wei. Influence of Graphene with Different Oxidation Degrees on Nickel Hydroxide Pseudocapacitor Characterization[J]. Acta Physico-Chimica Sinca, 2014, 30(2): 297-304.
[7] LIU Hong-Yan, FANG Chun-Hui, FANG Yan, ZHOU Yong-Quan, ZHU Fa-Yan, GE Hai-Wen, YANG Zi-Xiang, TANG Yu-Ling. EXAFS Study of the Structure of Amorphous Nickel Borate[J]. Acta Physico-Chimica Sinca, 2014, 30(11): 1979-1986.
[8] GUO Li-Mei KUANG Yuan-Jiang YANG Xiao-Dan YU Yan-Long YAO Jiang-Hong CAO Ya-An. Investigation on Photocatalytic Reduction of CO2into CH4 Using SrB2O4/SrCO3Composite Catalyst[J]. Acta Physico-Chimica Sinca, 2013, 29(07): 1558-1565.
[9] CAO Yin-Liang, LI Zhi-Lin, WANG Feng, LIU Jing-Jun, JI Jing, WANG Jian-Jun, ZHANG Liang-Hu, QIN Shi-Yong. Electrochemical Preparation of Ni-Sn Active Cathode and Its Electrocatalytic Hydrogen Evolution Reaction Mechanisms in Alkaline Solution[J]. Acta Physico-Chimica Sinca, 2013, 29(07): 1479-1486.
[10] DUAN Qian-Hua, WANG Sen-Lin, WANG Li-Pin. Electro-Deposition of the Porous Composite Ni-P/LaNi5 Electrode and Its Electro-Catalytic Performance toward Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2013, 29(01): 123-130.
[11] GU Lai-Yuan, GAO Bao-Jiao, FANG Xiao-Lin. Characterization of Immobilized Composite Catalysts of Cationic Metalloporphyrin and Heteropoly Anion in Oxidation of Ethyl Benzene by Molecular Oxygen[J]. Acta Physico-Chimica Sinca, 2013, 29(01): 191-198.
[12] ZHENG Ning, ZHU Chun-Mei, SUN Bin, SHI Zu-Jin, LIU Yan, WANG Yuan. Nanocomposite Cathode Catalyst with High Methanol Tolerance and Durability[J]. Acta Physico-Chimica Sinca, 2012, 28(10): 2263-2268.
[13] XU Ling, SHEN Xiao-Xu, XIAO Qiang, ZHONG Yi-Jun, YE Su-Fang, YE Xiang-Rong, ZHU Wei-Dong. Preparation, Characterization and Catalytic Properties of Pd/Fe3O4-MCNT Magnetically Recyclable Catalysts[J]. Acta Physico-Chimica Sinca, 2011, 27(08): 1956-1960.
[14] WANG Sen-Lin, ZHANG Yi. Preparation and Electrocatalytic Performance of Ni-Mo/LaNi5 Porous Composite Electrode toward Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2011, 27(06): 1417-1423.
[15] ZHANG Wei-Guo, SHANG Yun-Peng, LIU Li-Na, YAO Su-Wei, WANG Hong-Zhi. Electrochemical Preparation of a Ni-W-P Nanowire Array and Its Photoelectrocatalytic Activity for the Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2011, 27(04): 900-904.