Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (11): 2678-2684    DOI: 10.3866/PKU.WHXB201608084
ARTICLE     
Effects of Particle Size and Temperature on Surface Thermodynamic Functions of Cubic Nano-Cu2O
Huan-Feng TANG1,Zai-Yin HUANG1,2,*(),Ming XIAO1
1 College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, P. R. China
2 Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, P. R. China
Download: HTML     PDF(2184KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Cubic nano-cuprous oxides, with four types of particle sizes ranging from 40 to 120 nm, were synthesized via a liquid-phase reduction method. The composition, morphology and structure of the nano-Cu2O particles were characterized by X-ray diffractometry (XRD), Raman microscopy and field emission scanning electronic microscopy (FE-SEM). In-situ microcalorimetry was used to obtain thermodynamic information about the reaction between HNO3 and bulk Cu2O or nano-Cu2O. The surface thermodynamic functions of cubic nano-Cu2O were calculated by a combination of thermodynamic principle and kinetic transition state theory. We develop a thermodynamic model for the cubic nanoparticles based on the thermodynamic model of spherical nanoparticles without bore developed by XUE Yong-Qiang et al. The particle size and temperature effects of surface thermodynamic functions are discussed by comparing the theoretical model with the experimental results. The molar surface Gibbs free energy, molar surface enthalpy and molar surface entropy increased with decreasing particle sizes. Linear trends were found between the reciprocal of particle size and surface thermodynamic functions, which agreed well with the theoretical model for a cube. The molar surface enthalpy and molar surface entropy were increased with rising temperature, whereas the molar surface Gibbs free energy decreased. This work not only enriches and develops the basic theory of nano-thermodynamics, but also provides a novel method and idea for investigating surface thermodynamic functions of nanomaterials and their applications.



Key wordsSurface thermodynamic function      In-situ microcalorimetry      Thermodynamic model      Particle size effect      Temperature effect      Cubic nano-cuprous oxide     
Received: 14 July 2016      Published: 08 August 2016
MSC2000:  O642  
Fund:  the National Natural Science Foundation of China(21273050);the National Natural Science Foundation of China(21573048)
Corresponding Authors: Zai-Yin HUANG     E-mail: huangzaiyin@163.com
Cite this article:

Huan-Feng TANG,Zai-Yin HUANG,Ming XIAO. Effects of Particle Size and Temperature on Surface Thermodynamic Functions of Cubic Nano-Cu2O. Acta Phys. -Chim. Sin., 2016, 32(11): 2678-2684.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201608084     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2678

Fig 1 (a) XRD patterns and (b) Raman spectra of nano-Cu2O with different sizes
Fig 2 SEM image and the distribution histograms of nano-Cu2O with different sizes
Fig 3 Thermochemical cycle and transition state theory of nano-and bulk Cu2O
l/nm T/K ΔrHm?/(kJ·mol-1) 103k/s-1
1 2 3 average value 1 2 3 average value
42 298.15 -232.47 -232.48 -232.52 -232.49±0.03 5.934 5.958 5.976 5.956±0.021
308.15 -206.55 -206.53 -206.60 -206.56±0.04 6.502 6.543 6.683 6.576±0.095
318.15 -176.68 -176.79 -176.75 -176.74±0.06 7.321 7.365 7.304 7.330±0.031
55 298.15 -218.30 -218.31 -218.35 -218.32±0.03 5.517 5.525 5.482 5.508±0.023
308.15 -188.88 -188.92 -189.02 -188.94±0.07 6.177 6.192 6.198 6.189±0.011
318.15 -158.27 -158.32 -158.16 -158.25±0.08 6.883 6.907 6.769 6.853±0.074
67 298.15 -205.20 -205.24 -205.22 -205.22±0.02 5.024 5.011 4.989 5.008±0.018
308.15 -180.12 -180.01 -180.11 -180.08±0.06 5.643 5.683 5.690 5.672±0.025
318.15 -148.52 -148.73 -148.74 -148.63±0.12 6.334 6.369 6.308 6.337±0.031
116 298.15 -192.18 -192.12 -192.09 -192.13±0.05 4.553 4.541 4.558 4.559±0.009
308.15 -164.42 -164.33 -164.42 -164.39±0.05 5.382 5.241 5.283 5.302±0.072
318.15 -133.68 -133.77 -133.95 -133.80±0.14 5.975 5.980 5.961 5.972±0.010
bulk Cu2O 298.15 -176.55 -176.56 -176.51 -176.54±0.03 3.653 3.676 3.667 3.665±0.012
308.15 -145.78 -145.76 -145.62 -145.72±0.09 4.371 4.252 4.386 4.336±0.073
318.15 -110.25 -110.48 -110.26 -110.33±0.13 4.925 4.999 4.986 4.970±0.040
Table 1 Rate constants (k) and reaction enthalpies (Δr Hm?) of nano-and bulk Cu2O(s) in HNO3(aq) at different particle sizes and temperatures
Fig 4 Relationships between surface thermodynamical functions and the reciprocal of particle sizes (l-1) of nano-Cu2O for different temperatures (T)
Surface thermodynamic function T/K l/nm
42 55 67 116
Gms/(kJ?mol-1) 298.15 1.806 1.515 1.161 0.811
308.15 1.600 1.483 1.032 0.773
318.15 1.542 1.275 0.964 0.729
Hms/(kJ?mol-1) 298.15 55.95 41.78 28.68 15.59
308.15 60.84 43.22 34.36 20.67
318.15 66.41 47.92 38.30 23.47
Ssm/(J?mol-1?K-1) 298.15 181.60 135.05 92.30 49.57
308.15 192.24 135.45 108.15 64.57
318.15 203.89 146.61 117.35 71.48
Table 2 Surface thermodynamical functions of cubic nano-Cu2O(s) at different particle sizes and temperatures
1 Wen Y. Z. ; Xue Y. Q. ; Cui Z. X. ; Wang Y. J. Chem. Thermodyn. 2015, 80, 112.
2 Lai W. P. ; Xue Y. Q. ; Lian P. ; Ge Z. X. ; Wang B. Z. ; Zhang Z. Z. Acta Phys. -Chim. Sin. 2007, 23 (4), 508.
2 来蔚鹏; 薛永强; 廉鹏; 葛忠学; 王伯周; 张志忠. 物理化学学报, 2007, 23 (4), 508.
3 Lee S. ; Liang C.W. ; Martin L. W. ACS Nano 2011, 5 (5), 3736.
4 Yang Y. F. ; Xue Y. Q. ; Cui Z. X. ; Zhao M. Z. Electrochim. Acta 2014, 136, 565.
5 Chakravarty A. ; Bhowmik K. ; Mukherjee A. ; De G. Langmuir 2015, 31 (18), 5210.
6 Pang H. ; Gao F. ; Lu Q. Y. Chem. Commun. 2009, 9, 1076.
7 Zhu H. T. ; Wang J. X. ; Xu G. Y. Cryst. Growth. Des. 2008, 9 (1), 633.
8 Song J. H. ; Rodenbough P. P. ; Xu W. Q. ; Senanayake S. D. ; Chan S. W. J. Phys. Chem. C 2015, 119 (31), 17667.
9 Tsai Y. H. ; Chanda K. ; Chu Y. T. ; Chiu C. Y. ; Huang M. H. Nanoscale 2014, 6 (15), 8704.
10 Kuang Q. ; Wang X. ; Jiang Z. Y. ; Zhao X. X. ; Zheng L. S. Acc. Chem. Res. 2013, 47 (2), 308.
11 Freakley S. J. ; He Q. ; Harrhy J. H. ; Lu L. ; Crole D. A. ; Morgan D. J. ; Ntainjua E. N. ; Edwards J. K. ; Carley A. F. ; Borisevich A. Y. ; Kiely C. J. ; Hutchings G. J. Science 2016, 351 (6276), 965.
12 Jamshidian M. ; Thamburaja P. ; Rabczuk T. Phys. Chem. Chem. Phys. 2015, 17 (38), 25494.
13 Range S. ; Bernardes C. E. S. ; Simoes R. G. ; Epple M. ; Piedade M. M. J. Phys. Chem. C 2015, 119 (8), 4387.
14 Hu R. Z. ; Zhao F. Q. ; Gao H. X. ; Song J. R. Fundamentals and Applications of Calorimetry Beijing: Science Press, 2011, pp 1- 10.
14 胡荣祖; 赵凤起; 高红旭; 宋纪蓉.. 量热学基础与应用, 北京: 科学出版社, 2011, 1- 10.
15 Rychly R. ; Pekarek V. J. Chem. Thermodyn. 1977, 9 (4), 391.
16 Pan L. ; Zou J. J. ; Zhang T. R. ; Wang S. B. ; Wang L. ; Zhang X. W. J. Phys. Chem. C 2013, 118 (30), 16335.
17 Li C. ; Li Y. B. ; Delaunay J. J. ACS Appl. Mater. Interfaces 2013, 6 (1), 480.
18 Wu L. L. ; Tsui L. K. ; Swami N. ; Zangari G. J. Phys. Chem. C 2010, 114 (26), 11551.
19 Solache-Carranco H. ; Juarez-Díaz G. ; Esparza-García A. ; Biseňo-García M. ; Galvan-Arellano M. ; Martínez-Juárez J. ; Romero-Paredes G. ; Peňa-Sierra R. J. Lumin. 2009, 129 (12), 1483.
20 Sun D. ; Yin P. G. ; Guo L. Acta Phys. -Chim. Sin. 2011, 27 (6), 1543.
20 孙都; 殷鹏刚; 郭林. 物理化学学报, 2011, 27 (6), 1543.
21 Fu Q. S. ; Cui Z. X. ; Xue Y. Q. Eur. Phys. J. Plus 2015, 130 (10), 212.
22 Wang, S. S. Study on the Size Effect of Nanoparticles on the Surface Thermodynamic Properties by Solubility Method. M. S. Dissertation, Taiyuan University of Technology, Taiyuan, 2015.
22 王珊珊.溶解度法研究粒度对纳米颗粒表面热力学性质的影响[D].太原:太原理工大学, 2015.
23 Guo, S. H. The Effect of Particle Size and Shape on the Thermodynamic Properties: a Theoretical Study and Quantum Chemistry Calculation. M. S. Dissertation, Taiyuan University of Technology, Taiyuan, 2015.
23 郭少辉.粒度和形貌对纳米颗粒热力学性质影响的理论研究和量化计算[D].太原:太原理工大学, 2015.
24 Xue Y. Q. ; Yang X. C. ; Cui Z. X. ; Lai W. P. J. Phys. Chem. B 2011, 115 (1), 109.
25 Li X. X. ; Huang Z. Y. ; Zhong L. Y. ; Wang T. H. ; Tan X. C. Chin. Sci. Bull. 2014, 59 (25), 2490.
25 李星星; 黄在银; 钟莲云; 王腾辉; 谭学才. 科学通报, 2014, 59 (25), 2490.
26 Fan G. C. ; Ma Z. ; Huang Z. Y. ; Tan X. C. ; Yao X. C. Chem. J. Chin. Univ. 2014, 35 (5), 1007.
26 范高超; 马昭; 黄在银; 谭学才; 姚先超. 高等学校化学学报, 2014, 35 (5), 1007.
27 International Union of Pure and Applied Chemistry. Chemistry Quantities, Units and Symbols in Physical Chemistry; Scientific and Technical Documentation Press: Beijing, 1991; pp 56-57; translated by Qi, D. Y., Jin, Z. D., Zhuang, Y. L.
27 国际纯粹化学与应用化学联合会.物理化学中的量,单位和符号,漆德瑶,金宗德,庄云龙,译.北京:科学技术文献出版社, 1991: 56-57.
28 Gao S. L. ; Chen S. P. ; Hu R. Z. ; Li H. Y. ; Shi Q. Z. Chin. J. Inorg. Chem. 2002, 18 (4), 362.
28 高胜利; 陈三平; 胡荣祖; 李焕勇; 史启祯. 无机化学学报, 2002, 18 (4), 362.
29 Piloyan G. O. ; Bortnikov N. S. ; Boeva N. M. J. Mod. Phys. 2013, 4 (7), 16.
[1] Shan-Shan. PAN,Li-Ming. WANG. The Atmospheric Oxidation Mechanism of o-Xylene Initiated by Hydroxyl Radicals[J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2259-2268.
[2] XIE Dan-Hua, ZHAO Jian-Xi, LIU Lin, YOU Yi, WEI Xi-Lian. A Highly Viscoelastic Anionic Wormlike Micellar System[J]. Acta Phys. -Chim. Sin., 2013, 29(07): 1534-1540.
[3] ZHOU En-Nian, YU Zhi-Hui, QU Jing-Kui, Qi Tao, Han Xiao-Ying, ZHANG Guo-Qing. Equilibrium Solubility Modeling of CO2 in Na2Cr2O7 Solutions[J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2567-2573.
[4] TANG Ya-Wen; MA Guo-Xian; ZHOU Yi-Ming; BAO Jian-Chun; LU Lu-De; LU Tian-Hong. Electrocatalytic Oxidation of Ethanol on Pt/C Catalysts with Different Pt Particle Sizes[J]. Acta Phys. -Chim. Sin., 2008, 24(09): 1615-1619.
[5] WANG Wen-qing; MIN Wei; GONG Yan. Temperature- induced Phase Transitions in Chiral Amino Acids——Search of Spontaneous Parity- Breaking and Restoration[J]. Acta Phys. -Chim. Sin., 2005, 21(10): 1186-1194.
[6] WANG Wen-qing; GONG Yan; YAO Nan. Temperature Effect on Molecular Chirality:X-ray Diffraction and Neutron Diffraction Studies of D-alanine[J]. Acta Phys. -Chim. Sin., 2005, 21(07): 774-781.
[7] Lu Dong-Yun;Wen Hao;Liu Hui-Zhou;Xu Zhi-Hong. Temperature Effects on Block Copolymer Micelle Based on the Scaling Model[J]. Acta Phys. -Chim. Sin., 2004, 20(01): 38-42.
[8] Xiong Xing-Min,Yang Ju-Hua,Ye Mei-Ling,Zhang Ying-Jiu,Shi Liang-He. Study of Temperature Effect of Micellar Solutions of PSDMS Block Copolymer in n-Heptane by Positron Annihilation[J]. Acta Phys. -Chim. Sin., 1995, 11(06): 541-546.