Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2016,Vol.32>> Issue(11)>> 2678-2684     doi: 10.3866/PKU.WHXB201608084         中文摘要
Effects of Particle Size and Temperature on Surface Thermodynamic Functions of Cubic Nano-Cu2O
TANG Huan-Feng1, HUANG Zai-Yin1,2, XIAO Ming1
1 College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, P. R. China;
2 Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, P. R. China
Full text: PDF (2184KB) HTML Export: BibTeX | EndNote (RIS)

Cubic nano-cuprous oxides, with four types of particle sizes ranging from 40 to 120 nm, were synthesized via a liquid-phase reduction method. The composition, morphology and structure of the nano-Cu2O particles were characterized by X-ray diffractometry (XRD), Raman microscopy and field emission scanning electronic microscopy (FE-SEM). In-situ microcalorimetry was used to obtain thermodynamic information about the reaction between HNO3 and bulk Cu2O or nano-Cu2O. The surface thermodynamic functions of cubic nano-Cu2O were calculated by a combination of thermodynamic principle and kinetic transition state theory. We develop a thermodynamic model for the cubic nanoparticles based on the thermodynamic model of spherical nanoparticles without bore developed by XUE Yong-Qiang et al. The particle size and temperature effects of surface thermodynamic functions are discussed by comparing the theoretical model with the experimental results. The molar surface Gibbs free energy, molar surface enthalpy and molar surface entropy increased with decreasing particle sizes. Linear trends were found between the reciprocal of particle size and surface thermodynamic functions, which agreed well with the theoretical model for a cube. The molar surface enthalpy and molar surface entropy were increased with rising temperature, whereas the molar surface Gibbs free energy decreased. This work not only enriches and develops the basic theory of nano-thermodynamics, but also provides a novel method and idea for investigating surface thermodynamic functions of nanomaterials and their applications.



Keywords: Surface thermodynamic function   In-situ microcalorimetry   Thermodynamic model   Particle size effect   Temperature effect   Cubic nano-cuprous oxide  
Received: 2016-07-14 Accepted: 2016-08-04 Publication Date (Web): 2016-08-08
Corresponding Authors: HUANG Zai-Yin Email: huangzaiyin@163.com

Fund: The project was supported by the National Natural Science Foundation of China (21273050, 21573048).

Cite this article: TANG Huan-Feng, HUANG Zai-Yin, XIAO Ming. Effects of Particle Size and Temperature on Surface Thermodynamic Functions of Cubic Nano-Cu2O[J]. Acta Phys. -Chim. Sin., 2016,32 (11): 2678-2684.    doi: 10.3866/PKU.WHXB201608084

(1) Wen, Y. Z.; Xue, Y. Q.; Cui, Z. X.; Wang, Y. J. Chem. Thermodyn. 2015, 80, 112. doi: 10.1016/j.jct.2014.08.013
(2) Lai, W. P.; Xue, Y. Q.; Lian, P.; Ge, Z. X.; Wang, B. Z.; Zhang, Z. Z. Acta Phys. -Chim. Sin. 2007, 23 (4), 508. [来蔚鹏, 薛永强, 廉鹏, 葛忠学, 王伯周, 张志忠. 物理化学学报, 2007, 23 (4), 508.] doi: 10.3866/PKU.WHXB20070411
(3) Lee, S.; Liang, C.W.; Martin, L.W. ACS Nano 2011, 5 (5), 3736. doi: 10.1021/nn2001933
(4) Yang, Y. F.; Xue, Y. Q.; Cui, Z. X.; Zhao, M. Z. Electrochim. Acta 2014, 136, 565. doi: 10.1016/j.electacta.2014.05.067
(5) Chakravarty, A.; Bhowmik, K.; Mukherjee, A.; De, G. Langmuir 2015, 31 (18), 5210. doi: 10.1021/acs.langmuir.5b00970
(6) Pang, H.; Gao, F.; Lu, Q. Y. Chem. Commun. 2009, 9, 1076. doi: 10.1039/B816670F
(7) Zhu, H. T.; Wang, J. X.; Xu, G. Y. Cryst. Growth. Des. 2008, 9 (1), 633. doi: 10.1021/cg801006g
(8) Song, J. H.; Rodenbough, P. P.; Xu, W. Q.; Senanayake, S. D.; Chan, S.W. J. Phys. Chem. C 2015, 119 (31), 17667. doi: 10.1021/acs.jpcc.5b04121
(9) Tsai, Y. H.; Chanda, K.; Chu, Y. T.; Chiu, C. Y.; Huang, M. H. Nanoscale 2014, 6 (15), 8704. doi: 10.1039/C4NR02076F
(10) Kuang, Q.; Wang, X.; Jiang, Z. Y.; Zhao, X. X.; Zheng, L. S. Acc. Chem. Res. 2013, 47 (2), 308. doi: 10.1021/ar400092x
(11) Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y.; Kiely, C. J.; Hutchings, G. J. Science 2016, 351 (6276), 965. doi: 10.1126/science.aad5705
(12) Jamshidian, M.; Thamburaja, P.; Rabczuk, T. Phys. Chem. Chem. Phys. 2015, 17 (38), 25494. doi: 10.1039/C5CP04375A
(13) Range, S.; Bernardes, C. E. S.; Simoes, R. G.; Epple, M.; Piedade, M. M. J. Phys. Chem. C 2015, 119 (8), 4387. doi: 10.1021/jp5124772
(14) Hu, R. Z.; Zhao, F. Q.; Gao, H. X.; Song, J. R. Fundamentals and Applications of Calorimetry; Science Press: Beijing, 2011; pp 1-10. [胡荣祖, 赵凤起, 高红旭, 宋纪蓉. 量热学基础与应用. 北京: 科学出版社, 2011: 1-10.]
(15) Rychlý, R.; Pekarek, V. J. Chem. Thermodyn. 1977, 9 (4), 391. doi: 10.1016/0021-9614(77)90060-X
(16) Pan, L.; Zou, J. J.; Zhang, T. R.; Wang, S. B.; Wang, L.; Zhang, X.W. J. Phys. Chem. C 2013, 118 (30), 16335. doi: 10.1021/jp408056k
(17) Li, C.; Li, Y. B.; Delaunay, J. J. ACS Appl. Mater. Interfaces 2013, 6 (1), 480. doi: 10.1021/am404527q
(18) Wu, L. L.; Tsui, L. K.; Swami, N.; Zangari, G. J. Phys. Chem. C 2010, 114 (26), 11551. doi: 10.1021/jp103437y
(19) Solache-Carranco, H.; Juarez-Díaz, G.; Esparza-García, A.; Biseňo-García, M.; Galvan-Arellano, M.; Martínez-Juárez, J.; Romero-Paredes, G.; Peňa-Sierra, R. J. Lumin. 2009, 129 (12), 1483. doi: 10.1016/j.jlumin.2009.02.033
(20) Sun, D.; Yin, P. G.; Guo, L. Acta Phys. -Chim. Sin. 2011, 27 (6), 1543. [孙都, 殷鹏刚, 郭林. 物理化学学报, 2011, 27 (6), 1543.] doi: 10.3866/PKU.WHXB20110619
(21) Fu, Q. S.; Cui, Z. X.; Xue, Y. Q. Eur. Phys. J. Plus 2015, 130 (10), 212. doi: 10.1140/epjp/i2015-15212-4
(22) Wang, S. S. Study on the Size Effect of Nanoparticles on the Surface Thermodynamic Properties by Solubility Method. M. S. Dissertation, Taiyuan University of Technology, Taiyuan, 2015. [王珊珊. 溶解度法研究粒度对纳米颗粒表面热力学性质的影响[D]. 太原: 太原理工大学, 2015.]
(23) Guo, S. H. The Effect of Particle Size and Shape on the Thermodynamic Properties: a Theoretical Study and Quantum Chemistry Calculation. M. S. Dissertation, Taiyuan University of Technology, Taiyuan, 2015. [郭少辉. 粒度和形貌对纳米颗粒热力学性质影响的理论研究和量化计算[D]. 太原: 太原理工大学, 2015.]
(24) Xue, Y. Q.; Yang, X. C.; Cui, Z. X.; Lai, W. P. J. Phys. Chem. B 2011, 115 (1), 109. doi: 10.1021/jp1084313
(25) Li, X. X.; Huang, Z. Y.; Zhong, L. Y.; Wang, T. H.; Tan, X. C. Chin. Sci. Bull. 2014, 59 (25), 2490. [李星星, 黄在银, 钟莲云, 王腾辉, 谭学才. 科学通报, 2014, 59 (25), 2490.] doi: 10.1360/N972014-00332
(26) Fan, G. C.; Ma, Z.; Huang, Z. Y.; Tan, X. C.; Yao, X. C. Chem. J. Chin. Univ. 2014, 35 (5), 1007. [范高超, 马昭, 黄在银, 谭学才, 姚先超. 高等学校化学学报, 2014, 35 (5), 1007.] doi: 10.7503/cjcu20140062
(27) International Union of Pure and Applied Chemistry. Chemistry Quantities, Units and Symbols in Physical Chemistry; Scientific and Technical Documentation Press: Beijing, 1991; pp 56-57; translated by Qi, D. Y., Jin, Z. D., Zhuang, Y. L. [国际纯粹化学与应用化学联合会. 物理化学中的量, 单位和符号, 漆德瑶, 金宗德, 庄云龙, 译. 北京: 科学技术文献出版社, 1991: 56-57.]
(28) Gao, S. L.; Chen, S. P.; Hu, R. Z.; Li, H. Y.; Shi, Q. Z. Chin. J. Inorg. Chem. 2002, 18 (4), 362. [高胜利, 陈三平, 胡荣祖, 李焕勇, 史启祯. 无机化学学报, 2002, 18 (4), 362.]
(29) Piloyan, G. O.; Bortnikov, N. S.; Boeva, N. M. J. Mod. Phys. 2013, 4 (7), 16. doi: 10.4236/jmp.2013.47A2003

1. PAN Shan-Shan, WANG Li-Ming.The Atmospheric Oxidation Mechanism of o-Xylene Initiated by Hydroxyl Radicals[J]. Acta Phys. -Chim. Sin., 2015,31(12): 2259-2268
2. HU Ren-Zhi, XIE Pin-Hua, ZHANG Qun, SI Fu-Qi, CHEN Yang.Temperature Dependence of C2(a3Пu) Radical Reactions with Sulfur Bearing Molecules[J]. Acta Phys. -Chim. Sin., 2014,30(5): 797-802
3. XIE Dan-Hua, ZHAO Jian-Xi, LIU Lin, YOU Yi, WEI Xi-Lian.A Highly Viscoelastic Anionic Wormlike Micellar System[J]. Acta Phys. -Chim. Sin., 2013,29(07): 1534-1540
4. HU Ren-Zhi, XIE Pin-Hua, ZHANG Qun, SI Fu-Qi, CHEN Yang.Temperature Dependence of C2(X1Σg+) in Reactions with Unsaturated Hydrocarbons[J]. Acta Phys. -Chim. Sin., 2013,29(04): 683-688
5. ZHOU En-Nian, YU Zhi-Hui, QU Jing-Kui, Qi Tao, Han Xiao-Ying, ZHANG Guo-Qing.Equilibrium Solubility Modeling of CO2 in Na2Cr2O7 Solutions[J]. Acta Phys. -Chim. Sin., 2012,28(11): 2567-2573
6. HU Ren-Zhi, ZHANG Qun, CHEN Yang.Temperature Dependence of Reactions of C2(a3Πu) Radical with Several Unsaturated Hydrocarbons[J]. Acta Phys. -Chim. Sin., 2010,26(10): 2619-2624
7. WANG Wen-qing; MIN Wei; GONG Yan.Temperature- induced Phase Transitions in Chiral Amino Acids——Search of Spontaneous Parity- Breaking and Restoration[J]. Acta Phys. -Chim. Sin., 2005,21(10): 1186-1194
8. WANG Wen-qing; GONG Yan; YAO Nan.Temperature Effect on Molecular Chirality:X-ray Diffraction and Neutron Diffraction Studies of D-alanine[J]. Acta Phys. -Chim. Sin., 2005,21(07): 774-781
9. Lu Dong-Yun;Wen Hao;Liu Hui-Zhou;Xu Zhi-Hong.Temperature Effects on Block Copolymer Micelle Based on the Scaling Model[J]. Acta Phys. -Chim. Sin., 2004,20(01): 38-42
10. Li Hua-Ping, Wang Peng-Fei, Wu Shi-Kang.Temperature Dependence of Excimer Formation of a New Kind of Fluorescence Chemosensor[J]. Acta Phys. -Chim. Sin., 1998,14(11): 995-1000
11. Xiong Xing-Min,Yang Ju-Hua,Ye Mei-Ling,Zhang Ying-Jiu,Shi Liang-He.Study of Temperature Effect of Micellar Solutions of PSDMS Block Copolymer in n-Heptane by Positron Annihilation[J]. Acta Phys. -Chim. Sin., 1995,11(06): 541-546
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top