Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (11): 2753-2760    DOI: 10.3866/PKU.WHXB201608231
ARTICLE     
Synthesis and Properties of a Novel Bio-Based Branched Heptadecylbenzene Sulfonate Derived from Oleic Acid
Peng-Cheng BIAN1,Da-Peng ZHANG1,Hong-Ze GANG1,Jin-Feng LIU1,Bo-Zhong MU1,2,Shi-Zhong YANG1,*()
1 State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
2 Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, P. R. China
Download: HTML     PDF(5489KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Bio-based surfactants have attracted increasing attention because they are made from renewable resources and have excellent surface/interfacial properties. In this study we prepared a novel bio-based branched alkylbenzene sulfonate surfactant by a four-step route using renewable oleic acids as starting materials. We evaluated the surface behavior, wettability, and biodegradability of our surfactant. The surfactant, 4-(1-heptadecyl) benzene sodium sulfonate (9ΦC17S), was synthesized using a facile four-step route involving alkylation, decarboxylation, sulfonation and neutralization, respectively. The chemical structure of 4-(1-heptadecyl) benzene sodium sulfonate was confirmed by infrared (IR) spectroscopy, electrospray ionization high resolution mass spectrometry (ESI HRMS) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. The surfactant demonstrated an excellent surface tension of 32.54 mN·m-1 at the critical micelle concentration (CMC) of 317.5 mg·L-1 and outstanding interfacial tension of~10-2 mN·m-1 at 8.36×104 mg·L-1 with 8.48×104 mg·L-1 Na2CO3. The surfactant also showed good biodegradability with an ultimate biodegradation score of 2.99. The surfactant had good wettability with an air/water/solid contact angle (θaverage) of 63.08° for a 0.500 g·L-1 9ΦC17S solution. This novel bio-based branched surfactant contributes to the structural diversity of biobased surfactants from renewable feedstock.



Key wordsBio-based surfactant      Branched heptadecylbenzene sulfonate      Decarboxylation      Oleic acid      Renewable feedstock     
Received: 23 May 2016      Published: 23 August 2016
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(51574125);the National Natural Science Foundation of China(21203063);National High Technology Research and Development Program of China(2013AA064403);Foundation of the Ministry of Education of China for Outstanding Young Teachers in University(WJ1514313)
Corresponding Authors: Shi-Zhong YANG     E-mail: meor@ecust.edu.cn
Cite this article:

Peng-Cheng BIAN,Da-Peng ZHANG,Hong-Ze GANG,Jin-Feng LIU,Bo-Zhong MU,Shi-Zhong YANG. Synthesis and Properties of a Novel Bio-Based Branched Heptadecylbenzene Sulfonate Derived from Oleic Acid. Acta Phys. -Chim. Sin., 2016, 32(11): 2753-2760.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201608231     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2753

 
 
Number t/h Stirring speed/(r?min-1) Reactant/Catalyst mass ratio Yield/%
1 6 150 20:1 3.9
2 6 150 20:1 93.5
3 3 150 10:1 21.1
4 3 300 20:1 60.9
5 3 450 40:1 56.8
6 6 150 20:1 93.2
7 6 300 40:1 70.8
8 6 450 10:1 57.2
9 9 150 40:1 65.1
10 9 300 10:1 47
11 9 450 20:1 62.8
 
 
 
CMC/(mg? L-1) SFTcmc/(mN?m-1) 10-8Γmax/(mol?m-2) Amin/(nm2?molecule-1) HLB Contact angle/(°) Krafft point/℃
317.5 32.54 4.27 0.39 10.12 63.08 58.15
 
 
`s\vl VE`s\vl V
1 Cohen L. ; Moreno A. ; Berna J. J. Am. Oil Chem. Soc. 1993, 70, 79.
2 Llenado, R. A. Enhanced Oil Recovery. Google Patents: US4565647 A, 1986-01-21.
3 Shupe, R. D. Surfactant Oil Recovery Process Usable in High Temperature Formations. Google Patents: US4018278 A, 1977-04-19.
4 Dai C. ; Wang K. ; Liu Y. ; Li H. ; Wei Z. ; Zhao M. Energy Fuels 2015, 29, 2304.
5 Holmstrup M. ; Krogh P. H. Environ. Toxicol. Chem. 1996, 15, 1745.
6 Nimer M. ; Ballesteros O. ; Navalon A. ; Crovetto G. ; Verge C. ; López I. ; Berna J. ; Vílchez J. Anal. Bioanal. Chem. 2007, 387, 2175.
7 Schultz, W. S.; Beyer, U. Invert Size for the Internal and Surface Sizing of Paper. Google Patents: US4983257 A, 1991-01-08.
8 Cao Y. ; Zhao R. H. ; Zhang L. ; Xu Z. C. ; Jin Z. Q. ; Luo L. ; Zhang L. ; Zhao S. Energy Fuels 2012, 26, 2175.
9 Zhang L. ; Wang X. C. ; Gong Q. T. ; Zhang L. ; Luo L. ; Zhao S. ; Yu J. Y. J. Colloid Interface Sci. 2008, 327, 451.
10 Zhao R. H. ; Huang H. Y. ; Wang H. Y. ; Zhang J. C. ; Zhang L. ; Zhang L. ; Zhao S. J. Dispersion Sci. Technol. 2013, 34, 623.
11 Zhao Y. ; Li P. ; Li Z. ; Qiao W. ; Cheng L. ; Yang J. Pet. Sci. Technol. 2007, 25, 1429.
12 Yang J. ; Qiao W. ; Li Z. ; Cheng L. Fuel 2005, 84, 1607.
13 He X. ; Guvench O. ; MacKerell A. D. ; J r. ; Klein M. L. J. Phys. Chem. B 2010, 114, 9787.
14 Jang S. S. ; Lin S. T. ; Maiti P. K. ; Blanco M. ; Goddard W. A. ; Shuler P. ; Tang Y. J. Phys. Chem. B 2004, 108, 12130.
15 Zhao T. ; Xu G. ; Yuan S. ; Chen Y. ; Yan H. J. Phys. Chem. B 2010, 114, 5025.
16 Foley P. ; Beach E. S. ; Zimmerman J. B. Chem. Soc. Rev. 2012, 41, 1499.
17 Rajabi F. ; Luque R. RSC Adv. 2014, 4, 5152.
18 Sreenu M. ; Rao B. V. ; Prasad R. B. N. ; Sujitha P. ; Chityala G. K. Eur. J. Lipid Sci. Technol. 2014, 116, 193.
19 Zhang Q. Q. ; Cai B. X. ; Xu W. J. ; Gang H. Z. ; Liu J. F. ; Yang S. Z. ; Mu B. Z. Colloids Surf. A 2015, 483, 87.
20 Melero J. A. ; Iglesias J. ; Garcia A. Energy Environ. Sci. 2012, 5, 7393.
21 Climent M. J. ; Corma A. ; Iborra S. Green Chem. 2014, 16, 516.
22 Sakai K. ; Saito Y. ; Uka A. ; Matsuda W. ; Takamatsu Y. ; Kitiyanan B. ; Endo T. ; Sakai H. ; Abe M. J. Oleo Sci. 2013, 62, 489.
23 Zhang Q. Q. ; Cai B. X. ; Xu W. J. ; Gang H. Z. ; Liu J. F. ; Yang S. Z. ; Mu B. Z. Sci. Rep. 2015, 5, 9971.
24 Roh H. S. ; Eum I. H. ; Jeong D.W. ; Yi B. E. ; Na J. G. ; Ko C. H. Catal. Today 2011, 164, 457.
25 Ogawa M. ; Kaiho H. Langmuir 2002, 18, 4240.
26 Ortega J. A. T. ; Aldana L. A. D. ; Castellanos F. J. S. Ing. Investig. 2009, 29, 48.
27 Du X. ; Lu Y. ; Li L. ; Wang J. ; Yang Z. Colloids Surf. A 2006, 290, 132.
28 Guo Y. J. ; Liu J. X. ; Zhang X. M. ; Feng R. S. ; Li H. B. ; Zhang J. ; Lv X. ; Luo P. Y. Energy Fuels 2012, 26, 2116.
29 Jiahua Z. ; Yingde C. Special Petrochem. 2001, 2, 004.
30 Nedyalkov M. ; Alexandrova L. ; Platikanov D. ; Levecke B. ; Tadros T. F. Colloid. Polym. Sci. 2008, 286, 713.
31 Song S. ; Song M. ; Zeng L. ; Wang T. ; Liu R. ; Ruan T. ; Jiang G. Environ. Pollut. 2014, 186, 14.
32 Santillan-Jimenez E. ; Morgan T. ; Lacny J. ; Mohapatra S. ; Crocker M. Fuel 2013, 103, 1010.
33 Na J. G. ; Han J. K. ; Oh Y. K. ; Park J. H. ; Jung T. S. ; Han S. S. ; Yoon H. C. ; Chung S. H. ; Kim J. N. ; Ko C. H. Catal. Today 2012, 185, 313.
34 Li Y. ; He X. ; Cao X. ; Zhao G. ; Tian X. ; Cui X. J. Colloid Interface Sci. 2007, 307, 215.
35 Li Y. ; Zhang P. ; Dong F. L. ; Cao X. L. ; Song X.W. ; Cui X. H. J. Colloid Interface Sci. 2005, 290, 275.
36 Qiao W. ; Li J. ; Zhu Y. ; Cai H. Fuel 2012, 96, 220.
37 Dai X. ; Suo J. ; Duan X. ; Bai Z. ; Zhang L. J. Surfactants Deterg. 2008, 11, 111.
38 Chen L. ; Zhang G. ; Ge J. ; Jiang P. ; Tang J. ; Liu Y. Colloids Surf. A 2013, 434, 63.
39 Tang M. ; Zhang G. ; Ge J. ; Jiang P. ; Liu Q. ; Pei H. ; Chen L. Colloids Surf. A 2013, 421, 91.
40 Zhao X. ; Bai Y. ; Wang Z. ; Shang X. ; Qiu G. ; Chen L. J. Dispersion Sci. Technol. 2013, 34, 756.
41 Fekarcha L. ; Tazerouti A. J. Surfactants Deterg. 2012, 15, 419.
[1] MA Jie, FAN Ye, FANG Yun. Influence of Alkyl Polyglucoside on Migration and Extension of pH Window for Forming Fatty Acid Vesicles of Conjugated Linoleic Acid[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1359-1364.
[2] YANG Yang, GUO Xia. Negatively Charged Lipopolyplex for Gene Delivery Based on Low-Molecular-Weight Polyethylenimine and Oleic Acid[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 345-350.
[3] YU Wei-Feng, MENG Xiang-Guang, LIU Ying, LI Xiao-Hong. Selective Oxidation of 4-Methoxymandelic Acid Catalyzed by Mononucleonic and Binucleonic Metal Complexes[J]. Acta Phys. -Chim. Sin., 2013, 29(09): 2041-2046.
[4] YE Yong-Wei, WANG Xi, ZHENG Wan-Fang, LI Mei-Chao, MA Chun-An. Electrooxidation Reaction of 3-Bromobenzoic Acid on Pt Electrode[J]. Acta Phys. -Chim. Sin., 2013, 29(03): 553-558.
[5] YAO Er-Gang, ZHAO Feng-Qi, GAO Hong-Xu, XU Si-Yu, HU Rong-Zu, HAO Hai-Xia, AN Ting, PEI Qing, XIAO Li-Bai. Thermal Behavior and Non-Isothermal Decomposition Reaction Kinetics of Aluminum Nanopowders Coated with an Oleic Acid/Hexogen Composite System[J]. Acta Phys. -Chim. Sin., 2012, 28(04): 781-786.
[6] SHAO Yu; DAI Wen-xin; WANG Xu-xu; DING Zheng-xin; LIU Ping; FU Xian-zhi. The Photocatalytic Property of Anodized Al2O3 Film on Al Surface[J]. Acta Phys. -Chim. Sin., 2005, 21(06): 622-626.
[7] Ding Wan-Jian;Fang Wei-Hai;Liu Ruo-Zhuang. Mechanisms of Unimolecular Reactions for Ground-state Pyruvic Acid[J]. Acta Phys. -Chim. Sin., 2004, 20(08S): 911-916.
[8] He Zhan-Bo;Li Dong-Mei;Shi Yu-Quan. Soap Liquid Membrane Oscillators[J]. Acta Phys. -Chim. Sin., 2002, 18(11): 979-984.
[9] Dai Le-Rong. The Structure of Liquid Crystal and Solubilization of Cholesterol in Lecithin-Water-Oleic Acid System[J]. Acta Phys. -Chim. Sin., 1996, 12(02): 159-162.
[10] Liu Mu-Xin.Xu Gui-Ying.Li Gan-Zuo.Mao Hong-Zhi.Li Fang. The Transient Interfacial Tension between Oleic Acid-sodium Oleate Aqueous Solution and Crude Oil[J]. Acta Phys. -Chim. Sin., 1995, 11(11): 1040-1043.
[11] Fang Wei-Hai; Fang De-Cai; Liu Ruo-Zhuang. AM1 Study of the Photodecarboxylation Reaction of Acrylic acid in the Gas Phase[J]. Acta Phys. -Chim. Sin., 1993, 9(06): 788-790.