Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (11): 2731-2736    DOI: 10.3866/PKU.WHXB201608232
ARTICLE     
Preparation and Performance of a SILAR TiO2/CdS/Co-Pi Water Oxidation Photoanode
Li ZHOU*(),Huan-Huan LIU,Yu-Lin YANG,Liang-Sheng QIANG
Download: HTML     PDF(8111KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Asemiconductor heterostructure of TiO2/CdS/cobalt phosphate water oxidation catalyst (Co-Pi WOC) photoanode was fabricated by the successive ionic layer adsorption and reaction (SILAR) procedure and photoassisted electro-deposition. The structure, morphologys and magnetic properties of the resultant particles were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). CdS and Co-Pi quantum dots loaded on to the TiO2 nanofilm. The TiO2/CdS/Co-Pi photoanode had an initial photocurrent of 1.3 mA·cm-2 and a stable level of 0.5 mA·cm-2. A relatively stable level was maintained under visible light irradiation in neutral solution, especially at the low bias voltage of 0 V (vs Ag/AgCl). In this system, CdS quantum dots serve as the light absorber and generate electron holes; the Co-Pi WOC acts as a hole transfer layer that can transfer the hole for water oxidation; and the TiO2 is the electron conductor for efficient charge transfer to the cathode to actualize proton reduction.



Key wordsPhotocatalysis      Water oxidation      Successive ionic layer adsorption and reaction      Visible light      TiO2/CdS/Co-Pi photoanode     
Received: 31 May 2016      Published: 23 August 2016
MSC2000:  O644  
Fund:  the Heilongjiang Postdoctoral Fund, China(LBH-Z14106);Program for Innovation Research of Science in Harbin Institute of Technology, China(HIT Q201508)
Corresponding Authors: Li ZHOU     E-mail: lizhou@hit.edu.cn
Cite this article:

Li ZHOU,Huan-Huan LIU,Yu-Lin YANG,Liang-Sheng QIANG. Preparation and Performance of a SILAR TiO2/CdS/Co-Pi Water Oxidation Photoanode. Acta Physico-Chimica Sinca, 2016, 32(11): 2731-2736.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201608232     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2731

Fig 1 I-t curves of different experimental processes with SILAR method
Fig 2 SEM images of photoanode at different stages (a) TiO2; (b) TiO2/CdS; (c) TiO2/CdS/Co-Pi
Fig 3 (a) Transmission electron microscopy (TEM) and (b) high resolution TEM of TiO2/CdS/Co-Pi composite nanoparticles
Fig 4 XRD and XPS survey scan from TiO2/CdS/Co-Pi photoanode (a) XRD spectra; (b) XPS spectra over a large range at low resolution; (c) P 2p at high resolution; (d) Co 2p at high resolution
Fig 5 (a) UV-Vis absorption spectra of different photoanodes and (b) I-t curves of photoanode measured with and without deposition Co-Pi at 0 V (vs Ag/AgCl)
Fig 6 Cyclic voltammagram of FTO electrodeposition with Co-Pi
Fig 7 Mechanism schematic of TiO2/CdS/Co-Pi photoanode for water oxidation
1 McEvoy J. P. ; Brudvig G. W. Chem. Rev. 2006, 106, 4455.
2 Karkas M. D. ; Verho O. ; Johnston E. V. ; Akermark B. Chem. Rev. 2014, 114, 11863.
3 Fujishima A. ; Honda K. Nature 1972, 238, 37.
4 Chang X. X. ; Gong J. L. Acta Phys. -Chim. Sin. 2016, 32 (1), 2.
4 常晓侠; 巩金龙. 物理化学学报, 2016, 32 (1), 2.
5 Ai G. J. ; Li S. P. ; Mo R. ; Zhong J. X. Adv. Funct. Mater. 2015, 25, 5706.
6 Li J. T. ; Wu N. Q. Catal. Sci. Technol. 2015, 5, 1360.
7 Jia H. M. ; Xu H. ; Hu Y. ; Tang Y.W. ; Zhang L. Z. Electrochem. Commun. 2007, 9, 354.
8 Sun J.W. ; Zhong D. K. ; Gamelin D. R. Energy Environ. Sci. 2010, 3, 1252.
9 Cheng C.W. ; Zhang H. F. ; Ren W. N. Nano Energy 2013, 2, 779.
10 Xu Y. ; Schoonen M. A. A. Am. Mineral. 2000, 85, 543.
11 Kongkanand A. ; Tvrdy K. ; Takechi K. ; Kuno M. ; Kamat P. V. J. Am. Chem. Soc 2008, 130, 4007.
12 Liang Y. ; Kong B. ; Zhu A.W. ; Wang Z. ; Tian Y. Chem. Commun. 2012, 48, 245.
13 Youngblood W. J. ; Lee S. A. ; Kobayashi Y. ; Hernandez-Pagan E. A. ; Hoertz P. G. ; Moore T. A. ; Moore A. L. ; Gust D. ; Mallouk T. E. J. Am. Chem. Soc. 2009, 131, 926.
14 Xiang X. ; Fielden J. ; Huang Z. Q. ; Zhang N. F. ; Luo Z. ; Musaev D. G. ; Lian T. Q. ; Hill C. J. Phys. Chem. C 2013, 117, 918.
15 Xi L. F. ; Tran P. D. ; Chiam S. Y. ; Loo J. S. C. ; Wong L. H. J. Phys. Chem. C 2012, 116, 13884.
16 Respinis M. ; Joya K. S. ; Groot H. J. M. D. ; Smith W. A. ; Krol R. ; Dam B. J. Phys. Chem. C 2015, 119, 7275.
17 Wang L. ; Dionigi F. ; Nguyen N. T. ; Kirchgeorg R. ; Gliech M. ; Grigorescu S. ; Strasser P. ; Schmuki P. Chem. Mater. 2015, 27, 2360.
18 Kanan M.W. ; Nocera D. G. Science 2008, 321, 1072.
19 Zhong D. K. ; Sun J. ; Inumaru H. ; Gamelin D. R. J. Am. Chem. Soc. 2009, 131, 6086.
20 Seabold J. A. ; Choi K. S. Chem. Mater 2011, 23, 1105.
21 Li X. R. ; Wang J. G. ; Men Y. ; Bian Z. F. Applied Catalysis B: Environmental 2016, 187, 115.
22 Bjelajac A. ; Djokic V. ; Petrovic R. ; Socol G. ; Mihailescuc I. N. ; Florea I. ; Ersend O. ; Janackovic D. Applied Surface Science 2014, 309, 225.
23 Pan Y. X. ; Zhou T. H. ; Han J. Y. ; Hong J. D. ; Wang Y. B. ; Zhang W. ; Xu R. Catal. Sci. Technol. 2016, 6, 2206.
24 Na Y. ; Hu B. ; Yang Y. L. ; Zhou L. Chin. Chem. Lett. 2015, 26, 141.
25 Du P.W. ; Kokhan O. ; Chapman K.W. ; Chupas P. J. ; Tiede D. M. J. Am. Chem. Soc. 2012, 134, 11096.
26 Farrow C. L. ; Bediako D. K. ; Surendranath Y. ; Nocera D. G. ; Billinge S. J. L. J. Am. Chem. Soc. 2013, 135, 6403.
27 Costentin C. ; Porter T. R. ; Saveant J. M. J. Am. Chem. Soc 2016, 138, 5615.
28 Cobo S. ; Heidkamp J. ; Fize J. ; Fourmond V. ; Guetaz L. ; Jousselme B. ; Ivanova V. ; Dau H. ; Fontecave M. ; Artero V. ; Fontecave M. ; Artero V. Nat. Mater. 2012, 11, 802.
[1] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[2] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 590-601.
[3] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 399-406.
[4] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2029-2034.
[5] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[6] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2082-2091.
[7] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 80-102.
[8] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2185-2196.
[9] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2069-2076.
[10] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2077-2083.
[11] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1758-1764.
[12] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1519-1526.
[13] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 728-736.
[14] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 737-744.
[15] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 551-557.